吳煥童,劉婷婷,曹暢,張淑萍Δ,覃筱燕Δ
(1.中央民族大學(xué) 北京市食品環(huán)境與健康工程技術(shù)研究中心,北京 100081;2.中央民族大學(xué) 生命與環(huán)境科學(xué)學(xué)院,北京 100081)
茶多酚對谷氨酸介導(dǎo)的大鼠海馬神經(jīng)元損傷的影響及可能機(jī)制
吳煥童1,2,劉婷婷1,2,曹暢1,2,張淑萍1,2Δ,覃筱燕1,2Δ
(1.中央民族大學(xué) 北京市食品環(huán)境與健康工程技術(shù)研究中心,北京 100081;2.中央民族大學(xué) 生命與環(huán)境科學(xué)學(xué)院,北京 100081)
目的 探討茶多酚(tea polyphenols,TP)對谷氨酸(Glutamate,Glu)介導(dǎo)的神經(jīng)元毒性損傷的影響及可能機(jī)制。方法 運(yùn)用大鼠乳鼠海馬神經(jīng)元原代培養(yǎng)細(xì)胞,Glu誘導(dǎo)建立細(xì)胞損傷模型。實(shí)驗(yàn)分6組:對照組、Glu模型組、抑制劑+Glu模型組、TP+Glu組、TP+抑制劑+Glu組和TP組。神經(jīng)細(xì)胞標(biāo)記微管蛋白β-tubulin Ⅲ染色和DAPI細(xì)胞核染色鑒定神經(jīng)元的純度和細(xì)胞骨架結(jié)構(gòu)形態(tài);MTT法測定細(xì)胞活性;Western blot檢測細(xì)胞中p-Akt和p-Erk 1/2蛋白的表達(dá)。結(jié)果 β-tubulin Ⅲ和DAPI染色結(jié)果顯示,培養(yǎng)的海馬神經(jīng)元生長良好,純度>90%;β-tubulin Ⅲ染色結(jié)果顯示Glu模型組表現(xiàn)出典型的神經(jīng)細(xì)胞骨架結(jié)構(gòu)損傷的形態(tài)特征,TP可拮抗Glu誘導(dǎo)的神經(jīng)元凋亡的形態(tài)學(xué)改變;MTT結(jié)果顯示TP+Glu組細(xì)胞存活率明顯高于Glu模型組(P<0.001);與TP+Glu組(1.190±0.2072)相比,TP+ LY29004+Glu組神經(jīng)元存活率明顯減少(P<0.01);與TP+Glu組(1.861±0.1804)比較,TP+ PD098059+Glu組神經(jīng)元存活率顯著減少(P<0.01);Western blot結(jié)果顯示, 與Glu模型組相比,TP+Glu組p-Akt和p-Erk 1/2蛋白表達(dá)量均明顯升高(P<0.01;P<0.001)。結(jié)論 茶多酚對Glu介導(dǎo)的海馬神經(jīng)元損傷具有保護(hù)作用,其可能通過上調(diào)p-Akt和p-Erk 1/2的表達(dá)抑制Glu介導(dǎo)的海馬神經(jīng)元損傷。
茶多酚;谷氨酸;海馬神經(jīng)元;p-Akt;p-Erk 1/2
谷氨酸(Glutamate, Glu)的興奮毒性引起神經(jīng)元的凋亡與丟失和很多急慢性神經(jīng)退行性疾病相關(guān),包括帕金森病(Parkinson’s disease, PD)和阿爾茨海默病(Alzheimer’s disease, AD)等[1]。Glu過度釋放和堆積于細(xì)胞外是AD等神經(jīng)退變病理發(fā)展過程的另一個(gè)重要問題[1-2]。因此,針對急慢性神經(jīng)退行性疾病,尋找對抗Glu介導(dǎo)的神經(jīng)毒性的方法和藥物成為一個(gè)重要的治療策略和研究熱點(diǎn)[2]。
茶葉具有預(yù)防心腦血管疾病、抗氧化、抗衰老、抗腫瘤、抗輻射、抗炎等多種生物學(xué)功能,其主要藥理活性成分為茶多酚(tea polyphenols,TP)[3-5]。本課題組前期實(shí)驗(yàn)研究表明,TP可通過調(diào)節(jié)PI3K/Akt信號通路對胞內(nèi)Aβ1-42誘導(dǎo)的原代培養(yǎng)大鼠前額葉神經(jīng)元毒性損傷有保護(hù)作用[6],雖然TP抑制胞內(nèi)、外Aβ毒性引起神經(jīng)元凋亡的作用已經(jīng)明確,但其分子作用機(jī)制尚不完全清楚,同時(shí)TP對Glu誘導(dǎo)的興奮性神經(jīng)毒性影響尚未見文獻(xiàn)報(bào)道。
