趙珂,楊秋云,化黨領(lǐng),王代長(zhǎng),趙穎,劉芳,張亞麗,劉世亮(河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,450002,鄭州)
?
褐煤基改良劑對(duì)石灰性土壤復(fù)合體鎘賦存形態(tài)的影響
趙珂,楊秋云,化黨領(lǐng)?,王代長(zhǎng),趙穎,劉芳,張亞麗,劉世亮
(河南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,450002,鄭州)
摘要:為篩選和評(píng)估褐煤基材料對(duì)鎘污染的修復(fù)效果,降低通過(guò)垂直入滲進(jìn)入地下水或通過(guò)地面徑流污染更大面積水土的鎘通量,通過(guò)將3%各種材料均勻混入污染土壤并培養(yǎng)120 d,提取其膠散分組復(fù)合體并測(cè)定鎘化學(xué)形態(tài)變化。結(jié)果表明:1)各改良劑處理的離子交換態(tài)、碳酸鹽結(jié)合態(tài)、鐵錳氧化物結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù)在復(fù)合體中分布均為 G0>G1>G2,而弱有機(jī)態(tài)、強(qiáng)有機(jī)態(tài)質(zhì)量分?jǐn)?shù)分布的順序相反。殘?jiān)鼞B(tài)鎘質(zhì)量分?jǐn)?shù)具有 G0組復(fù)合體低于 G1組和G2組復(fù)合體內(nèi)鎘質(zhì)量分?jǐn)?shù)的趨勢(shì),除鈣化處理,其他處理3組復(fù)合體中殘?jiān)鼞B(tài)之間均無(wú)顯著差異。2)施用褐煤基材料普遍提高土壤中弱有機(jī)結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù),主要提高水穩(wěn)性復(fù)合體中弱有機(jī)態(tài)鎘,G0、G1和 G2中施用材料的比對(duì)照分別提高5.27%、20.74%和17.82%。褐煤、硝化褐煤、腐植酸顯著提高水穩(wěn)性復(fù)合體強(qiáng)有機(jī)態(tài)鎘質(zhì)量分?jǐn)?shù),平均分別提高27.26%、23.90%和40.05%,顯著降低交換態(tài)鎘質(zhì)量分?jǐn)?shù)和水穩(wěn)性復(fù)合體碳酸鹽態(tài)鎘質(zhì)量分?jǐn)?shù),平均降低幅度分別為14.63% ~22.79%和14.31% ~34.56%。硝化褐煤和腐植酸顯著降低G1和G2中鐵錳氧化物結(jié)合態(tài)鎘的質(zhì)量分?jǐn)?shù)。3)褐煤改性后多數(shù)提高了交換態(tài)鎘和碳酸鹽態(tài)鎘質(zhì)量分?jǐn)?shù),以堿化、鈣化、去礦化和活性炭在改性后提高交換態(tài)鎘質(zhì)量分?jǐn)?shù)的幅度較大,較褐煤提高幅度最大值分別是29.41%、34.03%、33.82%和43.32%。改性后所有材料普遍降低土壤弱有機(jī)結(jié)合態(tài)鎘的質(zhì)量分?jǐn)?shù),除腐植酸外,強(qiáng)有機(jī)態(tài)鎘質(zhì)量分?jǐn)?shù)均比改性前降低。殘?jiān)鼞B(tài)鎘質(zhì)量分?jǐn)?shù)有向易利用態(tài)轉(zhuǎn)化的趨勢(shì)。總之,非水穩(wěn)性復(fù)合體主要由離子交換態(tài)和碳酸鹽結(jié)合態(tài)等易效性鎘賦存,水穩(wěn)性復(fù)合體中主要由有機(jī)態(tài)和殘?jiān)鼞B(tài)等難效性鎘賦存。褐煤、硝化、腐植酸處理顯著降低污染土復(fù)合體中離子交換態(tài)、碳酸鹽態(tài)、鐵錳氧化物態(tài)鎘質(zhì)量分?jǐn)?shù),顯著提高水穩(wěn)性 G1和 G2復(fù)合體強(qiáng)有機(jī)態(tài)鎘質(zhì)量分?jǐn)?shù),腐植酸還提高殘?jiān)鼞B(tài)鎘質(zhì)量分?jǐn)?shù),起到對(duì)鎘的鈍化作用,但改性后多數(shù)是削弱了鈍化效果。
關(guān)鍵詞:改性褐煤;有機(jī)改良劑;石灰性土壤;膠散復(fù)合體;鎘污染;化學(xué)形態(tài)轉(zhuǎn)化;鈍化;固定
項(xiàng)目名稱(chēng):國(guó)家自然科學(xué)基金“褐煤基改性材料轉(zhuǎn)化石灰性土壤重金屬形態(tài)的機(jī)理和其對(duì)重金屬時(shí)空變異的影響”(41371311),“硫素對(duì)稻根表面鐵錳膠膜形成及水稻吸收Cd和As有效性的影響”(41271471)
