• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Retrieval and Analysis of Atmospheric Temperature Using a Rotational Raman Lidar Observation

    2016-07-12 12:59:08LIUYuliXIEChenboSHANGZhenZHAOMingCAOKaifaSUNYuesheng
    光譜學(xué)與光譜分析 2016年6期
    關(guān)鍵詞:探空儀平均偏差定標(biāo)

    LIU Yu-li, XIE Chen-bo, SHANG Zhen,ZHAO Ming, CAO Kai-fa, SUN Yue-sheng

    1. Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China 2. Department of Physics, Electronic Engineering Institute of PLA, Hefei 230037, China

    Retrieval and Analysis of Atmospheric Temperature Using a Rotational Raman Lidar Observation

    LIU Yu-li1,2, XIE Chen-bo1*, SHANG Zhen1,ZHAO Ming1, CAO Kai-fa1, SUN Yue-sheng2

    1. Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China 2. Department of Physics, Electronic Engineering Institute of PLA, Hefei 230037, China

    Due to the existence of the aerosol, the traditional method of measuring atmospheric temperature by using Rayleigh scattering technique has limitations in the low altitude. A pure rotational Raman lidar to get tropospheric temperature profiles is built. We carried out the atmospheric temperature observation in Beijing for two months. The atmospheric temperature profile was retrieved using the observed rotational Raman scattering signals. The effect of smooth window, calibration range and calibration constant on the retrieval precision of the atmospheric temperature was evaluated and analyzed. The results show that with the increase of smooth window, the mean absolute deviation between the lidar and radiosonde firstly decreases and then increases; in order to remove effectively the effect of random error in the return signals, while maintaining the fine vertical structure of temperature profile, it is better to choose the range between 600 and 1 200 m for smooth window. When calibration range is different, the mean absolute deviation between the lidar and radiosonde is varied, the relative variation of the deviation is about 0.07 K. When both calibration constant a and b increase or decrease, the mean deviation between the lidar and radiosonde increases; when one increases and another decreases, the mean deviation has a tendency to cancel each other out. The variance probability of a or b is not equal, and the variance of a and b is always contrary in the sign; the mean deviation is not sensitive to variance of a or b, and it is sensitive to the whole variance of a and b, about 91.7% of the mean deviation is in the range between -3 and 3 K. These results provide the theoretical basis for the selection of smooth window and calibration range in pure rotational Raman lidar data retrieval, and the reference for the error of actual temperature inversion result caused by lidar calibration constant.

    Lidar; Atmospheric temperature; Calibration constant; Error analysis

    Introduction

    The atmospheric temperature is an important meteorological parameter in atmospheric physics, weather forecasting and atmospheric environmental research. The meteorological sounding data analysis in recently several years indicated that the temperature in the lower troposphere increased obviously, the temperature in the upper troposphere and stratosphere decreased[1]. The change of atmospheric temperature distribution will also result in the changes of atmospheric physical and chemical, dynamic process and the distribution of trace elements. For example, the inversion structure of lower troposphere often inhibits the diffusion of the pollutants under the boundary layer, and causes the increasing concentration of the pollutants. So the temperature profile of troposphere is very important. By using the relationship between spectral line intensity and temperature of the N2or O2molecules, the rotational Raman lidar can measure the lower altitude atmospheric temperature, and it is hardly affected by aerosols and cirrus clouds[2], which has the highest accuracy and the simplest data processing method among four lidar methods in temperature measurement (pure rotational Raman method[2], Rayleigh method[3], differential absorption method[4], vibrational Raman method[5]). This technique of temperature measurement by a rotational Raman lidar was first proposed by Cooney in 1972[6]. In recent years, rotational Raman lidar technology has developed very quickly, both in domestic[7-9]and overseas[3,10-11]. In this paper, the measurement principle and system structure of pure rotational Raman lidar are briefly introduced. The retrieval results of atmospheric temperature profile are given. Different effects on temperature profile resulting from smooth window, calibration range and calibration constant are analyzed. Temperature inversion analysis provides not only the theoretical basis for choosing the appropriate smooth window and calibration range in pure rotational Raman lidar data retrieval, but the reference for the error of actual temperature inversion result caused by calibration constant.

    1 Measurement principle and system structure of pure rotational Raman lidar

    1.1 Measurement principle

    A 354.7 nm laser pulse is emitted in the atmosphere. The rotational Raman backscattered photon counts of N2and O2can be expressed as[7]

    (1)

    WhereCis lidar constant,N0is photon number of launched laser pulse,T′(z) is atmospheric transmission,zis the detection height,Jis the rotational quantum number,Tis temperature,βis backscatter coefficient, which can be written as

    (2)

    The implication and constant value related to physical quantities see references 7. According to Eq.(2), the pure rotational Raman spectral relative intensity of N2at different temperature is calculated, as shown in Fig.1. The spectral line intensity corresponding to high and low quantum number changes inconsistently with temperature, so atmospheric temperature can be derived from the return signals ratio of high and low-level quantum numbers of N2and O2molecules

    (3)

    WhereNJLandNJHare photon counts of low and high-level quantum numbers caused by lidar return signals, a and b are the calibration constants which can be derived by comparing the signal intensity ratio of the lidar with the temperature data obtained simultaneously by a radiosonde.