本實(shí)驗(yàn)旨在應(yīng)用Glu誘導(dǎo)建立原代培養(yǎng)大鼠乳鼠海馬神經(jīng)元損傷模型[1,7],給予TP預(yù)處理,觀察TP對Glu介導(dǎo)的神經(jīng)元損傷的保護(hù)作用;并通過在培養(yǎng)基加入PI3K/Akt信號通路抑制劑LY29004和Erk信號通路抑制劑PD098059,觀察Glu預(yù)處理對抑制Glu介導(dǎo)的神經(jīng)元毒性損傷細(xì)胞存活率的變化,以及磷酸化的Akt(p-Akt)和Erk1/2(p-Erk1/2)表達(dá)量的變化,以闡明TP對Glu介導(dǎo)的神經(jīng)元損傷的保護(hù)作用及 p-Akt 和p-Erk 1/2分子在TP對 Glu誘導(dǎo)的興奮性神經(jīng)毒性抑制中的作用。
1.1 材料
1.1.1 實(shí)驗(yàn)動物:新生1日齡SD大鼠乳鼠(北大醫(yī)學(xué)部實(shí)驗(yàn)動物中心)。合格證號:SCXK(京)2005-0013。
1.1.2 主要試劑和儀器:茶多酚(TP),為Abcam產(chǎn)品,純度98%。噻唑藍(lán)(MTT)、4’,6-二脒基-2-苯基吲哚(DAPI)、谷氨酸(Glu)、β-tubulin Ⅲ(兔抗鼠神經(jīng)元特異性烯醇化酶抗體)、多聚賴氨酸、β-actin (美國Sigma公司); DMEM高糖培養(yǎng)基、Neuralbasal medium、 B27、胎牛血清、胰蛋白酶(美國Invitrogen公司);p-Erk 1/2和Erk 1/2、 p-Akt和t-Akt、 ERK抑制劑PD098059和Akt抑制劑LY29004(美國CST公司); DMSO、TBST均為國產(chǎn)分析純。
BX51-熒光顯微鏡、CKX41-倒置顯微鏡(日本Olympus公司);5417R高速冷凍離心機(jī)(德國Eppendodf 公司);熒光/吸收光酶標(biāo)儀(美國Thermo公司); Tanon4200化學(xué)發(fā)光成像儀(上海天能公司) 。
1.2 方法
1.2.1 神經(jīng)細(xì)胞原代培養(yǎng)及分組處理:無菌條件下分離SD大鼠的海馬體,剪碎,0.25%的胰蛋白酶37 ℃下消化30 min左右,取出,用含10%胎牛血清的DMEM液終止消化,輕輕打散細(xì)胞團(tuán),用200目的過濾篩過濾未消化好的細(xì)胞液,1500 r/min離心5 min,去除上清液后,用含10%胎牛血清的DMEM液輕輕吹打沉淀使之形成單細(xì)胞懸液,調(diào)整細(xì)胞密度至1×106個(gè)/mL,接種到細(xì)胞板上,置于37 ℃、5%CO2培養(yǎng)箱中培養(yǎng)。24 h后培養(yǎng)液全部換用含10%B27的Neurobasal medium神經(jīng)元培養(yǎng)基中,以后每兩三天半量換液,細(xì)胞培養(yǎng)到第7天供實(shí)驗(yàn)使用。
實(shí)驗(yàn)隨機(jī)分6組:對照組、Glu模型組、抑制劑+Glu模型組、TP+Glu組、 TP +抑制劑+Glu組和TP組。整個(gè)培養(yǎng)過程對照組不加入任何處理因素;細(xì)胞培養(yǎng)至第7天時(shí),Glu模型組加入Glu(終濃度40 μmol/L)建立細(xì)胞損傷模型;抑制劑+Glu模型組加入PD098059或LY29004(終濃度均為10 μmol/L)及Glu(濃度40μmol/L);TP+Glu組加入TP(用含10%B27的Neurobasal medium神經(jīng)元培養(yǎng)基溶解,終濃度10 μmol/L)和Glu(終濃度40 μmol/L);TP+抑制劑+Glu組加入TP(終濃度10 μmol/L)和Glu(終濃度40 μmol/L)以及PD098059或LY29004(終濃度均為10 μmol/L);TP組只加入TP(終濃度10 μmol/L)處理。
1.2.2 大鼠乳鼠海馬神經(jīng)細(xì)胞鑒定:取培養(yǎng)4~7 d生長在24孔板蓋玻片上的大鼠乳鼠海馬神經(jīng)細(xì)胞,PBS洗滌,4%多聚甲醛固定,再用PBS洗滌,用一抗β-tubulin Ⅲ(1:1000)、二抗和DAPI熒光染色,PBS洗滌,封片,熒光顯微鏡觀察,鑒定神經(jīng)元的純度和形態(tài)。
