石向陽(yáng)
近幾年高考,函數(shù)中雙變量的任意與存在混搭的等式問(wèn)題,越來(lái)越受命題人的青睞.對(duì)于這類問(wèn)題,學(xué)生很是困惑.下面就此類問(wèn)題總結(jié)歸納如下:
命題1x1∈A,x2∈B,使得f(x1)=g(x2)成立f(x)的值域包含于g(x)的值域{f(x)|x∈A}{g(x)|x∈B}.
命題2x1∈A,x2∈B,都有f(x1)=g(x2)成立等價(jià)于f(x)的值域等于g(x)的值域{f(x)|x∈A}={g(x)|x∈B}.
命題3x1∈A,x2∈B,使得f(x1)=g(x2)成立f(x)的值域與g(x)的值域相交非空{(diào)f(x)|x∈A}∩{g(x)|x∈B}≠.
命題4x1∈A,x2∈B,都有f(x1)≠g(x2)成立f(x)的值域與g(x)的值域相交為空集{f(x)|x∈A}∩{g(x)|x∈B}=.
從集合子集的定義、集合相等的定義、集合交集的定義,不難理解上述命題的合理性.有了這些命題的幫助,我們能很好地破解與此相關(guān)的一些難題.
例1已知函數(shù)f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R.設(shè)函數(shù)q(x)=g(x),x≥0,
f(x),x<0.是否存在k,對(duì)任意給定的非零實(shí)數(shù)x1,存在惟一的非零實(shí)數(shù)x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,請(qǐng)說(shuō)明理由.
解當(dāng)x<0時(shí),有q′x=f′x=3x2-2(k2-k+1)x+5;當(dāng)x>0時(shí),有q′x=g′x=2k2x+k,因?yàn)楫?dāng)k=0時(shí)不合題意,因此k≠0.
下面討論k≠0的情形,記A={g′(x)|x>0},B={f′(x)|x<0},則A=(k,+∞),B=5,+∞
(ⅰ)當(dāng)x1>0時(shí),q′x在0,+∞上單調(diào)遞增,所以要使q′x2=q′x1成立,只能x2<0,由命題1知AB,因此有k≥5;
(ⅱ)當(dāng)x1<0時(shí),q′x在-∞,0上單調(diào)遞減,所以要使q′x2=q′x1成立,只能x2>0,由命題1知BA,因此k≤5.
綜合(?。áⅲ﹌=5.
當(dāng)k=5時(shí),有A=B.則x1<0,q′x1∈B=A,即x2>0,使得q′x2=q′x1成立,因?yàn)閝′x在0,+∞上單調(diào)遞增,所以x2的值是唯一的;
同理,x1<0,即存在唯一的非零實(shí)數(shù)x2(x2≠x1),使q′x2=q′x1成立.
所以k=5滿足題意.
例2已知函數(shù)f(x)=4x2-72-x,x∈[0,1].
(Ⅰ)求f(x)的單調(diào)區(qū)間和值域;
(Ⅱ)設(shè)a≥1,函數(shù)g(x)=x3-3a2x-2a,x∈[0,1],若對(duì)于任意x1∈[0,1],總存在x0∈[0,1]使得g(x0)=f(x1)成立,求a的取值范圍.
解(Ⅰ)對(duì)函數(shù)f(x)求導(dǎo),得f′(x)=-4x2+16x-7(2-x)2=-(2x-1)(2x-7)(2-x)2.
令f′(x)=0解得x=12或x=72.
所以,當(dāng)x∈(0,12)時(shí),f(x)是減函數(shù);當(dāng)x∈(12,1)時(shí),f(x)是增函數(shù).
當(dāng)x∈[0,1]時(shí),f(x)∈[-4,-3].
(Ⅱ)對(duì)函數(shù)g(x)求導(dǎo),得g′(x)=3(x2-a2).
因?yàn)閍≥1,當(dāng)x∈(0,1)時(shí),g′(x)<3(1-a2)≤0.
因此當(dāng)x∈(0,1)時(shí),g(x)為減函數(shù),從而當(dāng)x∈[0,1]時(shí)有g(shù)(x)∈[g(1),g(0)].
又g(1)=1-2a-3a2,g(0)=-2a,即x∈[0,1]時(shí)有g(shù)(x)∈[1-2a-3a2,-2a].