    Fig.1 Rotational Raman scattering spectrum and filter transmission for N2

    1.2 System structure

    The lidar structure is shown in Fig.2. The light source is a Nd∶YAG laser which provides a single pulse output energy of 180 mJ at the wavelength of 354.7 nm and a pulse repetition rate of 20 Hz. The laser is guided into the atmosphere by a steering mirror and the beam expander. The expander can reduce the laser beam divergence to 0.15 mrad. The backscattered light is collected by a Cassegrain telescope with diameter of 450 mm, focal length of 4m and receiving field of view of 1 mrad. After the light goes through an adjustable field stop,a collimating lens and a steering mirror, it is guided into a polychromator box. This box is made up by a series of interference filters. The central wavelengths (CWL) of the filters can be tuned by selecting angles of incidence (AOI). In this box, the light firstly passes the broadband interference filter IF0 with a transmission band of 8 nm full width at half maximum (FWHM), and this filter blocks the atmospheric background light while the elastic and both rotational Raman signals are transmitted. Secondly, the light passes the narrow band interference filter IF1, and this filter extracts elastic scattering signal of 354.7 nm used to detect the aerosol. Thirdly, the light passes the narrow band interference filter IF2, and this filter extracts rotational Raman scattering signal of 354.0 nm used to detect the temperature. Because the transmission band of IF2 is very close to the laser wavelength, we use two filters in the first rotational Raman channel. Finally, the light passes the narrow band interference filter IF3, and this filter extracts rotational Raman scattering signal of 353.0 nm used to detect the temperature. The data acquisition is performed with a Licel transient recorder. The filter parameters are listed in Table 1, and transmission curve is shown in Fig.1.

    Fig.2 Diagram of the rotational Raman lidar

    Table 1 Filter parameters

    AOI/degCWL/nmFWHM/nmPeaktransmissionIF00.0353.78.00.5IF15.5354.70.30.6IF2a6.5354.00.30.5IF2b6.5354.00.30.6IF36.1353.00.50.5

    2 Results and discussion

    The statistical temperature errors can be gotten through Eq.(3) and the error propagation theory[12]

    (4)

    Where we have assumed that errors in determining calibration constants are zero, Eq.(4) can be simplified to

    (5)

    (6)

    The tropospheric atmospheric temperature observation was conducted on the night of 2nd November 2014, in Beijing. Fig.3(a) shows a lidar measurement of the temperature profile and the simultaneous temperature profile measured by a radiosonde. Error bars in the figure include statistical temperature error only. Fig.3(b) shows deviations between the two sensors. The measurement was carried out in a clear atmosphere, and data were acquired for a 3.3 min observation time and a 5 min interval. For the calibration we chose a local radiosonde that was launched at 20:00 on 2 November 2014 in a distance of 30 km to the lidar site. Lidar data, acquired with a vertical resolution of 7.5 m, have been vertically smoothed to a final resolution of 600 m in order to reduce signal fluctuations. As can be seen from the Fig.3, tropospheric temperature decreases faster with increasing height, the lidar and radiosonde measurements appear to be in good agreement. A statistical temperature error reaches 1 K at height of 4.2 km, and 2 K at height of 7.1 km. Deviations between the two sensors are less than 2 K below 8 km. The lidar measurement results is smaller than radiosonde data below 1 km, which is associated with different overlap functions in the two

    Fig.3 (a) Temperature profile on 2 November 2014: lidar measurement (solid line) and radiosonde data (dot line); (b) Deviations between lidar and radiosonde

    rotational Raman channels and infiltrating aerosol. The lidar measurement of temperature uncertainty is bigger above 8 km, this is because the signal-to-noise ratio (SNR) decreases. This indicates that the lidar measurement of temperature distribution is reliable. To reduce the statistical error, we can increase the number of shots or smooth window.

    3 Factors affecting atmosphere temperature profile retrieval

    3.1 Smooth window

    When the calibration range of 1~7 km remains unchanged, the lidar data are smoothed with a gliding window with an average length of 300~2 000 m. The lidar measurement of temperature profile is more and more close to the radiosonde profile with the increment of smooth window. To a certain degree, the lidar measurement of temperature profile deviates from radiosonde profile at the low-level and high-level, as seen in Fig.4. This is because when the smooth window is small, the random error in the signals plays a leading role and the inversion temperature fluctuates near the radiosonde measurement value; when the smooth window is big, the random error in the signals is smoothed effectively and the spatial variation characteristics of temperature are also subsequently eliminated, then a system’s deviation between the retrieved temperature profile and the radiosonde measurement value appears. With the increase of the smooth window, the mean absolute deviation is smaller and smaller. It is easy to achieve stabilization stage for good signals, while it is difficult to reach stabilization stage for poor signals. After the stabilization stage, the mean absolute deviation begins to increase with the continued increase of smooth window, as seen in Fig.5. This is because a lidar measurement of the temperature profile deviates from radiosonde data at the low-level and high-level. When smooth window varies from 300 to 900 m, the mean absolute deviation at 20:10 decreases by 0.5 K;

    Fig.4 Temperature profiles under different smooth windows

    when smooth window varies from 900 to 2 000 m, the mean absolute deviation increases by 0.4 K. The results show that, to remove effectively the effect of random error in the return signals, while maintaining the vertical structure of temperature profile, it is better to choose the range between 600 and 1 200 m for smooth window, and the signals can’t be smoothly unlimitedly. This is the selection range of smooth window when pulse number is 4 000 shots. If the pulse number increases, the smooth window should be appropriate reduced.

    Fig.5 Mean absolute deviations under different smooth windows

    3.2 Calibration range

    Because the overlap funcuions in the two rotational Raman channels at low-level are different and the SNR is relatively small at high-level, we choose a middle range to calibrate. The SNR of this range is larger, and the signal is better. If we choose a calibration lowest altitude of 0.5 km and toppest altitude of 6,7 and 8 km respectively for 20:10 set of data, mean absolute deviation between lidar and radiosonde in the height range between 1 and 8 km is 0.59,0.53,0.54 K respectively shown in Fig.6, so we choose 7 km as the toppest altitude. When the toppest altitude is 7 km, the lowest altitude is 0.5,1,2 km respectively, mean absolute deviation in the height range between 1 and 8 km is 0.53,0.52 and 0.58 K respectively, so we choose 1 km as the lowest altitude. When the calibration range is in the range between 1 and 7 km for this set of data, the mean absolute deviation is the smallest, so choosing 1 to 7 km as the calibration range. Therefore, the calibration constanta=878.13,b=-3.19 can be obtained. When calibration range is different, the mean absolute deviation between the lidar and radiosonde is varied, the relative variation of the deviation is about 0.07 K.

