劉賀娟,李悅鵬,劉 威,邵 琪,齊紅巖
(沈陽(yáng)農(nóng)業(yè)大學(xué)園藝學(xué)院/設(shè)施園藝省部共建教育部重點(diǎn)實(shí)驗(yàn)室/環(huán)渤海灣地區(qū)設(shè)施蔬菜優(yōu)質(zhì)高效生產(chǎn)協(xié)同創(chuàng)新中心,沈陽(yáng) 110866)
?
接種枯萎病菌對(duì)甜瓜木質(zhì)素合成相關(guān)酶活性及CmCADs表達(dá)的影響
劉賀娟,李悅鵬,劉威,邵琪,齊紅巖
(沈陽(yáng)農(nóng)業(yè)大學(xué)園藝學(xué)院/設(shè)施園藝省部共建教育部重點(diǎn)實(shí)驗(yàn)室/環(huán)渤海灣地區(qū)設(shè)施蔬菜優(yōu)質(zhì)高效生產(chǎn)協(xié)同創(chuàng)新中心,沈陽(yáng) 110866)
摘要:【目的】明確接種枯萎病菌對(duì)甜瓜幼苗植株表型、木質(zhì)素含量、木質(zhì)素合成相關(guān)酶活性及肉桂醇脫氫酶(cinnamy alcohol dehydrogenase,CAD)基因表達(dá)的影響,找出響應(yīng)枯萎病菌的CmCADs成員。【方法】選用抗枯萎病品種薄皮甜瓜‘彩虹 7號(hào)’為試驗(yàn)材料。在甜瓜幼苗長(zhǎng)至“三葉一心”時(shí)接種枯萎病菌-尖孢鐮刀菌(Fusarium oxysporum f. sp. melonis)。以長(zhǎng)勢(shì)相同的健康植株澆灌等量無(wú)菌水為對(duì)照。在接種后0、1、3、5、7和9 d觀察甜瓜植株表型變化,并測(cè)定其營(yíng)養(yǎng)器官中的木質(zhì)素含量、木質(zhì)素合成關(guān)鍵酶(苯丙氨酸解氨酶(PAL)、過(guò)氧化物酶(POD)和CAD)活性及CmCADs的表達(dá)量?!窘Y(jié)果】接種枯萎病菌后,甜瓜植株表型發(fā)生明顯變化。在接種枯萎病菌后5 d甜瓜植株葉片出現(xiàn)輕微萎蔫,接種后9 d植株全部葉片均已萎蔫。甜瓜營(yíng)養(yǎng)器官中木質(zhì)素含量及木質(zhì)素合成相關(guān)酶PAL、POD和CAD活性在接種枯萎病菌后與對(duì)照相比均有不同程度的升高。其中木質(zhì)素含量在根、莖和葉中呈現(xiàn)出一致的變化趨勢(shì),即木質(zhì)素含量均隨著接種枯萎病菌后天數(shù)的延長(zhǎng)而增加,且顯著高于對(duì)照。PAL活性在甜瓜根和莖中呈現(xiàn)先升高后下降的變化趨勢(shì),在葉片中整體呈現(xiàn)升高的趨勢(shì)且顯著高于對(duì)照。POD活性在各時(shí)期均高于對(duì)照并呈現(xiàn)出不同的變化趨勢(shì)。CAD活性在甜瓜根、莖、葉中變化趨勢(shì)一致,均呈現(xiàn)先升高后下降的趨勢(shì)。接種枯萎病菌后,CmCADs各成員在甜瓜營(yíng)養(yǎng)器官中的表達(dá)表現(xiàn)出組織特異性。根中除CmCAD4外,其他4個(gè)成員均在接種后7 d受強(qiáng)烈誘導(dǎo)。莖中各成員均無(wú)表達(dá),而葉中CmCAD2和CmCAD5在接種后5 d受到強(qiáng)烈誘導(dǎo)?!窘Y(jié)論】與對(duì)照相比,甜瓜營(yíng)養(yǎng)器官中木質(zhì)素含量及木質(zhì)素合成相關(guān)酶PAL、POD和CAD活性在接種后均升高,表明木質(zhì)素合成途徑可能在甜瓜抵御枯萎病中起重要作用,根和葉中均受枯萎病菌誘導(dǎo)表達(dá)的 CmCAD2和CmCAD5可能是響應(yīng)枯萎病菌的CmCADs成員,并在甜瓜抗枯萎病中起一定作用。
關(guān)鍵詞:薄皮甜瓜;枯萎??;木質(zhì)素;肉桂醇脫氫酶;基因表達(dá)
聯(lián)系方式:劉賀娟,E-mail:512198509@qq.com。通信作者齊紅巖,Tel:024-88342305;E-mail:hyqiaaa@126.com
【研究意義】薄皮甜瓜(Cucumis melo var. makuwa Makino)在中國(guó)有著悠久的栽培歷史,是深受消費(fèi)者喜愛(ài)的盛夏消暑果品。隨著其在設(shè)施內(nèi)栽培面積的增大及連作栽培,各種病蟲(chóng)害對(duì)甜瓜的生產(chǎn)造成了不同程度的損失,而枯萎病是甜瓜設(shè)施生產(chǎn)中的重要病害,且病害一旦發(fā)生,常發(fā)展迅速,嚴(yán)重影響到甜瓜的產(chǎn)量和品質(zhì)。肉桂醇脫氫酶(CAD)是參與木質(zhì)素合成途徑的關(guān)鍵酶[1]。此途徑由苯丙氨酸解氨酶(PAL)催化苯丙氨酸(或酪氨酸)脫氨形成肉桂酸起始,后經(jīng)一系列由CAD等酶參與的羥基化、甲基化及還原反應(yīng)生成木質(zhì)素的3種主要單體(紫丁香基木質(zhì)素、愈創(chuàng)木基木質(zhì)素、對(duì)-羥基苯基木質(zhì)素),單體再在過(guò)氧化物酶(POD)等的催化下脫氫聚合形成木質(zhì)素并最終沉積在導(dǎo)管等部位[2-3]。因此,研究接種枯萎病菌對(duì)甜瓜木質(zhì)素合成途徑相關(guān)酶活性及肉桂醇脫氫酶基因表達(dá)的影響,對(duì)于明確該途徑在甜瓜抗病中重要性及通過(guò)基因工程提高甜瓜的抗病能力均具有重要意義。【前人研究進(jìn)展】1992年從煙草(Nicotiana tabacum)中分離出第一個(gè)真正(bona fide)的 CAD基因[4],接著又從火炬松(Pinustaeda)中分離得到(GenBank accession No.Z37992),目前已從多種植物中分離和克隆了 CADs,并且該基因多以基因家族形式存在且基因成員之間存在功能差異[5-7]。擬南芥(Arabidopsis thaliana)CAD基因家族有9個(gè)成員[8],水稻(Oryza sativa)的CAD基因家族有12個(gè)成員[9],楊樹(shù)(Populus)有15個(gè)[10]。