河南省濟(jì)源市年均降水量為600 mm。某鉛冶煉企業(yè)排放環(huán)境中的砷、鎘、鉛等重金屬已經(jīng)造成局部地區(qū)土壤重金屬?lài)?yán)重超標(biāo)。污染物控制與生態(tài)重建是該地區(qū)解決環(huán)境問(wèn)題的迫切任務(wù)[1]。土壤中重金屬全量無(wú)助于理解其在土壤中的存在風(fēng)險(xiǎn),想了解其潛在影響和移動(dòng)的復(fù)雜性,必須研究重金屬的存在形態(tài),包括重金屬的各種化學(xué)相如交換態(tài)、碳酸鹽態(tài)、鐵錳氧化態(tài)、有機(jī)態(tài)和殘留態(tài)中的定量分布[2 3]。重金屬在固相中的結(jié)合形態(tài)與金屬釋放到液相中的強(qiáng)度有關(guān),因而影響其重新移動(dòng)和生物有效性[4]。重金屬進(jìn)入土壤后進(jìn)一步轉(zhuǎn)化為非溶解態(tài),通過(guò)各種機(jī)制(主要是吸附、離子交換、共沉淀和絡(luò)合為復(fù)合體)與土壤組分結(jié)合[5]。土壤有機(jī)礦質(zhì)復(fù)合體的生成是土壤發(fā)生與肥力形成的重要過(guò)程之一[6],也是重金屬在土壤中賦存的重要形態(tài)。在中國(guó)南方酸性土壤上,蒙脫、伊利等層狀黏土礦物較少,多采用添加黏土礦物的方式鈍化重金屬[7],或者直接施用石灰[8 9]和磷肥[10]固定重金屬,而在北方石灰性土壤上,硅酸鹽層狀粘土礦物是土壤礦物質(zhì)的主要成分,pH較高也使得添加石灰的作用效果差,研究有機(jī)材料在石灰性土壤上的鈍化修復(fù)非常必要。褐煤具有強(qiáng)吸附性能,是儲(chǔ)量非常豐富的天然富含腐植酸類(lèi)物質(zhì),含有羧基、醌基、羰基、甲氧基等活性基團(tuán),是良好的天然有機(jī)離子交換劑。褐煤的高氧質(zhì)量分?jǐn)?shù)使其能從溶液中由羧基和酚羥基功能團(tuán)的離子交換移去金屬離子,褐煤的甲氧基、羥基、脂肪、酚和羰基,是其活性位點(diǎn),有極強(qiáng)的專(zhuān)性吸附性能[11 12]。將褐煤及褐煤基改性材料用于工業(yè)污水處理和工業(yè)鉆井材料的多[13 14],用于土壤修復(fù)和農(nóng)業(yè)環(huán)境保護(hù)的少;褐煤的農(nóng)業(yè)利用仍集中在腐植酸的提取和肥料應(yīng)用及作為土壤結(jié)構(gòu)改良基質(zhì),少量研究了其對(duì)磷和鉀的吸附,而利用改性技術(shù)直接使褐煤轉(zhuǎn)化為良好的土壤生態(tài)修復(fù)材料和褐煤用于土壤重金屬污染修復(fù)的研究尚屬空白,尤其是用于石灰性土壤上的尚未發(fā)現(xiàn)。本研究將褐煤及其多種改性材料施用于鎘重度污染的土壤上,經(jīng)過(guò)一定時(shí)間后測(cè)定不同材料對(duì)鎘化學(xué)形態(tài)在有機(jī)無(wú)機(jī)復(fù)合體中的分布,以評(píng)估各改良材料對(duì)鎘形態(tài)的轉(zhuǎn)化效果,更好地將褐煤資源用于退化土壤生態(tài)修復(fù)領(lǐng)域,為廢棄地的生態(tài)重建與污染修復(fù)提供科學(xué)依據(jù)。
1.1供試材料
土壤與褐煤基改性材料的制備:供試土壤為河南省濟(jì)源市克井鎮(zhèn)青多村某鉛冶煉企業(yè)周?chē)?00 m處多金屬污染的0~20 cm土壤,黏壤質(zhì)褐土,土壤pH 8.05,有機(jī)質(zhì)、有效磷、速效鉀、堿解氮、全鉛和全鎘的質(zhì)量分?jǐn)?shù)分別為 27.13 g/kg以及 28.45、145.30、190.65、1 985.76和29.35 mg/kg。根據(jù)GB 15618—1995《土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)》,pH>7.5的土壤中鎘1 mg/kg和鉛 350 mg/kg的二級(jí)標(biāo)準(zhǔn)臨界值,供試石灰性土壤(試驗(yàn)對(duì)照)已受鉛、鎘重度污染。
選取云南昭通褐煤進(jìn)行改性:鈣化褐煤[15],磺化褐煤[16],堿化褐煤[16],硝化褐煤[17],褐煤制活性炭[18],去礦化褐煤[19],褐煤基腐植酸[20]。各改性產(chǎn)品均用去離子水洗為中性,干燥備用。
有機(jī)無(wú)機(jī)復(fù)合體的分組提取:根據(jù)先行開(kāi)展的生菜盆栽試驗(yàn)效果,確定土壤中添加3%質(zhì)量分?jǐn)?shù)的褐煤基改性材料,每個(gè)處理用塑料盆裝土500 g,與土壤混合均勻培養(yǎng),每處理重復(fù)3次。培養(yǎng)溫度為9—12月的自然室溫,用稱(chēng)量法控制相對(duì)含水量75%,培養(yǎng)120 d,風(fēng)干后土壤取樣40.00 g,過(guò)20目篩,按膠散法[21]提取G0、G1、G2組有機(jī)無(wú)機(jī)復(fù)合體,并對(duì)各組復(fù)合體進(jìn)行Cd化學(xué)形態(tài)測(cè)定。膠散復(fù)合體為<10 μm的膠體顆粒,G0組是水可分散復(fù)合體,G1組是鈉質(zhì)可分散復(fù)合體,可以用中性氯化鈉溶液拆開(kāi),G2組是鈉質(zhì)研磨可分散復(fù)合體[6]。