    3.3 Calibration constant

    To estimate the influence of calibration constant on the retrieval precision of temperature, we have studied the variance of calibration constant. The radiosonde was launched at 20:00 on 2 November 2014, and a period of data (measurement time during 19:20 to 20:40) which is close in time to the radiosonde measurement was selected. Under the same smooth window and calibration range, the calibration constant a,relative error of a,the calibration constant b and relative error of b are shown in Table 2.

    Fig.6 Deviation profiles under different calibration ranges

    Table 2 a,b, and relative error of a and b on November 2, 2014

    timearelativeerror/%brelativeerror/%19:20916.423.5-3.33-3.419:25810.51-8.4-2.948.819:30839.63-5.1-3.055.519:35877.83-0.8-3.181.319:40881.65-0.4-3.210.419:45882.22-0.3-3.210.619:50845.53-4.5-3.084.719:55894.451.1-3.26-1.020:00853.84-3.5-3.113.520:05862.85-2.5-3.142.520:10878.26-0.8-3.191.020:15902.882.0-3.29-2.020:20926.304.7-3.39-5.020:25893.811.0-3.26-1.120:30997.4012.7-3.65-13.120:35859.82-2.9-3.142.820:40882.38-0.3-3.220.2

    As can be seen from Table 2, the calibration constants of each set of data are changing. This is mostly due to lidar system parameters such as the output laser wavelength,energy and detecting unit performance changing during the observation period, the differences of SNR of the Raman signals within the scope of calibration height, and the differences of measurement values between lidar and radiosonde in time and space during the calibration period. The variance of a is 4.7%, the variance of b is 4.9%. The variances of a and b is all greater than 4%. Next, we analyze the effect of the variance of a,b on temperature profile and the probability of mean deviation falling into the range between -3 and 3 K when both a and b change within 4%. Nine atmospheric temperature profiles are derived when b don’t change and a change by 4% with a step length of 1%, and when a don’t change and b change by 4% with a step length of 1% as shown in Figs.7—8. When a increases, the temperature profile moves to the right, and the temperature increases; when b increases, the temperature profile also moves to the right, and the temperature also increases. With the increase of a or b, the mean deviation between the lidar and radiosonde is a linear distribution, and the standard deviation between the lidar and radiosonde is the parabola shape as shown in Figs.9—10. When a increases to 4%, the mean deviation increases by 10.36 K, and the standard deviation increases by 0.14 K;

    Fig.7 Temperature profiles with b constant and a variable

    Fig.8 Temperature profiles with a constant and b variable

    when b increases to 4%, the mean deviation increases by 9.43 K, and the standard deviation increases by 0.36 K. The mean deviation caused by the variance of a is greater than b, so the variance of a is more likely to cause the translation of profile. The standard deviation caused by the variance of b is greater than a, so the variance of b is more likely to lead to the change of profile shape.

    Fig.9 Mean deviation between the lidar and radiosonde versus a or b

    Fig.10 Standard deviation between the lidar and radiosonde versus a or b

    When a changes -4%, -3%, -2%, -1%, 0, 1%, 2%, 3%, 4% and b also changes -4%, -3%, -2%, -1%, 0, 1%, 2%, 3%, 4%, respectively, there are 81 kinds of combinations, and 81 atmospheric temperature profiles are retrieved as shown in Fig.11. The middle profiles are dense, both profiles are thin. When both a and b increase to 4%, the retrieved temperature profile is the right-most line, and the mean deviation between lidar and radiosonde is about 20.9 K. When both a and b decrease to 4%, the retrieved temperature profile is the left-most line, and the mean deviation is about -19.4 K. When a increases to 4% and b decreases to 4%, or a decreases to 4% and b increases to 4%, the retrieved temperature profile is in the middle position, close to the radiosonde profile, and the mean deviation is about 0.5 K, -0.1 K, respectively. When both a and b increase or decrease, the retrieved temperature profile is away from radiosonde profile, and the deviation is bigger and bigger; When one increases and another decreases, the retrieved temperature profile is close to the radiosonde profile, and the deviation has a tendency to cancel each other out. Fig.12 shows a ratio between the number of deviations within a certain temperature range and the total number of deviations for the variance within 4% for both a and b. It can be seen that the changing tendency of three different time deviation weight curves are consistent and they are approximately a normal distribution. When both a and b change within 4%, 27% of the mean deviations are in the range between -3 and 3 K. This is a statistical rule when the variance probabilities of a and b are equal. if the variance probabilities of a and b are not equal, and the probability of the mean deviation falling into the range between -3 and 3 K should be multiplied by a weighting factor.

    Fig.11 Temperature profiles for the variance within 4% for both a and b

    Fig.12 Ratio between the number of deviations within a certain temperature range and the total number of deviations for the variance within 4% for both a and b

    Fig.13 can be plotted according to Table 2. As can be seen from the Fig.13, the majority of the variance of a is -3%, and the majority of variance of b is 3%, the variance probabilities of a and b are not equal. It can be seen from Eq.(4) that the variance of 1% for calibration constant a leads to temperature error of 1%, the variance of 1% for b leads to temperature error range between 1% and 0.85% at altitudes of 1~8 km. By Table 2, you can also see that the variances of a and b are always contrary in sign, a positive and a negative. Through the analysis of the above, we know that the deviation has a tendency to cancel each other out when the variances of a and b are contrary in sign. By the whole variance of a and b, we can see where is the approximate range of mean deviation.