CAD基因家族成員主要通過(guò)促進(jìn)木質(zhì)素生物合成來(lái)調(diào)節(jié)植物對(duì)病菌脅迫的適應(yīng)性[11-12]。擬南芥中,AtCAD4和AtCAD5與木質(zhì)素合成有關(guān),且AtCAD5受番茄細(xì)菌性葉斑病的誘導(dǎo)[13-14],AtCAD7和AtCAD8均受十字花科細(xì)菌性葉斑病的誘導(dǎo)[15]。楊樹(shù)接種立枯絲核?。≧hizoctonia solani)、尖孢鐮刀菌(Fusarium oxysporum)、蘋(píng)果腐爛病菌(Cytospora sp)后,除 Poptr3、Poptr4和Poptr12外,其他基因均受病菌侵染后而被強(qiáng)烈誘導(dǎo)[16]。此外,在棗椰樹(shù)中,易碎葉病誘導(dǎo)了根中PdCAD1和PdCAD2的表達(dá)和葉片中PdCAD3的表達(dá)[17]。這些均表明不同的CAD基因家族成員在響應(yīng)抗病性方面存在功能差異。筆者實(shí)驗(yàn)室從甜瓜全基因組數(shù)據(jù)庫(kù)(http://melonomics.net)中鑒定出5個(gè)甜瓜CAD,分別命名為CmCAD1—CmCAD5,目前已經(jīng)完成了所有基因家族成員在甜瓜生長(zhǎng)發(fā)育期的時(shí)空表達(dá)分析[18],但這5個(gè)成員在木質(zhì)素合成及抗病中的響應(yīng)及作用還不明確?!颈狙芯壳腥朦c(diǎn)】用 Plant CARE軟件(http://bioinformatics.psb.ugent.be/webtools/ plantcare/ html/)對(duì)已鑒定出的5個(gè)甜瓜CmCADs的啟動(dòng)子進(jìn)行分析發(fā)現(xiàn)均含有響應(yīng)防御和脅迫的順式作用元件:TC-rich Repeats、B0X-W1、CCAAT-box和MBS等,但這5個(gè)成員是否響應(yīng)枯萎病菌接種引起的生物脅迫,還需進(jìn)一步試驗(yàn)驗(yàn)證?!緮M解決的關(guān)鍵問(wèn)題】本試驗(yàn)通過(guò)接種枯萎病菌來(lái)探討甜瓜木質(zhì)素合成途徑在抗病中的可能作用及CAD基因家族在枯萎病菌侵染中的響應(yīng)。為進(jìn)一步明確甜瓜CAD基因成員在抗生物脅迫中的功能奠定基礎(chǔ)。
試驗(yàn)于2014年在沈陽(yáng)農(nóng)業(yè)大學(xué)園藝學(xué)院進(jìn)行。
1.1 材料與處理
供試材料為薄皮甜瓜(Cucumis melo var. makuwa Makino)‘彩虹7號(hào)’(黑龍江省富拉爾基瓜菜研究所),為抗枯萎病品種。接種所用甜瓜枯萎病菌株為沈陽(yáng)農(nóng)業(yè)大學(xué)植保學(xué)院高增貴教授所贈(zèng),菌株為單孢菌株 JIE-4。人工接種枯萎病試驗(yàn):2014年 7月 27日于沈陽(yáng)農(nóng)業(yè)大學(xué)科研基地溫室內(nèi)進(jìn)行甜瓜穴盤(pán)播種,長(zhǎng)至“兩葉一心”時(shí)分苗,“三葉一心”時(shí)進(jìn)行枯萎病菌接種。事先制作PDA培養(yǎng)基并進(jìn)行繁菌,待菌絲布滿整個(gè)培養(yǎng)基時(shí)用無(wú)菌水沖洗,以獲取孢子懸浮液并用血球計(jì)數(shù)板進(jìn)行計(jì)數(shù),調(diào)整孢子濃度為1×107個(gè)/mL。接種方法為灌根法,以每株10 mL孢子懸浮液為標(biāo)準(zhǔn),分別選取200棵正常生長(zhǎng)且長(zhǎng)勢(shì)一致的甜瓜植株,以接種枯萎病菌的植株為處理(F),以同時(shí)澆施等量無(wú)菌水的植株為對(duì)照(CK)。接種后保濕24 h,分別在接種后0、1、3、5、7和9 d取長(zhǎng)勢(shì)相一致的對(duì)照與處理植株的根、莖和葉,迅速液氮保存。
1.2 測(cè)定項(xiàng)目與方法
1.2.1 木質(zhì)素含量 稱取0.5 g樣品,在95%乙醇中用玻璃勻漿器勻漿后離心7 min(3 000×g);沉淀物以95%乙醇沖洗3次,再用乙醇∶正己烷=1∶2(v/v)沖洗3次,收集沉淀物使其干燥。干燥物溶在25%溴乙酰冰醋酸溶液中,在 70℃恒溫水浴加塞保溫30 min,然后加0.2 mol·L-1NaOH終止反應(yīng),再加5 mL冰醋酸和0.1 mL 7.5 mol·L-1的羥胺鹽酸,并以冰醋酸定容至10 mL,取上清液在280 nm處測(cè)定吸收值。以每克鮮重在280 nm處的吸收值表示木質(zhì)素含量[19]。
1.2.2 苯丙氨酸解氨酶(PAL)活性 稱取0.5 g樣品,放入預(yù)冷研缽中,加入少許硼酸緩沖液(pH 8.8)和PVP,在冰浴中研磨成勻漿,然后移入10 mL容量瓶中定容,4℃條件下離心30 min(4 000 r/min),取上清液即為粗酶液。取0.02 mol·L-1L-苯丙氨酸l mL,pH 8.8的硼酸緩沖液2 mL,酶液0.2 mL,作為反應(yīng)體系,以不加酶液的作為對(duì)照,搖勻后立即在分光光度計(jì)290 nm處測(cè)定起始OD值,將第一次測(cè)定后的各支試管于30℃恒溫水浴鍋中保溫,精確計(jì)時(shí),30 min后再分別測(cè)定OD值,將第二次測(cè)得的OD值減去第一次測(cè)得的OD值即為反應(yīng)的酶活性,以O(shè)D值變化0.01為一個(gè)酶活單位[20]。