1.2.3 熒光染色觀察細(xì)胞骨架形態(tài)結(jié)構(gòu)變化:細(xì)胞培養(yǎng)同前,分對照組、Glu模型組、TP+Glu組和TP組4組,各組細(xì)胞按實(shí)驗(yàn)設(shè)計(jì)給藥后繼續(xù)培養(yǎng)24 h。β-tubulin Ⅲ免疫熒光染色如同1.2.2, 熒光顯微鏡觀察各組細(xì)胞骨架形態(tài)。
1.2.4 細(xì)胞活性檢測:細(xì)胞活性檢測采用MTT 法。細(xì)胞培養(yǎng)和分組同1.2.1,每組5個(gè)復(fù)孔。各組按實(shí)驗(yàn)設(shè)計(jì)給藥后繼續(xù)孵育細(xì)胞24 h,之后每孔加入MTT(終濃度0.5 mg/mL), 避光繼續(xù)孵育4 h于37 ℃、5%CO2培養(yǎng)箱中,吸去培養(yǎng)液,每孔再加入150 μL DMSO液, 室溫下置于搖床上振蕩15 min,待孔內(nèi)顆粒完全溶解后,酶標(biāo)儀570 nm處測定各孔吸光度(A)值,計(jì)算各組細(xì)胞存活率。
1.2.5 Western blot法檢測細(xì)胞Akt和Erk 1/2蛋白表達(dá):細(xì)胞培養(yǎng)和分組同1.2.3,每組5個(gè)復(fù)孔。各組按實(shí)驗(yàn)設(shè)計(jì)給藥后繼續(xù)孵育細(xì)胞24 h,用0.01M的PBS洗滌3~5次,每孔加入100 μL的細(xì)胞裂解液,冰上反應(yīng)30 min,12000 r/min高速冷凍離心15 min,取上清液。BCA法測定各組蛋白濃度,將每個(gè)樣品的蛋白濃度調(diào)成一致,用10%的SDS-PAGE分離蛋白質(zhì),轉(zhuǎn)膜(PVDF膜),5%的脫脂奶粉封閉30 min,一抗(1:1000)孵育過夜(4 ℃),TBST洗3~5次,室溫下二抗(1:1000)孵育 1 h, TBST洗3~5次,加化學(xué)發(fā)光液(A液與B液等體積混合)在Tanon4200化學(xué)發(fā)光成像儀下檢測各組未知蛋白質(zhì)的表達(dá)量。
2.1 大鼠乳鼠海馬神經(jīng)細(xì)胞生長狀況 培養(yǎng)4~7 d后,神經(jīng)和非神經(jīng)元(主要是星形膠質(zhì)細(xì)胞)之間或神經(jīng)元之間,連接成緊密的網(wǎng)絡(luò),神經(jīng)元主要生長在非神經(jīng)元細(xì)胞之上。熒光染色結(jié)果顯示:培養(yǎng)5d的神經(jīng)元骨架形態(tài)完好(綠色標(biāo)記),純度>90% ,達(dá)到了實(shí)驗(yàn)預(yù)期要求。見圖1。
圖1 大鼠乳鼠海馬神經(jīng)元β-tubulin Ⅲ和DAPI免疫熒光染色結(jié)果(×200)綠色為β-tubulin Ⅲ 染色的細(xì)胞突起(神經(jīng)元),藍(lán)色為DAPI染色的細(xì)胞核Fig.1 β-tubulin Ⅲ and DAPI immunofluorescence stained result of hippocampal neurons in rat(×200)β-tubulin Ⅲ appears as green cell processes,DAPI appear as blue cell nucleus
2.2 TP對Glu誘導(dǎo)的神經(jīng)細(xì)胞骨架結(jié)構(gòu)損傷的影響 免疫熒光結(jié)果顯示:對照組大鼠海馬神經(jīng)元軸、樹突密集和細(xì)長,排列有序,呈網(wǎng)絡(luò)狀交織,β-tubulin Ⅲ表達(dá)高。Glu模型組大鼠海馬神經(jīng)元軸、樹突斷裂稀小和彎曲,排列紊亂,不交織成網(wǎng)絡(luò)結(jié)構(gòu),β-tubulin Ⅲ表達(dá)低。TP+Glu組神經(jīng)元形態(tài)與對照組差異不大,軸、樹突密集和細(xì)長,排列有序,網(wǎng)絡(luò)狀交織,β-tubulin Ⅲ陽性高,與對照組差異不大。TP組細(xì)胞β-tubulin Ⅲ形態(tài)和表達(dá)與對照組差異不大,軸、樹突密集細(xì)長,網(wǎng)絡(luò)狀交織。說明TP可通過保護(hù)細(xì)胞內(nèi)β-tubulin Ⅲ的正常結(jié)構(gòu)及表達(dá)對抗Glu誘導(dǎo)的大鼠海馬神經(jīng)元損傷。見圖2。