    Fig.13 Ratio between the number of errors within a certain relative error range and the total number of errors for a or b

    Fig.14 Retrieved temperature profiles on November 16,17, 21 using calibration constant on November 13

    Under the same smooth window and calibration range, the 16th,17th and 21th calibration constant a,b, the relative error of a and b which is relative to the 13th calibration constant, retrieved the mean deviation between the lidar and radiosonde using the 13th calibration constant are shown in Tables 3—5.

    Table 3 a,b, relative error of a and b, and mean deviation on 16 November 2014

    As shown in Tables 3—5, both the variance of a and b may be very large, but no matter how large the variance of a or b is, their whole variance is basically in the range between -1% and 1%, so the mean deviation is essentially in the range between -3 and 3 K. Through data analysis for 16, 17, 21 November, about 91.7% of mean deviations are in the range between -3 and 3 K by calculation. The statistical regularity is right under the continuous observation, clear atmosphere and the same calibration range. If the calibration range is different, or light path adjusts, or the sky has cloud, the statistical regularity is not established.

    Table 4 a,b, relative error of a and b, and mean deviation on 17 November 2014

    Table 5 a,b, relative error of a and b, and mean deviation on 21 November 2014

    4 Conclusions

    The atmospheric temperature profile was retrieved by pure rotational Raman backscattering return signals. The statistical error is smaller than1K below 4.2 km and 2 K below 7.1 km, and deviations between the lidar and radiosonde are less than 2 K below 8 km with a laser energy of 180 mJ, averaged pulse number of 4 000 and smooth window of 600 m. The retrieval results of the atmospheric temperature are associated with smooth window, calibration range and calibration constant. When smooth window varies from 300 to 2 000 m, the mean absolute deviation between the lidar and radiosonde firstly decreases by 0.5 K and then increases by 0.4 K, so the smooth window can only choose values between a certain range. The calibration range of 1~7 km is chosen according to the smallest mean absolute deviation. Variance of calibration constant a or b leads to not only the translation of temperature profile, but the change of temperature profile shape, and the effect of b on profile shape is larger than a; When both a and b increase or decrease, the mean deviation between the lidar and radiosonde increases; when one increases and another decreases, the mean deviation has a tendency to cancel each other out. When the variance probabilities of a and b are equal and both a and b change within 4%, 27% of the mean deviation are in the range between -3 and 3 K. In fact the variance probability of a or b is not equal, their whole variance basically tends to the range between -1% and 1%, and about 91.7% of the mean deviations are in the range between -3 and 3 K. The analysis of these errors can be used as references for the selection of smooth window, calibration range and the error of actual temperature inversion results caused by lidar calibration constant.

    [1] Ding Yi-hui. China’s Climate Change: Science, Impact, Orientation and Countermeasures Study. Beijing: China Environmental Science Press, 2009.

    [2] Achtert P, Khaplanov M, Khosrawi F, et al. Atmos. Meas. Tech., 2013, 6: 91.

    [3] Chen W N, Tsao C C, Nee J B. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66: 39.

    生活垃圾焚燒時(shí)產(chǎn)生的NOx通常為300~400 mg/m3,其中約90%為NO,且以燃料型NO為主。燃料中的氮生成氮氧化物的途徑大致如下[1]:

    [4] Korb C L, Weng C Y. Appl. Opt., 1983, 22: 3759.

    [5] Wu Yong-hua, Li Tao, Zhou Jun. Chinese Journal of Atmospheric Sciences, 2002, 26(5): 702.

    [6] Cooney J A. J. Appl. Meteorol., 1972, 11(1): 108.

    [7] Jia Jing-yu, Yi Fan. Appl. Opt., 2014, 53(24): 5330.

    [8] Chen S, Qiu Z, Zhang Y, et al. J. Quant. Spectrosc. Radiat. Transfer., 2011, 112: 304.

    [10] Imaki M, Kawai H, Kato T, et al. Japanese Journal of Applied Physics, 2012, 51(4): 052401.

    [11] Hammann E, Behrendt A, Mounier F L. Atmospheric Chemistry and Physics, 2015, 15(3): 2867.

    [12] Russell P B, Swissler T J, McCormick M P. Appl. Opt., 1979, 18(22): 3783.

    *通訊聯(lián)系人

    TN958.98

    A

    基于純轉(zhuǎn)動(dòng)拉曼譜線激光雷達(dá)的大氣溫度反演分析

    劉玉麗1,2,謝晨波1*,尚 震1,趙 明1,曹開法1,孫越勝2

    1. 中國科學(xué)院安徽光學(xué)精密機(jī)械研究所大氣成分與光學(xué)重點(diǎn)實(shí)驗(yàn)室,安徽 合肥 230031 2. 解放軍電子工程學(xué)院物理教研室,安徽 合肥 230037

    由于氣溶膠的影響,傳統(tǒng)的瑞利散射法測量低空大氣溫度有一定的局限,為此開展了純轉(zhuǎn)動(dòng)拉曼法測量低空大氣溫度。利用純轉(zhuǎn)動(dòng)拉曼激光雷達(dá)在北京進(jìn)行了2個(gè)月的大氣溫度觀測,由觀測數(shù)據(jù)反演了溫度廓線。在基于N2和O2的純轉(zhuǎn)動(dòng)拉曼譜線特征進(jìn)行大氣溫度反演過程中,分析了平滑窗口、定標(biāo)范圍和定標(biāo)常數(shù)對溫度反演精度的影響。結(jié)果顯示隨著平滑窗口的增大,雷達(dá)和無線電探空儀測量的溫度之間的平均絕對偏差先減小后增加,為有效去除信號中隨機(jī)誤差的影響,同時(shí)保留溫度廓線的垂直結(jié)構(gòu),平滑窗口應(yīng)選擇600~1 200 m比較好。定標(biāo)范圍不同,雷達(dá)和無線電探空儀測量的溫度之間的平均絕對偏差就不同,相對變化約為0.07 K。當(dāng)定標(biāo)常數(shù)a,b都增大或都減小時(shí),雷達(dá)和無線電探空儀測量的溫度之間的平均偏差增大,當(dāng)一個(gè)增大另一個(gè)減小時(shí),平均偏差相互抵消; a,b的變化不是等幾率的,在符號上總是相反的; 平均偏差對a的變化不敏感,對b的變化也不敏感,對a與b的整體變化敏感,約91.7%平均偏差落入-3~3 K之間。該研究分析結(jié)果對純轉(zhuǎn)動(dòng)拉曼激光雷達(dá)數(shù)據(jù)反演中涉及的平滑窗口、定標(biāo)范圍的選擇提供了理論依據(jù),對激光雷達(dá)定標(biāo)常數(shù)造成實(shí)際溫度反演結(jié)果的誤差提供了參考。

