邵高聳(中國(guó)人民武裝警察部隊(duì)學(xué)院科研部科研所,河北 廊坊 065000)
?
分級(jí)結(jié)構(gòu)卷心菜葉形磷酸鈰材料的制備及性能
邵高聳
(中國(guó)人民武裝警察部隊(duì)學(xué)院科研部科研所,河北 廊坊 065000)
摘要:以β-環(huán)糊精(β-CD)為結(jié)構(gòu)導(dǎo)向劑,通過(guò)水熱處理合成出具有分級(jí)結(jié)構(gòu)的卷心菜葉形磷酸鈰納米纖維。通過(guò)X射線衍射、掃描電子顯微鏡、透射電子顯微鏡、傅里葉紅外光譜和氮?dú)馕綄?duì)材料進(jìn)行表征。結(jié)果表明:合成的磷酸鈰是六方和單斜晶型共存的混晶相;具有分級(jí)結(jié)構(gòu)的“卷心菜葉”形貌,每個(gè)葉片是由寬約5 nm,長(zhǎng)達(dá)幾百到近千納米不等的納米纖維組成;推測(cè)生長(zhǎng)機(jī)理為協(xié)同自組裝控制的定向連接生長(zhǎng);磷酸鈰納米纖維材料作為催化劑在丙烷氧化脫氫制丙烯的催化反應(yīng)中表現(xiàn)出優(yōu)秀的催化活性和穩(wěn)定性。
關(guān)鍵詞:制備;磷酸鈰;納米結(jié)構(gòu);機(jī)理;催化劑;丙烷氧化脫氫
2015-08-17收到初稿,2015-10-27收到修改稿。
聯(lián)系人:邵高聳(1980—),女,博士,講師。
Received date: 2015-08-17.
Foundation item: supported by the Natural Science Foundation of Hebei Province (B2014507016).
近年來(lái),由于磷酸鈰獨(dú)特的優(yōu)良性能,引起了科學(xué)家的廣泛關(guān)注[1-7]。許多研究者發(fā)現(xiàn)通過(guò)改變材料的不同形貌和尺寸可以使材料表現(xiàn)出一些普通材料所不具備的性能。因此,磷酸鈰豐富的形貌特征以及帶來(lái)的優(yōu)異特性是引起研究者關(guān)注的重要因素。選用不同的方法可合成制備出棒狀[8]、線狀[9-16]、針狀[17]、項(xiàng)鏈結(jié)構(gòu)[18]、納米顆粒[19]等不同形貌特征的磷酸鈰材料,用于發(fā)光材料、潤(rùn)滑材料、陶瓷材料、電化學(xué)材料等[20-24]。稀土元素鈰有獨(dú)特的4f電子層結(jié)構(gòu),具有較高的熱穩(wěn)定性和較強(qiáng)的儲(chǔ)氧及釋氧能力而被廣泛應(yīng)用于催化劑。在催化方面,磷酸鈰作為一種催化劑,廣泛應(yīng)用到正丁醇氧化脫氫制異丙烯,降解CF4,高對(duì)應(yīng)選擇性的Diels-Alder反應(yīng),光催化降解染料和2-丙醇的脫水和枯烯催化裂化等反應(yīng)中[25-29]。田春良[30]選用介孔磷酸鈰作為催化劑應(yīng)用到丙烷氧化脫氫反應(yīng)中。丙烷氧化脫氫制丙烯催化劑主要集中在釩基催化劑、鉬基催化劑、稀土復(fù)合催化劑和磷酸鹽類(lèi)催化劑[31-34],還有其他催化劑,如分子篩、尖晶石、硼基催化劑和納米碳纖維等[35-36]。其中釩基催化劑催化活性高,催化劑的穩(wěn)定性好,因而研究最多。鉬基催化劑催化活性稍低于釩基催化劑;稀土復(fù)合催化劑具有低溫催化活性,丙烯選擇性較高,但轉(zhuǎn)化率低;磷酸鹽類(lèi)催化劑,其中以釩取代磷酸鋁的催化性能好;其他類(lèi)型催化劑體系都是處于實(shí)驗(yàn)起步階段。
本文利用β-環(huán)糊精作為結(jié)構(gòu)導(dǎo)向劑,合成出具有分級(jí)結(jié)構(gòu)卷心菜葉形磷酸鈰納米纖維材料,用于丙烷氧化脫氫制丙烯的催化反應(yīng)中。
1.1材料及制備步驟