1.2鎘形態(tài)分級(jí)及測(cè)定分析方法
鎘形態(tài)分級(jí)采用 Tessier連續(xù)提取法[22],火焰原子吸收分光光度計(jì)測(cè)定;土壤基本理化性質(zhì)測(cè)定采用魯如坤方法[23]。采用 Microsoft Excel 2007、SPSS 20.0和 GraphPad Prism 5.0對(duì)所得數(shù)據(jù)進(jìn)行處理分析,方差分析采用Duncan新復(fù)極差法。
2.1對(duì)交換態(tài)鎘質(zhì)量分?jǐn)?shù)的影響
如圖1所示,未改性的褐煤導(dǎo)致G0中交換態(tài)鎘質(zhì)量分?jǐn)?shù)下降,褐煤、硝化、腐植酸導(dǎo)致G1和G2中鎘交換態(tài)顯著下降。G1中褐煤、硝化、腐植酸、磺化處理的鎘質(zhì)量分?jǐn)?shù)也分別比對(duì)照顯著低 23.00%、18.94%、13.67%和15.43%。G2復(fù)合體中,褐煤、硝化、腐植酸處理的離子交換態(tài)鎘質(zhì)量分?jǐn)?shù)分別比對(duì)照顯著降低22.57%、15.84%和15.59%。說(shuō)明這幾種有機(jī)材料對(duì)鎘起到鈍化作用,堿化、鈣化、去礦化和活性炭對(duì)土壤膠散復(fù)合體中交換態(tài)鎘質(zhì)量分?jǐn)?shù)的影響與對(duì)照均未達(dá)到顯著差異。各改性材料與未改性褐煤相比,改性后G0中交換態(tài)鎘質(zhì)量分?jǐn)?shù)除腐植酸處理外,均比改性前顯著提高,鈣化、堿化、硝化、腐植酸、活性炭、去礦化和磺化分別比原褐煤提高 22.08%、19.55%、24.76%、7.30%、13.14%、17.94%和13.89%;G1中改性后褐煤、鈣化、堿化、腐植酸、活性炭和去礦化分別比改性前的褐煤顯著提 高28.69%、24.60%、12.13%、28.25%和23.37%;G2中改性后鈣化、堿化、活性炭、去礦化和磺化處理復(fù)合體中交換態(tài)鎘質(zhì)量分?jǐn)?shù)分別提高29.41%、34.03%、33.82%、43.32%和23.67%。
2.2對(duì)碳酸鹽結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù)的影響
如圖2所示,與對(duì)照相比,G0組復(fù)合體中,硝化處理復(fù)合體的碳酸鹽結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù)顯著升高13.88%,其余比對(duì)照有降低有升高但未有顯著差異;G1復(fù)合體中,褐煤、腐植酸、去礦化、磺化處理的鎘質(zhì)量分?jǐn)?shù)分別比對(duì)照顯著低12.68%、26.18%、16.42%和14.90%;G2復(fù)合體中,褐煤、硝化、腐植酸、去礦化和磺化處理的鎘質(zhì)量分?jǐn)?shù)比對(duì)照顯著低14.31%、22.73%、34.56%、16.71% 和 15.45%。G1和G2組中均以腐植酸處理降低最多。G1和G2復(fù)合體中主要是褐煤、腐植酸、去礦化、磺化和硝化處理的碳酸鹽態(tài)鎘質(zhì)量分?jǐn)?shù)降低顯著。
圖1 G0、G1和G2復(fù)合體的離子交換態(tài)鎘變化Fig.1 Content of exchangeable Cd in the complex G0,G1and G2
圖2 G0、G1和G2復(fù)合體碳酸鹽結(jié)合態(tài)鎘變化Fig.2 Content of carbonate-bound Cd in the complex G0,G1and G2
改性前后相比,G0中改性后均比褐煤處理的碳酸鹽結(jié)合態(tài)質(zhì)量分?jǐn)?shù)高,鈣化、堿化、硝化、腐植酸、活性炭、去礦化分別提高 5.18%、15.76、21.23%、8.64%、14.14%、4.69%;G1中活性炭處理的升高12.89%;G2中鈣化、堿化和活性炭處理的碳酸鹽態(tài)鎘質(zhì)量分?jǐn)?shù)顯著提高 11.98%、10.00%和9.55%。G1和G2中腐植酸處理比褐煤顯著降低15.47%和23.64%。說(shuō)明改性后除腐植酸是鈍化作用外,多數(shù)是促進(jìn)轉(zhuǎn)變?yōu)榫哂谢罨饔玫奶妓猁}態(tài)鎘。
2.3對(duì)鐵錳氧化物結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù)的影響
如圖3所示,與對(duì)照相比,施用有機(jī)改良材料除G2中硝化和腐植酸處理外,多數(shù)提高3組復(fù)合體中鐵錳氧化物態(tài)鎘的質(zhì)量分?jǐn)?shù)。與未改性褐煤相比,G0中各處理的鐵錳氧化物態(tài)鎘質(zhì)量分?jǐn)?shù)變化差異不顯著,G1和G2中硝化和腐植酸處理比褐煤顯著降低,G2中堿化、鈣化有升高趨勢(shì);因此硝化和腐植酸無(wú)論與對(duì)照相比還是與褐煤相比,均降低鐵錳氧化物態(tài)鎘質(zhì)量分?jǐn)?shù)。