    激光雷達(dá); 大氣溫度; 定標(biāo)常數(shù); 誤差分析

    2015-09-16,

    2015-12-08)

    Foundation item: the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences (2013JJ01); National Natural Science Foundation of China (41005014, 41205020); China Special Fund for Meteorological Research in the Public Interest (GYHY201206037); the Key Research Program of the Chinese Academy of Sciences (KJZD-EW-TZ-G06-01); the Wanjiang Center for Development of Emerging Industrial Technology (12Z0104074)

    10.3964/j.issn.1000-0593(2016)06-1978-09

    Received: 2015-09-16; accepted: 2015-12-08

    Biography: LIU Yu-li,(1979—), Electronic Engineering Institute of PLA, Department of Physics, lecturer e-mail: 13956989561@139.com *Corresponding author e-mail: cbxie@aiofm.ac.cn

    猜你喜歡
    探空儀平均偏差定標(biāo)
    河北地方性震級量規(guī)函數(shù)與方位角校正值研究1
    銀川站探空儀換型平行觀測數(shù)據(jù)對比分析
    我國為世界大豆精準(zhǔn)選種“定標(biāo)”
    探空儀換型平行觀測數(shù)據(jù)對比分析
    基于恒星的電離層成像儀在軌幾何定標(biāo)
    FY-3C/VIRR西北太平洋區(qū)域海表溫度精度評估?
    基于角反射器的機(jī)載毫米波云雷達(dá)外定標(biāo)實(shí)驗(yàn)
    4m直徑均勻擴(kuò)展定標(biāo)光源
    秒級探空數(shù)據(jù)隨機(jī)誤差評估
    脛前動(dòng)脈穿刺可行性及心肺流轉(zhuǎn)下脛前動(dòng)脈與橈動(dòng)脈壓力監(jiān)測的一致性研究
    老司机影院毛片| 国产精品久久久久久人妻精品电影 | 一本色道久久久久久精品综合| 91麻豆精品激情在线观看国产 | 91麻豆精品激情在线观看国产 | 亚洲第一av免费看| 欧美日韩精品网址| 一级片'在线观看视频| 久久中文字幕人妻熟女| 国产av国产精品国产| 欧美黄色淫秽网站| 国产精品.久久久| 另类亚洲欧美激情| 新久久久久国产一级毛片| 国产精品99久久99久久久不卡| 精品少妇内射三级| 在线看a的网站| 可以免费在线观看a视频的电影网站| 国产成人精品无人区| 久久国产精品男人的天堂亚洲| 激情在线观看视频在线高清 | 免费观看人在逋| 欧美老熟妇乱子伦牲交| 新久久久久国产一级毛片| 国产在视频线精品| 女人久久www免费人成看片| 日本精品一区二区三区蜜桃| 美女高潮喷水抽搐中文字幕| 国产不卡av网站在线观看| 国产真人三级小视频在线观看| 久久久久久久国产电影| 777久久人妻少妇嫩草av网站| 免费日韩欧美在线观看| 美国免费a级毛片| 亚洲国产中文字幕在线视频| 777米奇影视久久| av又黄又爽大尺度在线免费看| 成人三级做爰电影| 一级片'在线观看视频| 夫妻午夜视频| 黄色a级毛片大全视频| 成年版毛片免费区| 国产精品一区二区精品视频观看| 又黄又粗又硬又大视频| 亚洲精品久久午夜乱码| 高潮久久久久久久久久久不卡| 啦啦啦视频在线资源免费观看| 成人精品一区二区免费| 咕卡用的链子| 欧美日韩国产mv在线观看视频| 我要看黄色一级片免费的| 久久久久网色| 麻豆乱淫一区二区| 午夜激情av网站| 一区二区三区国产精品乱码| 十八禁人妻一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产欧美一区二区综合| 99精国产麻豆久久婷婷| 考比视频在线观看| 香蕉久久夜色| 欧美人与性动交α欧美精品济南到| 18禁美女被吸乳视频| 午夜福利视频在线观看免费| 九色亚洲精品在线播放| 欧美国产精品va在线观看不卡| 国产精品国产高清国产av | a级毛片在线看网站| 亚洲av电影在线进入| 国产免费现黄频在线看| 五月开心婷婷网| 久久久水蜜桃国产精品网| 俄罗斯特黄特色一大片| 99国产综合亚洲精品| 99国产极品粉嫩在线观看| 大型黄色视频在线免费观看| 亚洲精品国产精品久久久不卡| 日韩一区二区三区影片| 午夜福利乱码中文字幕| 欧美精品一区二区免费开放| a在线观看视频网站| 黄片大片在线免费观看| 免费av中文字幕在线| 99九九在线精品视频| 久久久久久免费高清国产稀缺| 免费看a级黄色片| 久久中文字幕人妻熟女| 免费av中文字幕在线| 少妇 在线观看| 一进一出好大好爽视频| 免费观看a级毛片全部| 国产片内射在线| 热re99久久国产66热| 久久久久久免费高清国产稀缺| 