原料和化學(xué)試劑:Na3PO4·6H2O,天津科密歐化學(xué)試劑有限公司;Ce(NO3)3·6H2O,天津化學(xué)試劑廠;HNO3,天津化學(xué)試劑三廠;以上化學(xué)試劑均為分析純。β-環(huán)糊精(β-CD),生化試劑,北京雙旋微生物培養(yǎng)基制品廠。
磷酸鈰納米晶粒:5.543 g Ce(NO3)4·6H2O溶解在50 ml去離子水中,在強(qiáng)烈攪拌條件且超聲條件下,緩慢添加4.852 g Na3PO4·6H2O。這時(shí)溶液變成白色渾濁液體,抽濾,用水洗滌,得到固體物質(zhì)溶于50 ml稀硝酸溶液(pH=2)。繼續(xù)持續(xù)攪伴,且伴隨超聲1 h,得磷酸鈰納米晶粒。
磷酸鈰納米纖維:在30 ml乙醇和10 ml水的混合液中,添加1 g β-CD并攪拌3 h。將上述步驟準(zhǔn)備好的磷酸鈰納米晶粒添加到該體系中,繼續(xù)攪拌數(shù)小時(shí)后,轉(zhuǎn)入到高壓反應(yīng)釜中,120℃條件下老化48 h。最后將產(chǎn)物過(guò)濾,洗滌,干燥,得產(chǎn)物記為CePβ。樣品經(jīng)過(guò)500℃焙燒6 h后,收集記為CePβ-500。若體系中不添加β-CD,其他方法、步驟相同,樣品最后經(jīng)過(guò)500℃焙燒6 h后收集,記為CeP-500。
1.2分析測(cè)試儀器
采用日本理學(xué)Rigaku D/Max 2500型X射線衍射儀(CuKα射線,管電壓40 kV,管電流100 mA,譜圖的記錄范圍5°≤2θ≤80°)對(duì)樣品的物相結(jié)構(gòu)進(jìn)行分析。
采用Hitachi X-650型掃描電子顯微鏡進(jìn)行表面形貌分析,樣品的制備:粉末樣品用導(dǎo)電膠粘到觀察臺(tái)上,然后在一定真空度下,60~80 mA電流噴金60 s,用其觀測(cè)樣品的形貌。
采用Philips CM200型透射電子顯微鏡進(jìn)行TEM測(cè)試分析,電壓200 kV。樣品的制備:樣品以1:5的體積與乙醇混合,然后超聲30 min以分散樣品顆粒,將上層含有樣品的乙醇滴到覆有碳膜的銅網(wǎng)上,晾干后于電鏡中觀察。
氮?dú)馕?脫附測(cè)試在美國(guó)康塔儀器公司Quantachrome Instruments NOVA 2000e 型高速比表面和孔隙度分析儀上進(jìn)行。77 K 液氮溫度下進(jìn)行氮?dú)馕?脫附實(shí)驗(yàn),采集數(shù)據(jù)點(diǎn)。測(cè)試前,所有樣品均在真空脫氣處理12 h。比表面的計(jì)算是由多點(diǎn)BET理論計(jì)算得到,孔徑分布采用Barret-Joyner-Halenda (BJH)法計(jì)算。
傅里葉變換紅外光譜(Fourier Transform Infrared Spectroscopy,F(xiàn)TIR)測(cè)試是在Brueker Vector22 FTIR紅外光譜儀上進(jìn)行。樣品制備采用KBr壓片法,測(cè)試范圍為400~4000 cm-1,分辨率為4 cm-1,測(cè)試溫度為30℃。
X射線光電子能譜(X-ray Photoelectron Spectroscopy,XPS)測(cè)試是在Kratos Axis Ultra DLD X射線光電子能譜儀上進(jìn)行。
1.3NH3-TPD測(cè)試
NH3-TPD的實(shí)驗(yàn)在Quantachrome CHEMBET-3000上測(cè)試,反應(yīng)管為U型石英管,催化劑在He氣中(氣體流速:20 ml·min-1)升溫至550℃,吹掃1 h。冷卻至室溫(~33℃)。在此溫度下,用NH3吹掃30 min達(dá)到吸附飽和,再切換為He氣吹掃至基線穩(wěn)定(約20 min),升溫至600℃。用TCD檢測(cè)記錄數(shù)值。實(shí)驗(yàn)參數(shù):催化劑用量:0.3 g,升溫速率:10℃·min-1,IA=140 mA,Attenuation=4。
1.4反應(yīng)活性評(píng)價(jià)