圖2 TP對Glu誘導(dǎo)的大鼠海馬神經(jīng)元損傷中β-tubulin Ⅲ形態(tài)結(jié)構(gòu)及表達(dá)的影響(×200)綠色為β-tubulin Ⅲ熒光染色Fig.2 Effect of TP on β-tubulin Ⅲ structure and expression on Glu-inducted hippocampal neurons in rat (×200)β-tubulin Ⅲ staining is green
2.3 抑制劑對TP保護(hù)Glu介導(dǎo)的海馬神經(jīng)元毒性損傷細(xì)胞存活率的影響 MTT結(jié)果顯示:與Glu模型組相比,TP+Glu組神經(jīng)元存活率明顯提高(P<0.001);與LY29004+Glu模型組相比,TP+ LY29004+Glu組細(xì)胞存活率無明顯變化;與TP+Glu組相比,TP+ LY29004+Glu組神經(jīng)元存活率明顯減少(P<0.01),見表1。提示加入Akt阻斷劑LY29004后,TP對Glu誘導(dǎo)的神經(jīng)元毒性損傷的保護(hù)作用也被阻止,表明TP抑制Glu誘導(dǎo)的神經(jīng)元毒性作用與p-Akt的表達(dá)有關(guān)。
表1 LY29004對各組細(xì)胞存活率的影響(n=5)
***P<0.001,與Glu模型組比較, compared with Glu model group;##P<0.01,與TP+Glu組比較,compared with TP+Glu group
與Glu模型組相比,TP+Glu組神經(jīng)元存活率明顯提高(P<0.001);與PD098059+Glu模型組相比,TP+LY29004+Glu組細(xì)胞存活率無明顯變化;與TP+Glu組相比,TP+PD098059+Glu組神經(jīng)元存活率明顯減少(P<0.01),見表2。表明加入Erk阻斷劑PD098059后,TP對Glu誘導(dǎo)的神經(jīng)元毒性損傷的保護(hù)作用也被阻止,表明TP抑制Glu誘導(dǎo)的神經(jīng)元毒性作用與p-Erk 1/2的表達(dá)有關(guān)。
表2 PD098059對各組細(xì)胞存活率的影響(n=5)
***P<0.001,與Glu模型組比較, compared with Glu model group;##P<0.01,與TP+Glu組比較,compared with TP+Glu group
2.4 TP對Glu誘導(dǎo)的神經(jīng)元損傷p-Akt和 p-Erk 1/2表達(dá)量的影響 Western blot結(jié)果顯示:與對照組相比,Glu模型組p-Akt表達(dá)明顯降低(P<0.01);與Glu模型組相比,TP+Glu組p-Akt表達(dá)明顯升高(P<0.01),見圖3。推測Glu毒性損傷神經(jīng)元與Akt磷酸化減少有關(guān),TP可通過上調(diào)神經(jīng)元p-Akt表達(dá),抑制Glu介導(dǎo)的細(xì)胞毒性損傷,起到修復(fù)和保護(hù)細(xì)胞的作用。
與對照組相比,Glu模型組的p-Erk 1/2表達(dá)量明顯降低(P<0.001);與Glu模型組相比,TP+Glu組p-Erk 1/2表達(dá)量明顯升高(P<0.001),見圖4。推測Glu毒性損傷細(xì)胞與Erk磷酸化激活減少有關(guān);TP可通過上調(diào)神經(jīng)元p-Erk 1/2的表達(dá),抑制Glu介導(dǎo)的細(xì)胞毒性損傷,起到修復(fù)和保護(hù)細(xì)胞的作用。
圖3 TP對Glu 誘導(dǎo)的大鼠海馬神經(jīng)元損傷中p-Akt表達(dá)的影響(n=5)**P<0.01,與對照組比較;##P<0.01,與Glu模型組比較Fig.3 Effect of TP on p-Akt expression in Glu-mediated rats hippocampal damage neurons (n=5)**P<0.01,compared with control group; ##P<0.01, compared with Glu group