2.4對(duì)弱結(jié)合鎘質(zhì)量分?jǐn)?shù)的影響
如圖4所示:G0復(fù)合體中腐植酸處理的弱有機(jī)結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù)顯著高于對(duì)照13.18%;G1復(fù)合體中褐煤、硝化、腐植酸處理的鎘質(zhì)量分?jǐn)?shù)分別高于對(duì)照34.12%、31.23%和32.13%;G2復(fù)合體中各處理的弱有機(jī)態(tài)鎘質(zhì)量分?jǐn)?shù)均顯著高于對(duì)照,堿化、鈣化、褐煤、硝化、腐植酸、去礦化、活性炭和磺化分別提高10.63%、13.40%、28.77%、18.14%、31.46%、12.67%、14.42%和13.04%。說(shuō)明施用褐煤基材料普遍提高了土壤中弱有機(jī)結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù),且水穩(wěn)性G1和G2復(fù)合體中的提高輻度較大。褐煤改性后,3組復(fù)合體均表現(xiàn)為降低弱有機(jī)結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù),G2復(fù)合體中,堿化、鈣化、硝化、去礦化、活性炭和磺化分別比褐煤處理的下降 14.08%、11.93%、8.26%、12.50%、11.14%和 12.22%;G1中活性炭和磺化的下降達(dá)到顯著水平,分別下降17.50%和19.38%;G0中改性后與改性前差異不顯著。
圖3 G0、G1和G2復(fù)合體的鐵錳氧化物結(jié)合態(tài)鎘變化Fig.3 Content of Fe-Mn-oxide-bound Cd in the complex G0,G1and G2
圖4 G0、G1和G2復(fù)合體的弱有機(jī)態(tài)鎘變化Fig.4 Content of organics-weakly-bound Cd in the complex G0,G1and G2
2.5對(duì)強(qiáng)有機(jī)結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù)的影響
圖5示出,G0只有褐煤處理的強(qiáng)有機(jī)結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù)顯著高于對(duì)照;G1和 G2中腐植酸、硝化、褐煤處理的強(qiáng)有機(jī)結(jié)合態(tài)鎘質(zhì)量分?jǐn)?shù)顯著高于對(duì)照37.16%、24.36%和22.62%,G2分別提高42.93%、23.44%和31.90%。與改性前的原褐煤相比,G0堿化、鈣化、硝化、腐植酸、去礦化、活性炭和磺化顯著下降24.71%、26.99%、12.80%、22.35%、34.88%、 32.18%和21.80%。3組復(fù)合體中改性后除腐植酸外均降低強(qiáng)有機(jī)態(tài)鎘質(zhì)量分?jǐn)?shù)。
圖5 G0、G1和G2復(fù)合體的強(qiáng)有機(jī)結(jié)合態(tài)鎘變化Fig.5 Content of organics-strongly bound Cd in the complex G0,G1and G2
2.6對(duì)殘?jiān)鼞B(tài)鎘質(zhì)量分?jǐn)?shù)的影響
如圖6所示,G1和G2中腐植酸處理的殘?jiān)鼞B(tài)鎘比對(duì)照顯著提高,其他處理與對(duì)照均無(wú)顯著差異。改性后對(duì)G0殘?jiān)鼞B(tài)鎘質(zhì)量分?jǐn)?shù)的影響大于對(duì)G1和G2的影響。腐植酸提高土壤殘?jiān)鼞B(tài)鎘質(zhì)量分?jǐn)?shù),這與腐植酸在影響其他幾個(gè)形態(tài)方面的趨勢(shì)一致,即它主要是穩(wěn)定地對(duì)鎘起鈍化劑的作用。
圖6 G0、G1和G2復(fù)合體的殘?jiān)鼞B(tài)鎘變化Fig.6 Content of residual Cd in the complex G0,G1and G2