1.2.3 過(guò)氧化物酶(POD)活性 稱取0.5 g樣品于研缽中,加5 mL 磷酸緩沖液(pH 7.8)冰浴研磨,勻漿倒入離心管中,冷凍離心20 min(10 000 r/min)。上清液即為酶液,4℃保存待用。取0.1 mol·L-1磷酸緩沖液(pH 6.0)50 mL于燒杯中,加入愈創(chuàng)木酚28 μL,磁力攪拌器加熱攪拌使之完全溶解,冷卻后加入 19 μL 30% H2O2混合,保存于冰箱中為反應(yīng)液。20 μL酶液+3 mL反應(yīng)液于比色皿中,20s后在470 nm下開(kāi)始計(jì)數(shù),每隔20 s讀數(shù)一次,共讀兩次,以每分鐘吸光度變化值表示酶活力的大?。?1]。
1.2.4 肉桂醇脫氫酶(CAD)活性 蛋白提取緩沖液:0.1 mol·L-1Tris-HCl緩沖液(pH 7.5);5%乙二醇(W/V);2%PVP(W/V);0.1 mol·L-1β-巰基乙醇。將150 mg材料粉末溶解在裝有225 μL蛋白提取緩沖液的1.5 mL微離心管中,冰上放置10 min;4℃下,離心10 min(13 000×g);將上清液轉(zhuǎn)入新的離心管中,放置于冰上。在酶標(biāo)板的孔中,270 μL(總體積)的 Tris-HCl 0.1 mol·L-1(pH 8.8)溶液中;含有 2 mmol·L-1的coniferyl alcohol和2 mmol·L-1的β-NADP;12.5 μg 的蛋白提取物;在340 nm下每1 min測(cè)一次,共15 min[22]。
蛋白質(zhì)含量采用考馬斯亮藍(lán)G-250比色法測(cè)定[23]。以上測(cè)定指標(biāo)均進(jìn)行3次生物學(xué)重復(fù)。
1.2.5 CmCAD1-5實(shí)時(shí)熒光定量基因表達(dá)分析 用Ultrapure RNA Kit(北京康為世紀(jì)生物科技有限公司,北京)試劑盒中提供的操作方法,提取甜瓜組織中的總RNA。用NanoDrop分光光度計(jì)ND-1000測(cè)定RNA的濃度,使用瓊脂糖凝膠電泳進(jìn)行總RNA質(zhì)量檢測(cè)(28S rRNA/18S rRNA比值)。用 M-MLV RTase cDNA SynthesisKit(Cat#D6130,TaKaRa,Tokyo,Japan)合成cDNA。
采用 SuperReal PreMix Plus(SYBRGreen)(Cat.FP205,天根,北京,中國(guó))試劑盒進(jìn)行qRT-PCR,并使用ABI PRISM7500熒光定量PCR儀進(jìn)行測(cè)定。qRT-PCR的反應(yīng)條件如下:50℃,2 min;95℃,10 min;95℃,45個(gè)循環(huán),15 s;60℃,1 min;每個(gè)樣品的qRT-PCR都進(jìn)行3次重復(fù),cDNA來(lái)自3個(gè)生物學(xué)重復(fù)的樣品。在進(jìn)行qRT-PCR的過(guò)程中,每個(gè)96孔板中的每份樣品設(shè)置3次重復(fù)。試驗(yàn)中以18s rRNA的DNA(148 bp)作為內(nèi)參基因(表1),樣品Ct值由擴(kuò)增曲線計(jì)算獲得。
表1 實(shí)時(shí)熒光定量基因表達(dá)分析的引物序列Table 1 Sequence of primers used for gene expression analysis by real-time quantitative PCR
1.2.6 數(shù)據(jù)處理與分析 試驗(yàn)所得數(shù)據(jù)采用 Excel處理、DPS 軟件進(jìn)行相關(guān)數(shù)據(jù)分析,Duncan's 多重差異進(jìn)行顯著分析,Origin 8.0軟件進(jìn)行繪圖。
2.1 接種枯萎病菌后不同天數(shù)甜瓜植株表型的變化
由圖1可見(jiàn),甜瓜在接種枯萎病菌后5 d表現(xiàn)出葉片輕微萎蔫,接種后9 d植株全部葉片都已萎蔫,表現(xiàn)出枯萎病的發(fā)病癥狀,而對(duì)照植株長(zhǎng)勢(shì)正常,說(shuō)明接種枯萎病菌后植株發(fā)生了反應(yīng)。
2.2 接種枯萎病菌對(duì)甜瓜營(yíng)養(yǎng)器官中木質(zhì)素含量的影響
甜瓜營(yíng)養(yǎng)器官中木質(zhì)素含量呈現(xiàn)出一致的變化趨勢(shì),即根、莖、葉中的木質(zhì)素含量均隨著接種枯萎病菌后天數(shù)的延長(zhǎng)而增加,且與對(duì)照之間的差距隨時(shí)間延長(zhǎng)越來(lái)越大(圖2)。根中,在接種后7 d,木質(zhì)素含量顯著高于對(duì)照(圖2-a),莖和葉在接種后5 d,木質(zhì)素含量就開(kāi)始顯著高于對(duì)照(圖2-b、c)。
圖1 對(duì)照(A)與人工接種枯萎病菌(B)后不同天數(shù)甜瓜植株表型Fig. 1 Oriental melon seedlings symptom infected with F. oxysporum after different days of controlled (A) and inoculated with F. oxysporum (B)
2.3 接種枯萎病菌對(duì)甜瓜營(yíng)養(yǎng)器官PAL酶活性的影響
接種枯萎病菌后,甜瓜根和莖中PAL活性呈現(xiàn)先升高后下降的變化趨勢(shì)。其中根在接種后1 d后,活性趨于平穩(wěn)且均顯著高于對(duì)照,而從接種7 d后PAL活性開(kāi)始急劇下降,接種后9 d時(shí)其活性甚至低于對(duì)照,而莖中PAL活性在接種1 d達(dá)到峰值后有所下降,此后趨于平穩(wěn)且均顯著高于對(duì)照(圖3-a、b)。甜瓜葉片中 PAL活性在接種枯萎病后整體呈現(xiàn)升高的趨勢(shì)且顯著高于對(duì)照,在接種后3 d出現(xiàn)峰值,此后其活性趨于平穩(wěn)(圖3-c)。
圖2 接種枯萎病菌對(duì)甜瓜根(a)、莖(b)、葉(c)中木質(zhì)素含量的影響Fig.2 Effects of inculation with F. oxysporum on lignin content in roots (a), stems (b) and leaves (c) of oriental melon seedlings