催化劑丙烷氧化脫氫制丙烯反應(yīng)性能的測(cè)定在固定床石英管反應(yīng)器中進(jìn)行,催化劑0.5 g,催化劑床層高約10 mm。在350~550℃范圍內(nèi),每隔50℃分析一次產(chǎn)品,原料組成為10%C3H8+10%O2+ 80%N2,原料氣總流速50 ml·min-1,產(chǎn)物分析采用GC-14A氣相色譜儀熱導(dǎo)檢測(cè)器對(duì)產(chǎn)物進(jìn)行在線分析,TDX-01柱上分析O2、CO、CH4和CO2,OV-1柱上分析CO2、C2H4、C2H6、C3H6和C3H8。通過(guò)碳?xì)w一法求算各組分的摩爾百分含量(Xi)。丙烷轉(zhuǎn)化率、丙烯選擇性、丙烯產(chǎn)率計(jì)算公式如下
2.1材料的制備與結(jié)構(gòu)表征
為了考察樣品的晶體結(jié)構(gòu),對(duì)合成的樣品CePβ-500進(jìn)行了XRD表征測(cè)試(圖1),從測(cè)試結(jié)果可以看出,合成的材料CePβ-500主要是以單斜晶型獨(dú)居石結(jié)構(gòu)為主(JCPDS,No. 32-0199),還有少量的六方晶相(JCPDS,No. 34-1380),屬于混相結(jié)構(gòu)的磷酸鈰。楊儒等[37]采用Materials Studio軟件對(duì)磷酸鈰晶體兩種晶型進(jìn)行了優(yōu)化,表明單斜晶型獨(dú)居石結(jié)構(gòu)穩(wěn)定,這兩種晶型由六方向單斜轉(zhuǎn)化屬于位移型相變,不需要破壞化學(xué)鍵。
通過(guò)掃描電鏡對(duì)樣品CePβ-500的形貌進(jìn)行觀察,從低倍照片[圖2(a)]可以看出,樣品形貌單一,產(chǎn)率高,近100%。放大倍數(shù)后[圖2(b)、(c)],樣品表觀形貌為菜葉狀,表面凸凹不平,有很多褶皺。每一片的頁(yè)面表面又有很多分級(jí)結(jié)構(gòu)的褶皺,這種結(jié)構(gòu)勢(shì)必造成材料比表面積的增加,為材料催化性能的提高很有益處。體系中不添加β-CD,合成樣品CeP-500的形貌如圖2(d)所示,都是由無(wú)規(guī)則的塊狀固體組成,表面粗糙不平,沒(méi)有出現(xiàn)具有分級(jí)結(jié)構(gòu)的卷心菜葉形的形貌特征。
圖1 樣品CePβ-500的XRD譜圖Fig.1 XRD pattern of cerium phosphate nanofiber CePβ-500
圖2 磷酸鈰CePβ-500和CeP-500的掃描電鏡圖片F(xiàn)ig. 2 SEM pictures of cerium phosphate nanofiber CePβ-500 (a),(b),(c) and CeP-500 (d)
透射電鏡能很好看到材料的內(nèi)部結(jié)構(gòu),從圖3(a)可以看到,卷心菜葉形的磷酸鈰納米材料是由許許多多的由寬約5 nm,長(zhǎng)達(dá)幾百到近千納米不等的納米纖維組成。每一根的納米纖維都有一定的彎曲度,他們互相有一定的纏繞,共同組成了菜葉狀的磷酸鈰材料。體系中不添加β-CD,合成樣品CeP-500的微觀結(jié)構(gòu)明顯不同,為寬約9 nm,長(zhǎng)50~100 nm的納米棒材料。
圖3 樣品CePβ-500和CeP-500的透射電鏡照片F(xiàn)ig.3 TEM pattern of cerium phosphate nanofibers CePβ-500 and CeP-500
圖4 分級(jí)結(jié)構(gòu)卷心菜葉形磷酸鈰納米纖維材料的形成機(jī)理Fig.4 Formation mechanism of hierarchical structure cabbage-like cerium phosphate nanofibers