1)膠散復(fù)合體類(lèi)型與鎘形態(tài)分布:各改良劑處理的離子交換態(tài)、碳酸鹽結(jié)合態(tài)、鐵錳氧化物結(jié)合態(tài)等易效態(tài)鎘質(zhì)量分?jǐn)?shù)均在水散性 G0復(fù)合體中質(zhì)量分?jǐn)?shù)較高,而在水穩(wěn)性復(fù)合體G1和G2中質(zhì)量分?jǐn)?shù)逐漸降低;弱有機(jī)態(tài)、強(qiáng)有機(jī)態(tài)和殘?jiān)鼞B(tài)鎘等難效態(tài)鎘質(zhì)量分?jǐn)?shù)分布的順序正好相反,多存在于水穩(wěn)性復(fù)合體中。根據(jù)BCR連續(xù)提取法[24],交換態(tài)為可遷移態(tài),交換態(tài)和碳酸鹽結(jié)合態(tài)為有效態(tài),鐵錳氧化物結(jié)合態(tài)和有機(jī)結(jié)合態(tài)為潛在有效態(tài),殘?jiān)鼞B(tài)是一種生物不可利用的狀態(tài)[25 26]。筆者將各種褐煤基材料添加到鎘污染土壤中培養(yǎng)足夠長(zhǎng)時(shí)間,引起鎘形態(tài)在不同膠散復(fù)合體中分布的改變,易效態(tài)多存在于水不穩(wěn)定復(fù)合體中,增大了環(huán)境風(fēng)險(xiǎn)。效果良好的鈍化劑應(yīng)該使易效態(tài)重金屬向穩(wěn)定性復(fù)合體中轉(zhuǎn)變,以被復(fù)合體穩(wěn)定“俘獲”。褐煤基材料促使鎘與有機(jī)物質(zhì)復(fù)合的機(jī)制需要進(jìn)一步研究。
2)褐煤基材料對(duì)鎘形態(tài)在不同類(lèi)型復(fù)合體中賦存的影響:施用褐煤基材料均提高土壤弱或強(qiáng)有機(jī)態(tài)鎘質(zhì)量分?jǐn)?shù),降低交換態(tài)隔質(zhì)量分?jǐn)?shù),在碳酸鹽態(tài)、鐵錳氧化物態(tài)和有機(jī)態(tài)之間進(jìn)行轉(zhuǎn)化時(shí),各有機(jī)材料的作用不同。重金屬進(jìn)入土壤后,通過(guò)溶解、沉淀、凝聚、絡(luò)合吸附等各種反應(yīng),形成不同的化學(xué)形態(tài),并表現(xiàn)出不同的活性[26]。根據(jù)腐植質(zhì)能提供電子具有還原能力[27],并且具有弱酸性質(zhì),在加了褐煤基材料后,對(duì)離子交換態(tài)、碳酸鹽結(jié)合態(tài)和鐵錳氧化物結(jié)合態(tài)的作用是促進(jìn)其從G2向 G1和G0復(fù)合體中轉(zhuǎn)化,因而 G0中質(zhì)量分?jǐn)?shù)最高;而有機(jī)態(tài)和殘?jiān)鼞B(tài)很難在土壤中轉(zhuǎn)化,為難效態(tài),多存在于水穩(wěn)性G2和 G1中。飽和導(dǎo)水率是水循環(huán)和土壤侵蝕模型中的重要參數(shù),也是土壤結(jié)構(gòu)改善的重要指標(biāo),土壤飽和導(dǎo)水率隨有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)的增加呈降低趨勢(shì)[28],飽和導(dǎo)水率降低可以減緩重金屬在土壤中的運(yùn)移速率,減緩環(huán)境風(fēng)險(xiǎn)。褐煤基材料是有機(jī)材料,除了影響重金屬的化學(xué)形態(tài)外,還影響土壤的物理性質(zhì),施用褐煤基材料顯然可以降低飽和導(dǎo)水率。
3)褐煤改性對(duì)鎘形態(tài)在不同類(lèi)型復(fù)合體中賦存的影響:改性后總的效果是與改性前相反。改性后的表現(xiàn)可能暗示更多小分子量腐植酸[29]的形成和官能團(tuán)的改變。褐煤改性后均提高交換態(tài)鎘質(zhì)量分?jǐn)?shù),降低土壤有機(jī)結(jié)合態(tài)鎘的質(zhì)量分?jǐn)?shù),可能因?yàn)楦男院艽蟪潭扔绊懥撕置夯菜岬墓倌軋F(tuán)種類(lèi)和數(shù)量,使得那些官能團(tuán)或小分子腐植物質(zhì)容易形成更多可交換態(tài)的鎘 腐植質(zhì)復(fù)合體,而減少大分子難溶性鎘 腐植質(zhì)復(fù)合體。改性削弱原材料褐煤的鈍化作用。褐煤經(jīng)硝酸氧化后總的腐植酸質(zhì)量分?jǐn)?shù)增加[30 31],其小分子量腐植酸比天然褐煤含有豐富的含氧功能團(tuán),增加離子交換能力;筆者研究表明,改性后硝化褐煤顯著提高了交換態(tài)鎘質(zhì)量分?jǐn)?shù),與其結(jié)論一致。
[1]林文杰.土法煉鋅區(qū)生態(tài)退化與重金屬污染[J].生態(tài)環(huán)境學(xué)報(bào),2009,18(1):149.Lin Wenjie.Ecological degeneration and heavy metals pollution in zinc smelting areas[J].Ecology and Environmental Sciences,2009,18(1):149.(in Chinese)
[2]Banat K M,Howari F M,To'mah M M.Chemical fractionationandheavymetal distributioninagricultural soils,north of Jordan Valley[J].Soil&Sediment Contamination,2007,16(1):89.