圖3 接種枯萎病菌對(duì)甜瓜根(a)、莖(b)、葉(c)PAL活性的影響Fig.3 Effects of inculation with F. oxysporum on PAL activity in roots (a), stems (b) and leaves (c) of oriental melon seedlings
2.4 接種枯萎病菌對(duì)甜瓜營(yíng)養(yǎng)器官POD酶活性的影響
接種枯萎病菌后,甜瓜營(yíng)養(yǎng)器官中POD活性在各時(shí)期均高于對(duì)照并呈現(xiàn)出不同的變化趨勢(shì)(圖 4)。其中根和莖呈現(xiàn)出先升高后下降再升高的趨勢(shì),并分別在接種后3 d和7 d達(dá)到峰值(圖4-a、b)。與根和莖不同的是葉片中POD活性呈現(xiàn)出整體升高的趨勢(shì),在接種后3、5和7 d保持平穩(wěn)高于對(duì)照,接種后9 d達(dá)到峰值(圖4-c)。
圖4 接種枯萎病菌對(duì)甜瓜根(a)、莖(b)、葉(c)POD活性的影響Fig. 4 Effects of inoculation with F. oxysporum on POD activity in roots (a), stems (b) and leaves (c) of oriental melon seedlings
2.5 接種枯萎病菌對(duì)甜瓜營(yíng)養(yǎng)器官中 CAD酶活性的影響
由圖5可以看出,接種枯萎病菌后,甜瓜根、莖和葉中CAD活性變化趨勢(shì)一致,均呈現(xiàn)先升高后下降的趨勢(shì),分別在接種后5、3和7 d出現(xiàn)峰值,此后急劇下降(圖5-a、b、c)。
2.6 接種枯萎病菌對(duì)甜瓜根系和葉片中CmCAD1-5表達(dá)的影響
由圖6可以看出,相比于對(duì)照,接種枯萎病菌后,甜瓜根系中CmCAD1—3和CmCAD5呈現(xiàn)出相似的表達(dá)模式,均在接種后7 d天出現(xiàn)表達(dá)峰值,分別為對(duì)照的16、17、37和15倍左右,但在接種后的其他時(shí)期不表達(dá)或表達(dá)量很低。值得注意的是,CmCAD4除在接種后9 d有一定表達(dá)外,在其他各時(shí)期均無(wú)明顯表達(dá)(圖 6)。
與對(duì)照相比,甜瓜葉片中CmCAD2和CmCAD5有相似的表達(dá)模式,分別在接種枯萎病菌后7 d和3 d開(kāi)始呈現(xiàn)明顯的上調(diào)表達(dá),且表達(dá)量隨接種時(shí)間的延長(zhǎng)而升高,CmCAD1、CmCAD3和CmCAD4的表達(dá)量均較低而且無(wú)明顯變化(圖7)。
許多研究表明,木質(zhì)素參與構(gòu)建植物防御體系是植物防止或減輕受病菌和害蟲(chóng)侵害的重要屏障[24]。許多報(bào)道表明,植物遭受病菌侵染后,木質(zhì)素含量增加。小麥在接種白粉病后,木質(zhì)素含量顯著升高[25]??菸【秩疚鞴虾螅酌缛~片和根莖部組織中木質(zhì)素含量也有所增加[26]。葡萄葉片和黃瓜葉片中的木質(zhì)素含量與抗病性呈正相關(guān)[27-28]。本試驗(yàn)中,接種枯萎病后,甜瓜營(yíng)養(yǎng)器官中木質(zhì)素含量的變化趨勢(shì)一致,即根、莖和葉中的木質(zhì)素含量均隨著接種枯萎病菌后天數(shù)的延長(zhǎng)而增加,且與對(duì)照之間的差距隨時(shí)間延長(zhǎng)越來(lái)越大。這與前人報(bào)道結(jié)果相一致,說(shuō)明在甜瓜抵御枯萎病侵染過(guò)程中,木質(zhì)素參與構(gòu)建了防御體系。
圖5 接種枯萎病菌對(duì)‘彩虹7號(hào)’根(a)、莖(b)、葉(c)CAD活性的影響Fig. 5 Effects of inoculation with F. oxysporum on CAD activity in roots (a), stems (b) and leaves (c) of oriental melon seedlings
圖6 接種枯萎病菌對(duì)甜瓜根中CmCAD1-5表達(dá)的影響Fig.6 Effects of inoculation with F. oxysporum on expressions of CmCAD1-5 in roots of oriental melon seedlings
圖7 接種枯萎病菌對(duì)甜瓜葉片中CmCAD1—5表達(dá)的影響Fig. 7 Effects of inoculation with F. oxysporum on expressions of CmCAD1-5 in leaves of oriental melon seedlings
木質(zhì)素的合成首先是通過(guò)莽草酸途徑形成的 L-苯丙氨酸,在PAL的作用下形成反式肉桂酸,再經(jīng)過(guò)CAD參與的甲基化等一系列反應(yīng),形成木質(zhì)素單體,最后在POD作用下沉積在導(dǎo)管等部位[2-3]。PAL是木質(zhì)素主要合成途徑的起始酶。研究表明,植物在感染病原菌后,均伴隨著PAL活性的升高,并有木質(zhì)素的積累[25-26]。桃果實(shí)接種軟腐病菌(R. stolonifer)后,PAL活性升高[29]。本試驗(yàn)中,接種枯萎病菌后,甜瓜根和莖中PAL活性呈現(xiàn)先升高后下降的變化趨勢(shì)。其中根在接種后1 d達(dá)到峰值后,活性趨于平穩(wěn)且均顯著高于對(duì)照,而在接種后7 d PAL活性進(jìn)入衰退期。這與有關(guān)研究表明的在侵染初期PAL可以重新合成,而后期植物細(xì)胞中則積累了鈍化 PAL的大分子物質(zhì)這一結(jié)果相一致。