圖4 TP對Glu誘導(dǎo)的大鼠海馬神經(jīng)元損傷中p-Erk 1/2表達(dá)的影響(n=5)***P<0.001,與對照組比較;###P<0.001,與Glu模型組比較Fig.4 Effect of TP on p-Erk 1/2 expression in Glu-mediated rats hippocampal damage neurons(n=5)***P<0.001, compared with control group; ###P<0.001, compared with Glu model group
谷氨酸(Glu)是神經(jīng)系統(tǒng)內(nèi)重要的興奮性神經(jīng)遞質(zhì),它與神經(jīng)元快速的突觸傳遞、神經(jīng)元的可朔性、生長發(fā)育、學(xué)習(xí)、記憶和認(rèn)知行為功能密切相關(guān),但在病理情況下,如缺血、缺氧、衰老等,會導(dǎo)致Glu的重?cái)z和轉(zhuǎn)運(yùn)發(fā)生障礙,引起Glu的堆積,胞外過多的Glu積累會導(dǎo)致神經(jīng)元的毒性損傷,進(jìn)而導(dǎo)致神經(jīng)元的凋亡[8]。許多研究表明,Glu的毒性效應(yīng)引起的神經(jīng)元凋亡與許多神經(jīng)退行性疾病有關(guān),包括阿爾茨海默病(Alzheimer’disease,AD)、帕金森病(Parkinson’s disease,PD)、亨廷頓病(Huntington’s disease,HD)等[9-11]。尸檢發(fā)現(xiàn),AD患者腦內(nèi)有大量的Glu積累[9,11],說明Glu可能參與了AD的發(fā)病過程。AD的特征之一是谷氨酸激活[12],谷氨酸NMDA受體的拮抗劑已運(yùn)用于中、重度AD的治療[13]。
本實(shí)驗(yàn)采用神經(jīng)元原代培養(yǎng)方法,對神經(jīng)元進(jìn)行 β-tubulin Ⅲ和DAPI染色,實(shí)驗(yàn)結(jié)果顯示培養(yǎng)出的海馬神經(jīng)元良好,且純度>90%。同時(shí)MTT實(shí)驗(yàn)結(jié)果顯示,終濃度為40 μmol/L的Glu模型組細(xì)胞存活率為60%左右,與正常對照組相比,差異均具有統(tǒng)計(jì)學(xué)意義(P<0.01或P<0.001);β-tubulin Ⅲ染色結(jié)果顯示經(jīng)Glu處理的模型組大鼠海馬神經(jīng)元骨架結(jié)構(gòu)明顯損傷。這些結(jié)果都證明了Glu介導(dǎo)的海馬神經(jīng)元毒性效應(yīng)。
絲裂原活化蛋白激酶(Mitogen activated protein kinase,MAPK)信號通路和PI3K/Akt信號通路參與了谷氨酸介導(dǎo)的神經(jīng)毒性損傷及AD發(fā)病機(jī)制[7,14-17]。PI3K/Akt 信號通路是調(diào)節(jié)細(xì)胞增殖、分化和凋亡的重要信號轉(zhuǎn)導(dǎo)通路。激活PI3K能使Akt磷酸化而活化,活化的Akt 可以通過磷酸化作用激活或抑制其下游靶蛋白Bcl2家族、Caspase家族、NF-κB、p53、HSP70等,進(jìn)而通過多種途徑促進(jìn)神經(jīng)細(xì)胞存活和神經(jīng)再生,是重要的抗凋亡調(diào)節(jié)因子[18]。AD發(fā)生時(shí)PI3K/Akt 信號通路被抑制[19]。在Tg2576 AD小鼠和AD患者腦中觀察到磷酸化的Akt(p-Akt )表達(dá)下調(diào)[16-17];本課題組前期的研究工作也表明了curcumin可通過上調(diào)p-Akt和下調(diào)Caspase-3的表達(dá)抑制胞內(nèi)Aβ1-42誘導(dǎo)的大鼠前額葉神經(jīng)元的毒性[15]。