無(wú)論是電子掃描電鏡照片,還是電子透射電鏡照片,體系添加β-CD后,合成樣品的形貌結(jié)構(gòu)特征與未添加β-CD相比,有明顯的不同。根據(jù)文獻(xiàn)[38]推測(cè)卷心菜葉狀的磷酸鈰納米纖維材料形成機(jī)理如下:在反應(yīng)伊始,在攪拌條件下,磷酸鈰納米晶粒和β-CD相對(duì)均勻分散。其中,磷酸鈰納米晶粒和β-CD是決定菜葉狀磷酸鈰結(jié)構(gòu)的最重要因素。經(jīng)過(guò)水熱處理,在反應(yīng)釜中晶化過(guò)程中,體系中有大量的羥基存在,β-CD自聚成鏈[39],β-CD可通過(guò)氫鍵和偶極矩作用,與溶液中大量的磷酸鈰納米晶粒相互作用。這是由于有機(jī)相與無(wú)機(jī)相界面之間的相互協(xié)同合作,越來(lái)越多的磷酸鈰晶粒會(huì)“寄生/吸附”β-CD界面,并進(jìn)一步促進(jìn)磷酸鈰的“定向連接”生長(zhǎng)。這時(shí),磷酸鈰納米晶就沿著這個(gè)鏈,利用相同的晶體學(xué)定向和共面粒子的對(duì)接自組裝聚集連接,以減少粒子的表面能,進(jìn)而降低體系總能量。在動(dòng)力學(xué)生長(zhǎng)控制下,由β-CD鏈做支撐和定位,沿著c軸(優(yōu)先沿著[001]晶向)生長(zhǎng)速率快的方向迅速生長(zhǎng)、長(zhǎng)大,最后形成磷酸鈰納米纖維和β-CD的復(fù)合材料,該生長(zhǎng)過(guò)程為協(xié)同自組裝控制的定向連接生長(zhǎng)[40]。樣品經(jīng)500℃焙燒,β-CD在復(fù)合體系中去除,由于這個(gè)“拐杖”去除的過(guò)程,納米纖維發(fā)生扭曲,最后生成具有分級(jí)結(jié)構(gòu)的卷心菜葉形磷酸鈰納米纖維材料(圖4)。
氮?dú)馕奖碚髂芎芎玫亓私獠牧系谋缺砻?,孔結(jié)構(gòu)和孔容等結(jié)構(gòu)特征。圖5為材料CePβ-500的氮?dú)馕?脫附等溫曲線。根據(jù)國(guó)際純粹和應(yīng)用化學(xué)協(xié)會(huì)(IUPAC)的分類(lèi)[41],可以看出材料CePβ-500的氮?dú)馕?脫附等溫線屬于Ⅳ型等溫線,H3型遲滯環(huán),這表明材料具有典型的介孔特征。在較低的相對(duì)壓力區(qū)主要是單分子層吸附,然后是多層吸附。隨著相對(duì)壓力的增加,吸附容量逐漸增加,說(shuō)明樣品中還存有多層吸附的孔道結(jié)構(gòu)。H3型遲滯環(huán),表明材料中所謂的介孔孔道是狹縫狀,這種孔是磷酸鈰納米纖維相對(duì)堆積而成的不規(guī)則的狹縫孔。利用吸附曲線,通過(guò)BJH法計(jì)算孔徑大小,集中在5~10 nm,這說(shuō)明樣品中含有不同大小的孔,可能主要是由納米纖維之間的聚集或堆積形成所致。通過(guò)多點(diǎn)BET計(jì)算材料的比表面積為97 m2·g-1,在相對(duì)壓力0.976時(shí),孔容0.256 cm3·g-1。不添加β-CD,合成的樣品CeP-500也屬于Ⅳ型等溫線,H3型遲滯環(huán),表明材料中的介孔孔道是狹縫狀,是無(wú)數(shù)條磷酸鈰納米棒堆積而成。材料CeP-500的比表面積為24 m2·g-1,BJH法計(jì)算孔徑大小集中在2~4 nm。
圖5 材料CePβ-500和CeP-500的氮?dú)馕?脫附等溫曲線和相應(yīng)的BJH法孔徑分布Fig.5 N2adsorption-desorption isotherms and corresponding BJH pore size distribution curves of CePβ-500 and CeP-500 materials
圖6 合成樣品β-CD、CePβ和CePβ-500的紅外光譜Fig.6 FTIR spectra of synthesized samplesa—β-CD; b—CePβ; c—CePβ-500