作為木質(zhì)素合成途徑下游的酶,POD活性被證實(shí)與植物抗病性成正相關(guān)。對(duì)接種條銹菌(Puccinia striiformis)的小麥的研究中發(fā)現(xiàn),接種后POD活性比未接種的對(duì)照有明顯的提高[30]。水稻白葉枯病和棉花枯萎病感病植株中的 POD活性均呈升高的趨勢(shì)[31-33]。接種褐腐病菌(M. fructicola)能誘導(dǎo)甜櫻桃果實(shí) POD活性升高[34]。本試驗(yàn)中,接種枯萎病菌后,甜瓜營(yíng)養(yǎng)器官中 POD活性在各時(shí)期均高于對(duì)照。這表明甜瓜植株產(chǎn)生抗病反應(yīng)且一直有木質(zhì)素的積累。木質(zhì)素合成途徑中,CAD催化羥基肉桂醛(主要包括香豆醛、松柏醛和芥子醛)轉(zhuǎn)變?yōu)閷?duì)應(yīng)的醇(香豆醇、松柏醇和芥子醇),促進(jìn)木質(zhì)素合成前體物質(zhì)的形成[35-36]。CAD是木質(zhì)素合成途徑中的關(guān)鍵酶。在高粱中降低CAD酶活性則使木質(zhì)素總量減少[37]。水稻gh2木質(zhì)素缺失突變體中CAD酶活及木質(zhì)素缺失[38]。玉米COMT突變體中,CAD酶活下降,木質(zhì)素含量減少,防御能力降低[39]。本試驗(yàn)中,接種枯萎病菌后,甜瓜根、莖和葉中CAD活性分別在接種后5、3和7 d出現(xiàn)峰值。結(jié)合PAL、POD和CAD酶活性變化趨勢(shì),表明木質(zhì)素合成途徑可能在甜瓜抵御枯萎病侵染過(guò)程中發(fā)揮了重要作用。
CAD是多基因家族,許多研究表明CADs易受病菌侵染的誘導(dǎo)。擬南芥中AtCAD7和AtCAD8受細(xì)菌性黑斑病的誘導(dǎo)[15],AtCAD4和AtCAD5被證實(shí)與木質(zhì)素合成相關(guān),而在番茄細(xì)菌性葉斑病侵染擬南芥過(guò)程中,AtCAD5受到誘導(dǎo)表達(dá)[13-14]。這說(shuō)明CAD基因可能通過(guò)植物木質(zhì)素防御途徑來(lái)響應(yīng)病菌侵染且不同的 CAD基因家族成員在響應(yīng)植物抗病性方面發(fā)揮不同的功能。本試驗(yàn)中,接種枯萎病后對(duì)根、莖和葉中CmCADs表達(dá)的分析表明,莖中所有CmCADs均不受誘導(dǎo)。根系中,除 CmCAD4無(wú)明顯表達(dá)外,其他CmCADs均受強(qiáng)烈誘導(dǎo),呈上調(diào)表達(dá)。而葉中CmCAD2 和CmCAD5受誘導(dǎo),呈上調(diào)表達(dá)。這表明CmCADs中有響應(yīng)枯萎病侵染的家族成員且其表達(dá)具有組織特異性。系統(tǒng)進(jìn)化樹(shù)中把CmCAD2歸于包含AtCAD4、AtCAD5和SbCAD2在內(nèi)的1類CAD,即已明確參與植物木質(zhì)素生物合成的 bona fide CAD[35]。同時(shí)把CmCAD5歸于包含SAD和AtCAD7、AtCAD8在內(nèi)的2 類CAD,這類均受病原體的誘導(dǎo)[15]。由此推測(cè)甜瓜接種枯萎病菌后,在根、葉中均受誘導(dǎo)的 CmCAD2和CmCAD5可能是通過(guò)植物木質(zhì)素防御途徑來(lái)響應(yīng)枯萎病菌侵染的特異基因。根據(jù)筆者前期試驗(yàn),CmCAD4在時(shí)空表達(dá)和各種激素處理過(guò)程中均不表達(dá),推測(cè)其可能是假基因,在本研究中,該基因也在接種枯萎病菌后表達(dá)較少(僅在根中接種后9 d有一定表達(dá)),該結(jié)果有待進(jìn)一步驗(yàn)證。另外,其他4個(gè)CmCADs具體在生物脅迫中起什么作用,還需要通過(guò)原核表達(dá)或轉(zhuǎn)基因技術(shù)對(duì)相關(guān)基因深入研究其抗病的分子機(jī)制。
甜瓜營(yíng)養(yǎng)器官中木質(zhì)素含量及木質(zhì)素合成相關(guān)酶(PAL、POD和CAD)活性在接種后均升高,表明木質(zhì)素合成途徑可能在甜瓜抵御枯萎病中起重要作用。不同CmCADs成員的功能目前還不明確,通過(guò)對(duì)接種枯萎病菌后不同天數(shù)甜瓜營(yíng)養(yǎng)器官中木質(zhì)素含量及其合成相關(guān)酶活性及CmCADs表達(dá)的分析,推測(cè)木質(zhì)素合成途徑在甜瓜抵御枯萎病過(guò)程中可能起重要作用,而且在甜瓜根和葉片中均受枯萎病誘導(dǎo)的 CmCAD2 和CmCAD5可能在甜瓜抗枯萎病侵染過(guò)程中起作用。
References
[1] MOLLER R, STEWARD D, PHILLIPS L, FLINT H, WAGNER A. Gene silencing of cinnamyl alcoholdehy drogenase in Pinus radiata callus cultures. Plant Physiology and Biochemistry, 2005, 43:1061-1066.
[2] CHRISTENCE J H, BAUW G, WELINDER K G. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiology, 1998, 118: 25-135.
[3] 魏建華, 宋艷茹. 木質(zhì)素生物合成途徑及調(diào)控的研究進(jìn)展. 植物學(xué)報(bào), 2001, 43(8): 771-779. WEI J H, SONG Y R. Recent advances in study of lignin biosynthesis and manipulation. Acta Botanica Sinica, 2001, 43(8): 771-779. (in Chinese)