[3]韓春梅,王林山,鞏宗強(qiáng),等.土壤中重金屬形態(tài)分析及其環(huán)境學(xué)意義[J].生態(tài)學(xué)雜志,2005,24(12):1499.Han Chunmei,Wang Linshan,Gong Zongqiang,et al.Chemical forms of soil heavy metals and their environmental significance[J].Chinese Journal of Ecology,2005,24(12):1499.(in Chinese)
[4]Tack F M G,Verloo M G.Chemical speciation and fractionation in soil and sediment heavy metal analysis:A review[J].International Journal of Environmental Analytical Chemistry,1995,59(2):225.
[5]Orro?o D I,Lavado R S.Distribution of extractable heavy metals in different soil fractions[J].Chemical Speciation and Bioavailability,2009,21(4):193.
[6]徐建民,袁可能.土壤有機(jī)礦質(zhì)復(fù)合體研究.V.膠散復(fù)合體組成和生成條件的剖析[J].土壤學(xué)報(bào),1993,30(1):43.Xu Jianmin,Yuan Keneng.Studies on organo-mineral complexes in soil,V.distribution of organo-mineral complexes in zonal soils of China[J].Acta Pedologica Sinica,1993,30(1):43.(in Chinese)
[7]曾燕君,周志軍,趙秋香.蒙脫石ORSH復(fù)合體材料對(duì)土壤鎘的鈍化及機(jī)制[J].環(huán)境科學(xué),2015,36(6): 2314.Zeng Yanjun,Zhou Zhijun,Zhao Qiuxiang.Mechanism Study of the smectite--OR--SH compound for reducing cadmium uptake by plants in contaminated soils[J].Environmental Science,2015,36(6):2314.(in Chinese)
[8]張茜,李菊梅,徐明崗.石灰用量對(duì)污染紅壤和黃泥土中有效態(tài)銅鋅含量的影響[J].中國(guó)土壤與肥料,2007 (4):68.Zhang Qian,Li Jumei,Xu Minggang.Effects of lime application rate on available copper and zinc content in single and complex polluted red and paddy soils[J].Soils and Fertilizers Sciences in China,2007(4):68.(in Chinese)
[9]施春婷.土壤改良劑對(duì)廣西巖溶地區(qū)污染土壤重金屬生物有效性的影響[D].南寧:廣西大學(xué),2012:13.Shi Chunting.Effect of soil amendments on heavy metal bioavailability in polluted soil in Guangxi Karst area[D].Nanning:Guangxi University,2012:13.(in Chinese)
[10]王朋超,孫約兵,徐應(yīng)明,等.施用磷肥對(duì)南方酸性紅壤鎘生物有效性及土壤酶活性影響[J].環(huán)境化學(xué),2016,35(1):150.Wang Pengchao,Sun Yuebing,Xu Yingming,et al.Effects of phosphorous fertilizers on Cd bioavailability and soil enzyme activities in south acidic red soil[J].Environmental Chemistry,2016,35(1):150.(in Chinese)
[11]Gode F,Pehlivan E.Chromium(VI)adsorption by brown coals[J].Energy Sources,Part A,Recovery,Utilization,and Environmental Effects,2006,28:447.