任給x1∈[0,1],f(x1)∈[-4,-3],存在x0∈[0,1]使得g(x0)=f(x1),由命題1
知問(wèn)題轉(zhuǎn)化為[1-2a-3a2,-2a][-4,-3].即1-2a-3a2≤-4,
-2a≥-3.解得1≤a≤32.
故a的取值范圍為[1,32].
例3已知函數(shù)f(x)=x-4,g(x)=x3-3a2x-2a(其中a≥1),
(Ⅰ)若對(duì)于任意x1∈[0,2],x2∈[0,1],都有f(x1)=g(x2)成立,求a的取值范圍.
(Ⅱ)若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,求a的取值范圍.
解(Ⅰ)當(dāng)x∈0,2時(shí),f(x)單調(diào)遞增,所以,f(x)∈[f(0),f(2)],即f(x)∈[-4,-2].由例2知g(x)∈[1-2a-3a2,-2a].
由命題2知,f(x)的值域等于g(x)的值域[1-2a-3a2,-2a]=[-4,-2].即1-2a-3a2=-4,
-2a=-2.解得a=1.故a的取值范圍為{1}.
(Ⅱ)由(Ⅰ)可知f(x)∈[f(0),f(1)]=[-4,-3],g(x)∈[1-2a-3a2,-2a],由命題3知問(wèn)題轉(zhuǎn)化為[-4,-3]∩[1-2a-3a2,-2a]≠.當(dāng)a≥1時(shí)有1-2a-3a2≤-4,所以只需-2a≥-4即a≤2.又a≥1,所以1≤a≤2.
例4已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x(a∈R),g(x)=196x-13.是否存在實(shí)數(shù)a,存在x1∈[-1,1],x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.
解在[0,2]上g(x)=196x-13是增函數(shù),故對(duì)于x∈[0,2],有g(shù)(x)∈[-13,6].
設(shè)h(x)=f′(x)+2ax=3x2+2x-a(a+2),
當(dāng)x∈[-1,1]時(shí),h(x)∈[-a2-2a-13,5-a2-2a].
要存在x1∈[-1,1],x2∈0,2,使得h(x1)=g(x2)成立,由命題3知問(wèn)題轉(zhuǎn)化為[-a2-2a-13,5-a2-2a]∩[-13,6]≠,
考慮反面,若[-a2-2a-13,5-a2-2a]∩[-13,6]=,
則-13>5-a2-2a或6<-a2-2a-13,解得a>-1+573或a<-1-573.
從而所求為-1-573≤a≤-1+573.
例5已知函數(shù)f(x)=(12)x-m,g(x)=x2.若對(duì)于任意x1∈[0,2],任意x2∈[-1,3],都有f(x1)≠g(x2)成立,求m的取值范圍.
解由題意可得f(x)∈[f(2),f(0)]=[14-m,1-m],g(x)∈[0,9],由命題4知問(wèn)題轉(zhuǎn)化為[14-m,1-m]∩[0,9]=1-m<0或14-m>9m>1或m<-354.
綜上可得m的取值范圍為(-∞,-354)∪(1,+∞).
幾點(diǎn)補(bǔ)充說(shuō)明:
(1)雙變量中任意與存在性混搭的等式問(wèn)題,可轉(zhuǎn)化為兩個(gè)函數(shù)的值域問(wèn)題;
(2)由f(x)=g(x)f(x)≥g(x),
f(x)≤g(x)知,可將等式問(wèn)題轉(zhuǎn)化為不等式問(wèn)題處理,如例2:對(duì)于任意x1∈[0,1],總存在x0∈[0,1]使得g(x0)=f(x1)成立x1∈[0,1],x0∈[0,1],有g(shù)(x0)≥f(x1),
g(x0)≤f(x1),g(x)max≥f(x)max,
g(x)min≤f(x)min,-2a≥-3,
1-2a-3a2≤-4.解得1≤a≤32,故a的取值范圍為[1,32].
總之,雙變量中任意與存在混搭等式問(wèn)題,實(shí)質(zhì)是研究相應(yīng)函數(shù)值域問(wèn)題,把任意與存在混搭等式問(wèn)題化歸為值域問(wèn)題是解決問(wèn)題的關(guān)鍵所在.