[4] KNIGHT M E, HALPIN C, SCHUCH W. Identification and characterisation of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco.Plant Molecular Biology, 1992, 19(5):739-810.
[5] KIM S J, KIM M R. BEDGAR D L, MOINUDDIN S G A,CARDENAS C L, DAVIN L B, KANG C L, LEWIS N G.. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2004, 101: 1455-1460.
[6] MA Q H. Functional analysis of a cinnamyl al cohol dehyd rogenase involved in lign in biosynthesis in wheat. Journal of Experimental Botany, 2010, 61(10): 2735-2744.
[7] BUKH C, NORD-LARSEN P H, RASMUSSEN S K. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon. Journal of Experimental Botany, 2012, 17:6223-6236.
[8] SIBOUT R, EUDES A, POLLET B, GOUJON T, MILA I, GRANIER F, SEGUIN A. Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation andcharacterization of the corresponding mutants. Plant Physiology, 2003, 132(2):848-860.
[9] TOBIAS C M, CHOW E K. Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter 305 activity of a member associated with lignification. Planta, 2005, 220(5): 678-688.
[10] EUDES A, GEORGE A, MUKERJEE P, KIM, JS, POLLET B,BENKE PI, YANG F, MITRA P, SUN L, CETINKOL OP, CHABOUT S, MOUILLE G, SOUBIGOU-TACONNAT L, BALZERGUE S,SINGH S, HOLMES BM, MUKHOPADHYAY A, KEASLING JD,SIMMONS BA, LAPIERRE C, RALPH, LOQUE D. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnology Journal, 2010, 10(5): 609-620.
[11] BOUDET A M. Lignins and lignifications: Selected issues. Plant Physiology Biochemistry, 2000, 38(l/2): 81-96.
[12] COELHO A C, HORTA M, NEVES D, CRAVADOR A. Involvement of a cinnamyl alcohol dehydrogenase of Quercus suber in the defence response toinfection by Phytophthora cinnamomi. Physiological and Molecular Plant Pathology, 2006, 69: 62-72.
[13] SIBOUT R, EUDES A, MOUILLE G, POLLET B, LAPIERRE C,JOUANIN L, SEGUIN A. CINNAMYL ALCOHOL DEHYDROGENASE -C and -D are the primary genes involved in lignin biosynthesis in thefloral stem of Arabidopsis. Plant Cell, 2005, 17(7): 2059-2076.
[14] TRONCHET M, BALAQUé C, KROJ T, JOUANIN L, ROBY D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin bio-synthesis, play an essential rolein disease resistance in Arabidopsis. Mo1ecular Plant Pathology, 2010, 11(1): 83-92.
[15] Kiedrowski S, Kawalleck P, Hahlbrock K, Somssich I E, Dangl J L. Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPMl disease resistance locus. The EMBO Journal,1992, 11: 4677-4684.
[16] Agnieszka Bagniewska-Zadworna, Abdelali Barakat, Piotr ?akomy,Dariusz J. Smoli′nski, Marcin Zadworny. Lignin and lignans in plant defence: Insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus. Plant Science, 2014, 229: 111-121.