[12]Rengaraj S,Yeon K H,Moon S H.Removal of chromium from water and wastewater by ion exchange resins [J].Journal of Hazardous Materials,2001,87(1/3): 273.
[13]U?urum M.A study of removal of Pb heavy metal ions from aqueous solution using lignite and a new cheap adsorbent(lignite washing plant tailings)[J].Fuel,2009,88(8):1460.
[14]Pehlivan E,Arslan G.Removal of metal ions using lignite in aqueous solution:low cost biosorbents[J].Fuel Processing Technology,2007,88(1):99.
[15]Jochová M,Punˇcocháˇr M,Horáˇcek J,et al.Removal of heavy metals from water by lignite-based sorbents[J].Fuel,2004,83(9):1197.
[16]劉建華,王瑞祥,曾婕.褐煤制備磺化煤的方法[J].潔凈煤技術(shù),2004,10(3):48.Liu Jianhua,Wang Ruixiang,Zeng Jie.Preparing sulphonated coal method by usinglignite[J].Clean Coal Technology,2004,10(3):48.(in Chinese)
[17]王魯敏,鄧昌亮,殷軍港,等.硝化褐煤對(duì)鉻離子溶液的吸附研究[J].環(huán)境化學(xué),2001,20(1):54.Wang Lumin,Deng Changliang,Yin Jungang,et al.Study on adsorption of nitrify lignite for chromium-ion solution[J].Environmental Chemistry,2001,20(1): 54.(in Chinese)
[18]羅道成,鄭李輝.用褐煤活化一步法制備活性炭的研究[J].煤化工,2009,37(5):25 Luo Daocheng,Zheng Lihui.Study on the preparation of activated carbon by one-step method of carbonization-activation with lignite coal[J].Coal Chemistry Industry,2009,37(5):25.(in Chinese)
[19]Yaˇgmur E,爦im爧ek E H,Akta爧Z,et al.Effect of demineralization process on the liquefaction of Turkish coals in tetralin with microwave energy:determination of particle size distribution and surface area[J].Fuel,2005,84 (18):2316.
[20]黃金鳳,趙義龍,趙金香,等.腐植酸的提取及其成分含量測(cè)定[J].四川畜牧獸醫(yī),2007,34(5):27.Huang Jinfeng,Zhao Yilong,Zhao Jinxiang,et al.The extraction and determination of composition of humic acid[J].Sichuan Animal&Veterinary Science,2007,34(5):27.(in Chinese)
[21]化黨領(lǐng),張一平.觩土不同施肥條件下土壤膠散復(fù)合體研究[J].土壤肥料,1999(1):9.Hua Dangling,Zhang Yiping.Study on soil organo-mineral complex on Lou-soil[J].Soil and Fertilizer,1999(1):9.(in Chinese)
[22]Tessier A,Campbell P G C,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844.
[23]魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社,2000:12 282.Lu Rukun.Analysis methods of soil agrochemistry[M].Beijing:ChinaAgricultureScienceandTechnique Press,2000:12282.(in Chinese)
[24]Jamali M K,Kazi T G,Afridi H I,et al.Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method[J].Journal of Environmental Science and Health,Part A,2007,42(5):649.
[25]王美青,章明奎.杭州市城郊土壤重金屬含量和形態(tài)的研究[J].環(huán)境科學(xué)學(xué)報(bào),2002,22(5):603.Wang Meiqing,Zhang Mingkui.Concentrations and chemical associations of heavy metals in urban and suburban soils of the Hangzhou city,Zhejiang Province[J].Acta Scientiae Circumstantiae,2002,22(5):603.(in Chinese)
[26]Pueyo M,López-Sánchez J F,Rauret G.Assessment of CaCl2,NaNO3and NH4NO3extraction procedures for the study of Cd,Cu,Pb and Zn extractability in contaminated soils[J].Analytica Chimica Acta,2004,504 (2):217.
[27]Aiken G,Leenheer J.Isolation and chemical characterization of dissolved and colloidal organic matter[J].Chemistry and Ecology,1993,8(3):135.
[28]郭慧超,邵明安,樊軍.有機(jī)肥質(zhì)量分?jǐn)?shù)對(duì)土壤導(dǎo)水率穩(wěn)定性的影響[J].中國(guó)水土保持科學(xué),2013,11 (6):7.Guo Huichao,Shao Mingan,F(xiàn)an Jun.Effects of the organic matter content on the stability of the soil hydraulic conductivity[J].Science of Soil and Water Conservation,2013,11(6):7.(in Chinese)
[29]Hartley N R,Tsang D C W,Olds W E,et al.Soil washing enhanced by humic substances and biodegradable chelating agents[J].Soil and Sediment Contamination,2014,23(23):599.