MAPK信號通路參與了神經(jīng)系統(tǒng)損傷的發(fā)生和修復(fù),及細(xì)胞的凋亡和分化[20-21]。細(xì)胞外信號調(diào)節(jié)激酶(external-signal reguated kinase1/2,Erk 1/2)是MAPK信號通路家族中的重要分子,其表達(dá)和磷酸化參與應(yīng)激損傷引起的神經(jīng)元凋亡和突觸傳遞[22-23]。研究發(fā)現(xiàn),AD病的早期特征之一是Erk1/2信號通路激活,神經(jīng)元退行性病變有Erk1/2 分子參與[21,23]。Erk1/2激活,p-Erk1/2表達(dá)上調(diào)參與了微波輻射或氧化應(yīng)激所致的神經(jīng)元損傷保護(hù)[24]。JNK和p38MAPK的激活在不同的神經(jīng)細(xì)胞模型中表現(xiàn)為促進(jìn)細(xì)胞凋亡的,而Erk1/2的激活則具有拮抗細(xì)胞凋亡的作用[24]。
茶多酚(TP)是茶葉中多酚類物質(zhì)及其衍生物的總稱,占茶葉干重的20%~35%,而兒茶素是茶多酚中主要的多酚類化合物,約占茶葉干重的12 %~24 %,主要有表沒食子兒茶素沒食子酸酯(EGCG)、表兒茶素(EC) 、沒食子兒茶素(EGC)、表兒茶素沒食子酸酯(ECG)4種兒茶素,其中含量最高的是EGCG[6,25]。研究表明茶多酚可通過其強(qiáng)大的抗氧化作用和作為離子螯合劑,助于神經(jīng)退行性疾病如PD和AD的防治[4-5,24-25];如能改善動物空間學(xué)習(xí)記憶障礙及保護(hù)神經(jīng)元免于神經(jīng)毒性因子的損傷[26];通過下調(diào)ROS-NO對6-OHDA 誘導(dǎo)的SH-SY5Y細(xì)胞凋亡具有保護(hù)作用[4]等等。本課題組前期研究也報(bào)道了茶多酚通過調(diào)節(jié)PI3K/Akt 信號通路蛋白對胞內(nèi)Aβ1-42誘導(dǎo)的原代培養(yǎng)大鼠前額葉神經(jīng)元毒性損傷有保護(hù)作用[6]。
本研究應(yīng)用Glu介導(dǎo)構(gòu)建海馬神經(jīng)元損傷模型[1,7],通過TP預(yù)給藥處理,探討TP對Glu介導(dǎo)的神經(jīng)元損傷的保護(hù)作用及AKT和 Erk1/2蛋白分子在其中的作用。本實(shí)驗(yàn)通過MTT和 β-tubulin Ⅲ染色結(jié)果都顯示TP抗Glu毒性損傷的保護(hù)作用。為驗(yàn)證AKT和Erk1/2的磷酸化激活是否介導(dǎo)TP的保護(hù)作用,通過在細(xì)胞培養(yǎng)基加入p-Akt和Erk抑制劑LY00094及PD098059(終濃度均為10 μmol/L),通過MTT法檢測各實(shí)驗(yàn)組海馬神經(jīng)元細(xì)胞存活率。實(shí)驗(yàn)結(jié)果顯示Akt和Erk抑制劑LY00094及PD098059均不同程度的阻斷了TP抑制Glu介導(dǎo)的神經(jīng)元毒性損傷的保護(hù)作用。
同時(shí)Western blot結(jié)果顯示,相比對照組,Glu模型組中 p-Akt和p-Erk 1/2表達(dá)量明顯減少(P<0.001),而對照組和TP組p-Akt和p-Erk 1/2的表達(dá)比較差異并無統(tǒng)計(jì)學(xué)意義(P<0.01或P<0.001),說明神經(jīng)元受到Glu毒性損害時(shí),減少了神經(jīng)元p-Akt和p-Erk 1/2的表達(dá)引起細(xì)胞凋亡。而與Glu模型組比較,p-Akt和p-Erk 1/2的表達(dá)在TP +Glu組表現(xiàn)出不同程度升高(P<0.01或P<0.001),推測TP可以介導(dǎo)神經(jīng)元細(xì)胞的p-Akt和p-Erk 1/2表達(dá)上調(diào),拮抗Glu引起的神經(jīng)元損傷,從而保護(hù)神經(jīng)元的生存。
綜上所述,本研究揭示了茶多酚對谷氨酸介導(dǎo)的神經(jīng)元損傷具有保護(hù)作用,其可能通過上調(diào)p-Akt和p-Erk 1/2的表達(dá)抑制谷氨酸誘導(dǎo)的興奮性神經(jīng)毒性作用。
[1] Chung LM, Yeo MA, Kim SJ,et al.Neuroprotective effects of resveratrol derivatives from the roots of Vitis thunbergii var. sinuate against Glutamate-induced neurotoxicity in primary cultured rat cortical cells[J]. Hum Exp Toxicol, 2011, 30(9):1404-1408.