[17] SAIDI M N, BOUAZIZ D, HAMMAMI I, NAMSI A, DRIRA N,GARGOURI-BOUZID R. Alterations in lignin content and phenylpropanoids pathway in date palm (Phoenix dactylifera L.)tissues affected by brittle leaf disease. Plant Set, 2013, 211: 8-16.
[18] JIN Y Z, ZHANG C, LIU W, QI H Y, CHEN H, CAO S X. The cinnamyl alcohol dehydrogenase gene family in melon (Cucumis melo L.): Bioinfo rmatic analysis and expression patterns. PLoS ONE, 2014,9(7): e101730. doi:10.1371/journal.pone.0101730.
[19] SYROS T, YUPSANIS T, ZAFIRIADIS H, ECONOMOU A. Activity and isoforms of peroxidase, lignin and anatomy during adventitious rooting in cuttings of Ebenus cretical. Plant Physiology, 2004,16(11):67-77.
[20] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù). 北京: 高等教育出版社,2000: 167-169, 213-214. LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000: 167-169, 213-214. (in Chinese)
[21] 朱光廉, 鐘文海, 張愛(ài)琴. 植物生理學(xué)實(shí)驗(yàn). 北京: 北京大學(xué)出版社, 1990, 38-39. ZHU G L, ZHONG W H, ZHANG A Q. Experiments of Plant Physiology. Beijing: Beijing Univeisity Press, 1990, 38-39. (in Chinese).
[22] GOFFNER D, JOFFROY I, GRIMA-PETTENATI J, HALPIN C,KNIGHT M E, SCHUCH W, BOUDET A M. Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta, 1992, 188: 48-53.
[23] THOMAS S. Refimement of the coomassie blue method of proteim quantitation: A simple and linear spectrophotometric assay for ≤0.5 to 50 μg of protein. Analytical Biochemistry, 1978, 86(1): 142-146.
[24] BOUDET A M. Lignins and lignifications: Selected issues. Plant Physiology and Biochemistry, 2000, 38 (1/2): 81-96.
[25] 楊家書(shū), 吳畏, 吳友三, 薛應(yīng)龍. 植物苯丙酸類代謝與小麥對(duì)白粉病抗性的關(guān)系. 植物病理學(xué)報(bào), 1986, 16(3): 169-172. YANG J S, WU W, WU Y S, XUE Y L. Relationship of metabolism of plant phenylalanine and resistance of wheat topowderym ildew. Acta Phytopathologica Sinica, 1986, 16(3): 169-172. (in Chinese)
[26] 許勇, 王永健, 葛秀春, 宋鳳鳴, 鄭重. 枯萎病菌誘導(dǎo)的結(jié)構(gòu)抗性和相關(guān)酶活性的變化與西瓜枯萎病抗性的關(guān)系. 果樹(shù)科學(xué), 2000,17(2): 123-127. XU Y, WANG Y J, GE X C, SONG F M, ZHENG Z. The relation between the induced constriction resistance and changes in activities of related enzymes in water melon seedlings after infection by fusarium oxysporum f.sp. niveum. Journal of Fruit Science, 2000,17(2): 123-127. (in Chinese)
[27] 石雪暉, 王淑英, 吳艷純, 楊國(guó)順, 劉昆玉, 呂長(zhǎng)平. 葡萄葉片中單寧、木質(zhì)素、PPO活性與抗黑痘病的關(guān)系. 葡萄栽培與釀酒,1997(4): 8-12. SHI X H, WANG S Y, WU Y C, YANG G S, LIU K Y, Lü C P. The relationship between PPO activity. Lignine content and tannic contentin vitisleaves and resistance to Sphaeloma ampelinum. Viticultubre & Enology, 1997(4): 8-12. (in Chinese)
[28] 駱桂芬, 崔俊濤, 張莉. 黃瓜葉片中糖和木質(zhì)素含量與霜霉病誘導(dǎo)抗性的關(guān)系. 植物病理學(xué)報(bào), 1997, 27(1): 65-69. LUO G F, CUI J T, ZHANG L. Relationship between sugar, lignin content and resistance to downym ildew of cucumber. Acta Phytopathologica Sinica, 1997, 27(1): 65-69. (in chinese)
[29] 秦國(guó)政, 田世平, 劉海波, 徐勇. 拮抗菌與病原菌處理對(duì)采后桃果實(shí)多酚氧化酶、過(guò)氧化物酶及苯丙氨酸解氨酶的誘導(dǎo). 中國(guó)農(nóng)業(yè)科學(xué), 2003, 36(1): 89-93. QIN G Z, TIAN S P, LIU H B, XU Y. Polyphenol oxidase, peroxidase and phenylalanine ammonium lyase in postharvest peach fruits induced by inoculation with pichia membranefaciens or rhizopus stolonifer. Scientia Agricultura Sinica, 2003, 36(1): 89-93. (in Chinese)
[30] 于孝如, 袁文煥. 條銹病菌侵染小麥不同時(shí)期過(guò)氧化物酶同工酶的變化. 西北農(nóng)業(yè)大學(xué)學(xué)報(bào), 1993, 2(2): 27-30. YU X R, YUAN W H. Changes of peroxidase isoenzyme at different stages of whert caused by wheat yellow stripe rust. Acta Agriculturae Boreali-Occidentalis Sinica, 1993, 2(2): 27-30. (in Chinese)
[31] 吳岳軒, 曾富華, 王榮臣. 雜交稻對(duì)白葉枯病的誘導(dǎo)抗性與細(xì)胞內(nèi)防御酶系統(tǒng)關(guān)系的初步研究. 植物病理學(xué)報(bào), 1996, 26(21):127-131. WU Y X, ZENG F H, WANG R C. A preminary study on therelationship between induced resistance to bacterial blight and defense enzymes inhybrid rice seedlings. Acta Phytopathologica Sinica, 1996,26(21): 127-131. (in Chinese)
[32] 靳華芬, 郭凌漢, 陳軍. 不同生態(tài)條件下小麥籽粒蛋白質(zhì)賴氨酸含量的變化. 貴州農(nóng)業(yè)科學(xué), 1991(5): 9-13. JIN H F, GUO L H, CHEN J. Variation of grain protein and lysine content of wheat in different environment conditions. Guizhou Agricultural Sciences, 1991(5): 9-13. (in chinese)
[33] 李妙. 不同抗枯萎類型棉花品種超氧化物歧化酶和過(guò)氧化物酶活性研究. 華北農(nóng)學(xué)報(bào), 1993, 8(增刊): 119-122. LI M. A study on activities of superoxide dismutase and peroxidase in leaves of cotton (Gossypium hirsutum) with different resistance to fusarium wilt. Acta Agriculturae Boreali-Sinica, 1993, 8(Suppl.):119-122. (in Chinese)