成年动漫av网址| 国产精品九九99| 中国美女看黄片| 少妇的丰满在线观看| 久久99热这里只频精品6学生| 日韩欧美国产一区二区入口| 国产野战对白在线观看| 岛国毛片在线播放| 免费人妻精品一区二区三区视频| 国产精品一区二区在线不卡| 日韩中文字幕欧美一区二区| 国产不卡av网站在线观看| 亚洲精品粉嫩美女一区| 人人妻人人澡人人爽人人夜夜| 成人亚洲精品一区在线观看| 啪啪无遮挡十八禁网站| 香蕉国产在线看| 自拍欧美九色日韩亚洲蝌蚪91| 91精品国产国语对白视频| 亚洲熟女毛片儿| 巨乳人妻的诱惑在线观看| 高清视频免费观看一区二区| 亚洲av欧美aⅴ国产| 一区二区av电影网| 国产一区二区 视频在线| 激情在线观看视频在线高清 | 天天影视国产精品| 肉色欧美久久久久久久蜜桃| av片东京热男人的天堂| 欧美日韩国产mv在线观看视频| 纯流量卡能插随身wifi吗| 国产淫语在线视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久亚洲精品国产蜜桃av| 高潮久久久久久久久久久不卡| 精品国产超薄肉色丝袜足j| 自线自在国产av| 亚洲av美国av| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 男男h啪啪无遮挡| 精品少妇一区二区三区视频日本电影| 久久狼人影院| 狠狠狠狠99中文字幕| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲| videos熟女内射| 90打野战视频偷拍视频| 99热国产这里只有精品6| 久久青草综合色| 久久久精品区二区三区| 日韩视频在线欧美| 狠狠婷婷综合久久久久久88av| 热99re8久久精品国产| 午夜免费鲁丝| 欧美 日韩 精品 国产| 一二三四社区在线视频社区8| 久久久久久久精品吃奶| av一本久久久久| 亚洲欧美精品综合一区二区三区| 高清视频免费观看一区二区| 51午夜福利影视在线观看| 波多野结衣一区麻豆| 午夜激情久久久久久久| 高清在线国产一区| 久热这里只有精品99| 曰老女人黄片| 成人免费观看视频高清| 好男人电影高清在线观看| 久久久久久人人人人人| 水蜜桃什么品种好| av免费在线观看网站| 老熟女久久久| 日韩 欧美 亚洲 中文字幕| 99精品欧美一区二区三区四区| 91av网站免费观看| 国产成人av教育| 国产色视频综合| 亚洲色图 男人天堂 中文字幕| 国产精品美女特级片免费视频播放器 | 男女之事视频高清在线观看| 国产色视频综合| 久久久久视频综合| 99精品在免费线老司机午夜| 国产精品亚洲一级av第二区| 精品一区二区三区视频在线观看免费 | 狠狠婷婷综合久久久久久88av| 国产成人av教育| 国产aⅴ精品一区二区三区波| 午夜日韩欧美国产| 99国产精品免费福利视频| 国产一区二区三区在线臀色熟女 | 欧美人与性动交α欧美软件| 亚洲精品av麻豆狂野| 国产精品久久电影中文字幕 | 一区在线观看完整版| 在线播放国产精品三级| 在线十欧美十亚洲十日本专区| 日韩欧美国产一区二区入口| 18禁国产床啪视频网站| 欧美激情高清一区二区三区| 日本av免费视频播放| 看免费av毛片| 婷婷成人精品国产| 久久久国产精品麻豆| 亚洲免费av在线视频| 国产在视频线精品| 91成人精品电影| 午夜福利免费观看在线| 这个男人来自地球电影免费观看| 欧美国产精品一级二级三级| 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 成年人黄色毛片网站| 美女扒开内裤让男人捅视频| 午夜福利视频精品| 欧美 亚洲 国产 日韩一| 国产精品一区二区在线不卡| 国产在线精品亚洲第一网站| 成人黄色视频免费在线看| 成在线人永久免费视频| 丁香欧美五月| 99re在线观看精品视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲全国av大片| 成年动漫av网址| 丝袜美腿诱惑在线| 极品人妻少妇av视频| 成人18禁高潮啪啪吃奶动态图| 精品久久久精品久久久| 日本黄色视频三级网站网址 | svipshipincom国产片| 国产av国产精品国产| 国产在视频线精品| 一级黄色大片毛片| 国产在线观看jvid| 国产在线免费精品| a级片在线免费高清观看视频| 丝袜喷水一区| 精品亚洲成国产av| 成人av一区二区三区在线看| 美女午夜性视频免费| av有码第一页| 日韩大码丰满熟妇| 777米奇影视久久| 国产人伦9x9x在线观看| 丁香六月欧美| 热99国产精品久久久久久7| 亚洲精品国产区一区二| 国产高清视频在线播放一区| 国产真人三级小视频在线观看| av有码第一页| 纵有疾风起免费观看全集完整版| 日本av免费视频播放| 老司机福利观看| 黄色怎么调成土黄色| 欧美 亚洲 国产 日韩一| 欧美 日韩 精品 国产| 美女午夜性视频免费| 人人妻人人澡人人爽人人夜夜| 这个男人来自地球电影免费观看| 久久这里只有精品19| 国产在线精品亚洲第一网站| 美女国产高潮福利片在线看| 久久久久精品国产欧美久久久| 大香蕉久久成人网| 老司机午夜十八禁免费视频| 淫妇啪啪啪对白视频| 无限看片的www在线观看| 色视频在线一区二区三区| 一区二区三区乱码不卡18| 亚洲成人手机| 国产无遮挡羞羞视频在线观看| 久久狼人影院| 国产三级黄色录像| 午夜精品久久久久久毛片777| 久久精品国产99精品国产亚洲性色 | 中文字幕制服av| 一进一出好大好爽视频| 免费观看av网站的网址| 亚洲精品自拍成人| 久久久久久亚洲精品国产蜜桃av| 免费av中文字幕在线| 亚洲午夜理论影院| 久久国产精品影院| 涩涩av久久男人的天堂| 亚洲精品美女久久av网站| 狠狠狠狠99中文字幕| 国产成人影院久久av| 欧美久久黑人一区二区| 一边摸一边抽搐一进一出视频| 999久久久国产精品视频| 国产1区2区3区精品| 99久久99久久久精品蜜桃| 一边摸一边做爽爽视频免费| 飞空精品影院首页| 在线永久观看黄色视频| 蜜桃在线观看..