[2] Horio M,Fujita Y,Hashimoto K.Therapeutic effects of metabotropic Glutamate receptor 5 positive allosteric modulator CDPPB on phencyclidine-induced cognitive deficits in mice[J].Fundamental & clinical pharmacology, 2013,27(5):483-488.
[3] Camouse MM,Hanneman KK,Conrad EP,et al.Protective effects of tea polyphenols and caffeine[J].Expert Rev Anticancer Ther,2005,5(6):1061-1068.
[4] Guo S,Bezard E,Zhao B.Protective effect of green tea polyphenols on the SHSY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway[J].Free Radic Biol Med,2005,39(5):682-695.
[5] Liu ML, Yu LC.Potential protection of green tea polyphenols against ultraviolet irradiation-induced injury on rat cortical neurons[J].Neurosci Lett,2008,444(3):236-239.
[6] Qin XY,Cheng Y,Yu LC.Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity in primary cultured prefrontal cortical neurons[J].Neurosci Lett,2012,513(2)170-173.
[7] Qin XY,Cheng Y,Murthy SR,et al..Carboxypeptidase E(N, a neuroprotein transiently expressed during development protects embryonic neurons against glutamate neurotoxicity and oxidative stress induced cell death[J].PLoS One,2014,9(1): e112996.
[8] Chang G, Guo Y,Jia Y,et al.Protective effect of combination of sulforaphane and riluzole on glutamate-mediated excitotoxicity[J]. Biol Pharm Bull, 2010, 33(9):1477-1483.
[9] Ong WY, Tanaka K, Dawe GS, et al. Slow excitotoxicity in Alzheimer’s disease[J]. J Alzheimers Dis, 2013, 35(2):643-668.
[10] Estrada-Sanchez AM,Montiel T,Segovia J,et al.Glutamate toxicity in the striatum of the R6/2 Huntington’s disease transgenic mice is age-dependent and correlates with decreased levels of glutamate transporters[J]. Neurobiol Dis,2009,34(3):78-86.
[11] Hynd MR,Scott HL,Dodd PR.Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease[J]. Neurochem Int,2004,45(5):583-595.
[12] Corona C, Pensalfini A, Frazzini V,et al. New therapeutic targets in Alzheimer’s disease: brain deregulation of calcium and zinc[J].Cell Death Dis,2011,2:el76.
[13] Sadowsky CH, Galvin JE.Guidelines for the management of cognitive and behavioral problems in dementia[J]. J Am Board Fam Med,2012,25(3):350-366.
[14] Eunjin L, Sungyoub L, Endan L, et al.Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicity via ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β pathways[J].Exp Neuro,230(2011):114-122.
[15] Qin XY, Cheng Y, Yu LC. Curcumin protects intracellular amyloid beta toxicity in primary cultured prefrontal cortical neurons of rats[J].Neurosci Lett,2010,480(1):21-24。
[16] Magrane J, Rosen KM, Smith RC, et al. Querfurth, Intraneuronal beta-amyloid expression downregulates the Akt survival pathway and blunts the stress response[J].J Neurosci,2005,25(47):10960-10969.
[17] Lee HK, Kumar P, Fu Q, et al. The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid[J], Mol Biol Cell,2009,20(2):1533-1544.
[18] Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy[J].Cell Signal,2002,14(5):381-395.
[19] Aoyagi N,Uemura K,Kuzuya A,et al.PI3K inhibition causes the accumulation of ubiquitinated presenilin 1 without affecting the prote a some activity[J] .Biochem Biophys Res Commun,2010,391(2):1240-1245.