[34] 王友升, 田世平. 羅倫隱球酵母、褐腐病菌與甜櫻桃果實(shí)在不同溫度下的互作效應(yīng). 中國(guó)農(nóng)業(yè)科學(xué), 2007, 40(12): 2811-2820. WANG Y S, TIAN S P. Interaction between Cryptococcus laurentii,Monilinia fructicola and sweet cherry fruit at different temperatures. Scientia Agricultura Sinica, 2007, 40(12): 2811-2820. (in Chinese)
[35] 龔琰, 許夢(mèng)秋. 木質(zhì)素合成關(guān)鍵酶肉桂醇脫氧酶的研究進(jìn)展. 生物技術(shù)通報(bào), 2010, 4: 47-49. GONG Y, XU M Q. Advance in cinnamyl alcohol dehydrogenase as a key enzyme of lignin biosynthesis. Biotechnology Bulletin, 2010, 4:47-49. (in Chinese)
[36] SUN Y, WU Y F, ZHAO Y, HAN X J, LOU H X, CHENG A X. Molecular cloning and biochemical characterization of two cinnamyl alcohol dehydrogenases from a liverwort Plagiochasma appendiculatum. Plant Physiology and Biochemistry, 2013, 70: 133-141.
[37] SABALLOS A, EJETA G, SANCHEZ E, KANG CH, VERTNERRIS W. A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the Brown midrib6 gene. Genetics, 2009, 181(2): 783-795.
[38] HIRANO K, AYA K, KONDO M, OKUNO A, MORINAKA Y,MATSUOKA M. OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. Plant Cell Reports, 2012, 31:91-101.
[39] VIGNOLS F, RIGAU J, TORRES MA, CAPELLADES M,PUIGDOMENECH P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell, 1995, 7: 407-416.
(責(zé)任編輯 趙伶俐)
Effects of Fusarium oxysporum f. sp. melonis on Lignin, Activities of Lingin-Related Enzymes and Genes Expressions of CmCADs in Oriental Melon (Cucumis melo var. makuwa Makino)
LIU He-juan, LI Yue-peng, LIU Wei, SHAO Qi, QI Hong-yan
(College of Horticulture, Shenyang Agricultural University/Key Laboratory of Protected Horticulture, Ministry of Education/ Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang 110866)
Abstract:【Objective】The purpose of this study is to investigate the effects of Fusarium oxysporum on symptom, lignin content, activities of lignin-related enzymes and real-time fluorescent quantitative PCR analysis of CmCADs gene expression of CmCADs in oriental melon seedlings and to find out the gene family members of CmCADs that can respond to the Fusarium oxysporum. 【Method】The oriental melon ‘Caihong 7' which is resistant to Fusarium oxysporum was used as experimental materials. Then the melon seedlings were inoculated with F. oxysporum at 3 true leaves stage. The control plants were dealt with equivalentsterile water. The changes of phenotype were observed and lignin content, activities of lingin-related enzymes (PAL, POD and CAD)and genes expressions of CmCADs in the vegetative organs of oriental melon seedlings were determined at 0, 1, 3, 5, 7 and 9 days after inoculation.【Result】The symptom of oriental melon seedlings showed obvious changes. The leaves began to wilt slightly 5 days after inoculation and wilt badly 9 days after inoculation. The results showed that compared with the control, the lignin content and the activities of lignin-related enzymes were all increased to a certain extent. The change trend of lignin content in roots, stems and leaves was basically identical with keeping increasing and higher than the control treatment. The activities of PAL which increased first and then decreased in roots and stems while exhibited a global increased trend in the leaves were obviously higher than the control treatment. The activities of POD presented different changes with higher activities than control in each period. The activities of CAD presented a trend of earlier increase and later decrease in roots, stems and leaves. In the study, CmCADs showed tissue-specific expression after inoculation. CmCAD1, CmCAD 2, CmCAD 3 and CmCAD 5 were strongly induced in roots 7 days after inoculation, except CmCAD4, while only CmCAD2 and CmCAD5 in leaves were induced strongly 5 days after inoculation. No CmCADs expressions were observed in stems of melon. 【Conclusion】 It was found that the increase of the lignin content, activities of lignin-related enzymes (PAL, POD, CAD) caused by F. oxysporum suggested that the lignin biosynthesis pathway may play an important role in defending the oriental melon from the F. oxysporum. It was also inferred that CmCAD2 and CmCAD5 which were both induced by F. oxysporum may the members of CmCADs which can response to the F. oxysporum and play a role in resistance to F. oxysporum in oriental melon.
Key words:oriental melon; Fusarium oxysporum f. sp. melonis; lignin; CAD; genes expressions
收稿日期:2015-10-12;接受日期:2015-12-23
基金項(xiàng)目:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(Nycytx-35-gw23)、遼寧省高等學(xué)校優(yōu)秀人才支持計(jì)劃(LR2014020)