| 精品久久久久久久毛片微露脸| 老鸭窝网址在线观看| 国产一区二区在线观看av| 亚洲avbb在线观看| 成人永久免费在线观看视频 | 精品国产超薄肉色丝袜足j| av视频免费观看在线观看| 好男人电影高清在线观看| 亚洲中文av在线| a在线观看视频网站| 日韩大码丰满熟妇| 亚洲av美国av| 精品少妇黑人巨大在线播放| 波多野结衣一区麻豆| 极品人妻少妇av视频| 高潮久久久久久久久久久不卡| 激情在线观看视频在线高清 | 人人妻人人爽人人添夜夜欢视频| 大陆偷拍与自拍| av福利片在线| 午夜激情久久久久久久| 啦啦啦在线免费观看视频4| 亚洲精品在线美女| 欧美老熟妇乱子伦牲交| 国产一卡二卡三卡精品| 视频区欧美日本亚洲| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人手机| 999久久久精品免费观看国产| 极品少妇高潮喷水抽搐| 精品乱码久久久久久99久播| 欧美精品一区二区大全| 国产高清videossex| a级毛片黄视频| 老汉色∧v一级毛片| 无限看片的www在线观看| 国产真人三级小视频在线观看| 热99re8久久精品国产| 在线观看免费高清a一片| 露出奶头的视频| 精品国产一区二区三区久久久樱花| 在线 av 中文字幕| 亚洲av成人不卡在线观看播放网| 国产三级黄色录像| 国产成人一区二区三区免费视频网站| 大片免费播放器 马上看| 久久人人97超碰香蕉20202| a级片在线免费高清观看视频| 欧美乱妇无乱码| 免费一级毛片在线播放高清视频 | 9色porny在线观看| 激情视频va一区二区三区| 狠狠婷婷综合久久久久久88av| 黄片播放在线免费| tube8黄色片| 交换朋友夫妻互换小说| 美女扒开内裤让男人捅视频| 久久国产精品影院| 两个人免费观看高清视频| 69精品国产乱码久久久| 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 欧美精品一区二区免费开放| 亚洲自偷自拍图片 自拍| 99国产精品免费福利视频| 久久久久国产一级毛片高清牌| 每晚都被弄得嗷嗷叫到高潮| 狠狠狠狠99中文字幕| xxxhd国产人妻xxx| 99国产极品粉嫩在线观看| 国产精品久久久久久人妻精品电影 | 人人澡人人妻人| 乱人伦中国视频| 免费人妻精品一区二区三区视频| 美国免费a级毛片| 久久中文看片网| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美精品综合一区二区三区| av有码第一页| 高清在线国产一区| www.自偷自拍.com| 1024视频免费在线观看| 淫妇啪啪啪对白视频| 亚洲国产看品久久| 一区二区av电影网| 黄色成人免费大全| 午夜福利免费观看在线| 成人18禁高潮啪啪吃奶动态图| 久久人人97超碰香蕉20202| av超薄肉色丝袜交足视频| 99久久99久久久精品蜜桃| 欧美黑人精品巨大| 女警被强在线播放| 水蜜桃什么品种好| 亚洲av日韩精品久久久久久密| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 久久精品91无色码中文字幕| 一本久久精品| 国产欧美日韩精品亚洲av| 老司机午夜福利在线观看视频 | 美女视频免费永久观看网站| 9色porny在线观看| netflix在线观看网站| 一边摸一边抽搐一进一出视频| 国产亚洲一区二区精品| 午夜免费成人在线视频| 日韩欧美一区视频在线观看| 捣出白浆h1v1| 性色av乱码一区二区三区2| 久久精品91无色码中文字幕| 国产成人av教育| 18禁观看日本| 国产精品一区二区在线观看99| 91老司机精品| 午夜福利乱码中文字幕| 免费人妻精品一区二区三区视频| 久久国产精品人妻蜜桃| 一级a爱视频在线免费观看| 久久狼人影院| 亚洲av第一区精品v没综合| 久久精品国产99精品国产亚洲性色 | 一本久久精品| 热re99久久精品国产66热6| 丁香六月天网| 99国产精品免费福利视频| 99国产精品一区二区蜜桃av | 人人妻人人澡人人爽人人夜夜| 99国产精品一区二区蜜桃av | 久久精品人人爽人人爽视色| 亚洲精华国产精华精| 国产成人一区二区三区免费视频网站| 色尼玛亚洲综合影院| 热re99久久精品国产66热6| 欧美日本中文国产一区发布| 国产极品粉嫩免费观看在线| 亚洲成人手机| 十八禁高潮呻吟视频| 国内毛片毛片毛片毛片毛片| 99热网站在线观看| 无限看片的www在线观看| 日韩视频在线欧美| 久久精品91无色码中文字幕| 国产精品一区二区在线不卡| 女性被躁到高潮视频| 国产在线一区二区三区精| 99精品欧美一区二区三区四区| 高清欧美精品videossex| 亚洲第一青青草原| 老司机福利观看| av线在线观看网站| 后天国语完整版免费观看| 侵犯人妻中文字幕一二三四区| avwww免费| 叶爱在线成人免费视频播放| 