[20] Eunjin L,Sungyoub L,Endan L,et al.Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicity via ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β pathways[J]. Exp Neurol,2011,230(2):114-122.
[21] Yang XR,Sun P,Qin HP,et al.Involvement of MAPK pathways in NMDA-induced apoptosis of rat cortical neurons [J].Acta Physiologica Sinica,2012,64(6):609-616.
[22] Alter BJ,Zhao C,Karim F,et al.Genetic targeting of ERK1 suggests a predominant role for ERK2 in murine pain models [J].J Neurosci,2010, 30(34):11537-11542.
[23] Pei JJ,Braak H,An WL,et al.Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease [J].Brain Res Mol Brain RES,2002,109(1):45-55.
[24] Fang XX, Jiang XL, Han XH, et al. Neuroprotection of interleukin-6 against NMDA-induced neurotoxicity is mediated by JAK/STAT3, MAPK/ERK, and PI3K/AKT signaling pathways[J].Cell Mol Neurobiol,2013,33(2):241-251.
[25] Kim CY,Lee C,Park GH,et al.Neuroprotective effect of epigallocatechin-3-gallate against beta-amyloid-induced oxidative and nitrosative cell death via augmentation of antioxidant defense capacity[J]. Arch Pharm Res.2009 32(6):869-881.
[26] Guo S,Yan J,Yang T,et al.Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway[J]. Biol Psychiatry, 2007,1562(12):1353-1362.
(編校:吳茜)
Effect of tea polyphenols on Glutamate-mediated rats hippocampal neurons damage and its possible mechanism
WU Huan-tong1,2, LIU Ting-ting1,2, CAO Chang1,2, ZHANG Shu-ping1,2Δ, QIN Xiao-yan1,2Δ
(1.Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081; 2.College of Life and Environmental Sciences, Minzu University of China, Beijing 100081)
ObjectiveTo explore the effect of tea polyphenols(TP) on Glutamate(Glu)-mediated rats hippocampal neurons toxic injury and its possible mechanism.MethodsPrimary cultured hippocampal neurons was used and the damage model of Glu-induced nerve cell toxicity was established. The experiment were divided into six groups: control group, Glu model group, inhibitor+Glu model group, TP+Glu group, TP+inhibitor+Glu group and TP group. Nerve cells markers tubulin β-tubulin Ⅲ and DAPI staining were used to detect the purity of neurons and cytoskeleton structure; cell viability was determined by thiazole blue (MTT) method ; Western blot was used to detect p-Akt and p- Erk 1/2 expression.Resultsβ-tubulin Ⅲ and DAPI staining results showed that hippocampal neurons growth well, the purity was above 90%; β-tubulin Ⅲ staining results showed that Glu model group showed a typical morphology characteristics of neuronal cytoskeleton structure damage and TP can inhibits Glu mediated-neuronal Cytoskeleton structure damage; MTT results showed the cell viability of TP+Glu group was significantly higher than Glu model group (P< 0.001); Compared with TP+Glu group(1.190±0.2072) , cell viability of TP+LY29004+Glu group was significantly decreased (P< 0.01); Compared with TP+Glu group(1.861±0.1804) , cell viability of TP+PD098059+Glu group was significantly decreased (P<0.01); Western blot results showed that p-Akt and p-Erk 1/2 protein expression in TP+Glu group were significantly higher than Glu model group(P<0.01;P < 0.001).ConclusionTea polyphenols plays a protective role on Glu-mediated hippocampal neurons injury, it inhibited Glu-mediated neurons toxicity damage may be through up-regulating p-Akt and p-Erk 1/2 expression.
tea polyphenols; Glutamate; hippocampal neurons; p-Akt; p-Erk 1/2
國家自然科學(xué)資金(31372225);中央民族大學(xué)985工程(YLDX01013)和社會醫(yī)學(xué)學(xué)術(shù)團(tuán)隊(duì)建設(shè)(2015MDTD13C);高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃(B08044)
吳煥童,女,碩士,研究方向:神經(jīng)生理及神經(jīng)藥理學(xué),E-mail: 13810472177@163.com;覃筱燕,通信作者,女,碩士,教授,研究方向:神經(jīng)生理及藥理學(xué),E-mail:bjqinxiaoyan@muc.edu.cn;張淑萍,共同通信作者,女,博士,副教授,研究方向:鳥類神經(jīng)內(nèi)分泌生理,E-mail:springzsp@sina.com。
R996
A
1005-1678(2015)11-0005-05