[30]Liu Fangchun,Xing Shangjun,Du Zhenyu.Nitric acid oxidation for improvement of a Chinese lignite as soil conditioner[J].Communications in Soil Science and Plant Analysis,2011,42(15):1782.
[31]李宗梅.煤系減水劑的研制及其性能研究[D].大連:大連理工大學(xué),2005:81.Li Zongmei.Research on coal series water reducing admixture and properties[D].Dalian:Dalian University of Technology,2005:81.(in Chinese)
Effects of lignite-based amendments on cadmium chemical speciation in calcareous soil complexes
Zhao Ke,Yang Qiuyun,Hua Dangling,Wang Daichang,Zhao Ying,Liu Fang,Zhang Yali,Liu Shiliang
(Resources and Environment College,Henan Agricultural University,450002,Zhengzhou,China)
Abstract:[Background]This work is for screening and evaluating the remediation effect of lignitebased materials on cadmium pollution,and for reducing cadmium flux into the ground water through vertical infiltration or to large water and soil area by surface runoff pollution.[Methods]The soil samples were from 200 m surroundings of a lead metallurgical factory at 0-20 cm depth contaminated with heavy metals.The lignite from Zhaotong city of Yunnan was modified to be alkalization,calciumloaded,nitrified,humic acid,demineralization,activated carbon,and sulphonated ones,and the 3%of each of them was evenly mixed with contaminated soil and incubated for 120 days.The organo-mineralcomplexes(G0:water-dispersing complex,G1:NaCl-dispersing complex,and G2:NaCl-grindingdispersing complex)were extracted,and the determination of cadmium content was conducted by Tessier sequential extraction method,flame atomic absorption spectrophotometer determination;soil physical and chemical properties were determined by Lu Rukun method.Microsoft Excel 2007,SPSS 20.0 and Graphpad Prism 5.0 were used to process and analyze the acquired data and Duncan's method for ANOVA.[Results]1)The content distribution of ion exchange,carbonate-bound,F(xiàn)e-Mn-oxide-bound cadmium in the complexes was as G0>G1>G2in all ameliorator treatments,however,the content distributions of organics-weakly-bound and organics-strongly-bound cadmium were in opposite order.Residual Cd in G0complex had no significant differences with that in G1and G2complex except for calcification lignite.2)The application of lignite-based materials generally increased the organicsweakly-bound cadmium content of soil,compared with raw polluted soil.And mainly the organicsweakly-bound Cd in the water-stable complexes increased,i.e.,in the complex G0,G1and G2by 5.27%,20.74%and 17.82%compared to the control,respectively.The use of lignite,nitrified lignite,and humic acid significantly resulted in the increase of organics-strongly-bound Cd content in water-stable complex by the average value of 27.26%,23.90%and 40.05%respectively,and significantly reducing the content of exchangeable and carbonate fractions content in water-stable complex in the range of 14.63% -22.79%and 14.31% -34.56%.Residual fraction was slightly improved by lignite,nitrified lignite and humic acid than other treatments.The nitrified lignite and humic acid remarkably decreased the content of Fe-Mn-oxide-bound Cd,and alkalization,calcium-loaded,lignite,demineralization,sulphonated and activated carbon increased the content of Fe-Mn-oxide-bound fraction.Alkalization,calcification,demineralization and activated carbon presented no obvious effect on the exchangeable Cd.3)Modified lignite mainly improved the content of exchangeable and carbonate-bound Cd.In addition to the humic acid,modified lignite generally reduced the soil organics-weakly-bound and organics-strongly-bound Cd content compared with that before modification,and residual fraction content showed a trend of transformation to the available form.[Conclusions] In short,non-water-stable complexes contain mainly ion exchangeable and carbonate-bound fraction,water-stable complex is mainly composed of organics-bound and residual form.Some lignite-based materials could change Cd availability to unavailable speciation by inactivation or immobilization.In general,modified lignite mostly weakened the passivation or immobilization effect.
Keywords:modified lignite;organic amendments;calcareous soil;organo-mineral complex;Cd pollution;chemical speciation transformation;passivation;immobilization
中圖分類(lèi)號(hào):S156.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-3007(2016)03-0093-08
DOI:10.16843/j.sswc.2016.03.012
收稿日期:2015 12 21修回日期:2016 05 05
第一作者簡(jiǎn)介:趙珂(1988—),女,碩士。主要研究方向:土壤重金屬污染修復(fù)。E-mail:1060048917@qq.com
通信作者?簡(jiǎn)介:化黨領(lǐng)(1964—),男,博士,教授。主要研究方向:土壤學(xué)與植物營(yíng)養(yǎng)學(xué)。E-mail:collegehua@163.com