国产精品成人在线| 老司机午夜福利在线观看视频 | 我要看黄色一级片免费的| 中文字幕制服av| 久久av网站| 色精品久久人妻99蜜桃| 久久精品国产99精品国产亚洲性色 | 国产一区二区激情短视频| 成人影院久久| 美女午夜性视频免费| 国产一区二区在线观看av| 亚洲欧美激情在线| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久| 亚洲熟妇熟女久久| 国产人伦9x9x在线观看| 极品少妇高潮喷水抽搐| 久久久国产精品麻豆| 大香蕉久久成人网| 欧美中文综合在线视频| 欧美性长视频在线观看| 丁香六月天网| 久久久久久久精品吃奶| 老司机深夜福利视频在线观看| 女性生殖器流出的白浆| 久久久久精品国产欧美久久久| 国产精品久久久久久精品电影小说| 成人国产一区最新在线观看| 日韩三级视频一区二区三区| 一级片'在线观看视频| av天堂在线播放| bbb黄色大片| 久久久精品免费免费高清| 亚洲九九香蕉| e午夜精品久久久久久久| 国产成人精品久久二区二区免费| 亚洲国产成人一精品久久久| 国产不卡av网站在线观看| 久久精品91无色码中文字幕| 男女高潮啪啪啪动态图| 国产精品98久久久久久宅男小说| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久男人| e午夜精品久久久久久久| 搡老熟女国产l中国老女人| 黑人巨大精品欧美一区二区蜜桃| 国产午夜精品久久久久久| 亚洲国产毛片av蜜桃av| 亚洲一卡2卡3卡4卡5卡精品中文| 变态另类成人亚洲欧美熟女 | 动漫黄色视频在线观看| 人妻一区二区av| 日本av免费视频播放| 亚洲欧美日韩高清在线视频 | 精品国产乱码久久久久久男人| 首页视频小说图片口味搜索| 欧美 亚洲 国产 日韩一| 国产精品久久久av美女十八| 精品免费久久久久久久清纯 | 免费看十八禁软件| 久久影院123| 丰满饥渴人妻一区二区三| 精品人妻熟女毛片av久久网站| 在线观看免费午夜福利视频| 精品高清国产在线一区| 国产日韩欧美亚洲二区| 国产免费福利视频在线观看| 2018国产大陆天天弄谢| 亚洲午夜精品一区,二区,三区| 久久毛片免费看一区二区三区| 中文欧美无线码| 怎么达到女性高潮| 99国产极品粉嫩在线观看| 男女之事视频高清在线观看| 91麻豆av在线| 国产精品亚洲一级av第二区| 人人妻人人爽人人添夜夜欢视频| 99精品久久久久人妻精品| 一区二区三区国产精品乱码| 国产亚洲av高清不卡| 少妇精品久久久久久久| 免费高清在线观看日韩| 国产亚洲欧美精品永久| 一本综合久久免费| 在线观看www视频免费| 黄色视频不卡| 99riav亚洲国产免费| 国产精品欧美亚洲77777| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区三| 男人操女人黄网站| 王馨瑶露胸无遮挡在线观看| 免费黄频网站在线观看国产| 色精品久久人妻99蜜桃| 黄片播放在线免费| 天天躁夜夜躁狠狠躁躁| 91av网站免费观看| 久久午夜综合久久蜜桃| 亚洲国产成人一精品久久久| 国产一区二区激情短视频| 91麻豆av在线| 欧美亚洲日本最大视频资源| 日韩视频一区二区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕精品免费在线观看视频| 午夜福利乱码中文字幕| 亚洲色图 男人天堂 中文字幕| 91九色精品人成在线观看| 久热这里只有精品99| 男人操女人黄网站| 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三| 国产一区二区在线观看av| 久久国产精品影院| 欧美日韩中文字幕国产精品一区二区三区 | 又黄又粗又硬又大视频| 黄频高清免费视频| 欧美一级毛片孕妇| 热99国产精品久久久久久7| 久久国产精品大桥未久av| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜精品久久久久久毛片777| 飞空精品影院首页| 精品久久久久久电影网| 国产精品麻豆人妻色哟哟久久| 婷婷丁香在线五月| 日韩欧美一区二区三区在线观看 | 亚洲国产精品一区二区三区在线| 日韩一区二区三区影片| 日本一区二区免费在线视频| 亚洲伊人色综图| 国产精品久久电影中文字幕 | 精品视频人人做人人爽| av一本久久久久| 亚洲精品国产精品久久久不卡| 咕卡用的链子| 国产福利在线免费观看视频| 精品国产亚洲在线| 欧美人与性动交α欧美精品济南到| 欧美日韩亚洲高清精品| 国产区一区二久久| 国产日韩欧美在线精品| 国产精品免费大片| 亚洲男人天堂网一区| 欧美日韩国产mv在线观看视频| 男女下面插进去视频免费观看| 午夜福利影视在线免费观看| 母亲3免费完整高清在线观看| 亚洲精品在线美女| 国产成人免费观看mmmm| 一区福利在线观看| 窝窝影院91人妻| 少妇裸体淫交视频免费看高清 | 亚洲全国av大片| 亚洲免费av在线视频| 精品视频人人做人人爽| 国产精品欧美亚洲77777| 亚洲av美国av| 正在播放国产对白刺激| 国产在线一区二区三区精| 啦啦啦视频在线资源免费观看| 午夜福利在线免费观看网站| 国产精品国产高清国产av | 男女之事视频高清在线观看| 国产亚洲av高清不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品中文字幕在线视频| 久久久久久亚洲精品国产蜜桃av|