為了證明β-CD在合成磷酸鈰材料中的重要作用,且進(jìn)一步驗(yàn)證形成機(jī)理,運(yùn)用固體FTIR技術(shù)對(duì)β-CD、CePβ和CePβ-500材料進(jìn)行了表征對(duì)比,如圖6所示。圖6譜線a、b、c有非常明顯的不同,圖譜線a是β-CD的紅外骨架振動(dòng)峰,其中在3380~3400 cm-1范圍內(nèi),寬且強(qiáng)的峰為羥基()伸縮振動(dòng)峰;2926 cm-1出的譜帶為亞甲基()的伸縮振動(dòng)峰;1160 cm-1處的峰為伸縮振動(dòng)峰;947 cm-1處的峰為含a-1,4鍵的骨架振動(dòng)峰;859 cm-1為D-吡喃糖苷鍵的特征峰;760 cm-1處的峰為吡喃糖環(huán)的呼吸振動(dòng)峰;705 cm-1處的峰為環(huán)振動(dòng)峰[42]。這些峰與一些文獻(xiàn)報(bào)道的骨架振動(dòng)峰一致[43-44],而且這些峰在未焙燒處理的樣品CePβ上清晰可見(jiàn)。但是經(jīng)過(guò)焙燒處理后,這些峰在CePβ-500材料上消失。復(fù)合材料CePβ的紅外譜圖相對(duì)純?chǔ)?CD譜圖,在1054、952、616、565、547 cm-1處出現(xiàn)了新峰,這是磷酸鈰材料的骨架振動(dòng)峰。其中1054 cm-1歸屬于鍵的不對(duì)稱伸縮振動(dòng),952 cm-1歸屬于鍵的對(duì)稱伸縮振動(dòng)。在616、565、547 cm-1區(qū)域的骨架振動(dòng)峰,可歸屬于的不對(duì)稱彎曲振動(dòng)[45-47]。這5處峰與樣品CePβ-500的譜圖也一一對(duì)應(yīng)??傊?,從上面的分析結(jié)果看,通過(guò)水熱處理,β-CD在材料合成過(guò)程中起到重要作用;通過(guò)焙燒的方法,可以將材料中的β-CD的有效去除。
圖7 磷酸鈰納米纖維材料CePβ-500的NH3- TPD圖(0.3 g樣品,550℃預(yù)處理1 h)Fig.7 TPD spectra of NH3of cerium phosphate nanofibres CePβ-500 (0.3 g,pre-evacuated at 550℃ for 1 h)
樣品CePβ-500的NH3-TPD數(shù)據(jù)如圖7所示。樣品脫附的NH3出現(xiàn)了一個(gè)“山”峰,通過(guò)擬合分成3個(gè)峰。第1個(gè)脫附峰位于100~110℃,是材料表面物理吸附的NH3;第2個(gè)峰是最大、最強(qiáng)峰,位于200℃左右,所占比例大,說(shuō)明材料主要是以弱酸的形式存在;在310℃出現(xiàn)的NH3脫附峰也是樣品相對(duì)強(qiáng)的弱酸所致。在溫度大于400℃以上,未出現(xiàn)NH3脫附峰,表明沒(méi)有強(qiáng)酸位產(chǎn)生。不添加β-CD合成的CeP-500材料,在相同條件下,進(jìn)行了NH3-TPD測(cè)試。測(cè)試數(shù)據(jù)同CePβ-500催化劑基本沒(méi)有什么變化,說(shuō)明了添加β-CD,對(duì)催化劑的酸量不起任何作用。
為了檢驗(yàn)合成的磷酸鈰催化劑表面元素化學(xué)價(jià)態(tài),對(duì)其進(jìn)行了XPS分析,結(jié)果如圖8所示。圖8(a)是Ce 3d的能譜圖,在903.8 eV 和885.3 eV處的峰值是典型的Ce3+特征。900.1 eV 和882.0 eV兩處的峰分別為對(duì)應(yīng)903.8 eV 和885.3 eV的衛(wèi)星峰[48]。Ce 3d圖中,916.5 eV的結(jié)合能是典型的Ce4+,以CeO2的形式存在。但是在XRD數(shù)據(jù)上,沒(méi)有檢測(cè)到CeO2的相關(guān)衍射峰,這說(shuō)明少量的CeO2作為磷酸鈰中的雜質(zhì),和Ce3+一起構(gòu)成電對(duì),因此可以證實(shí)樣品中存在電對(duì)Ce3+/Ce4+。圖8(b)是催化劑中P 2p的能譜,132~133 eV主要?dú)w屬于五價(jià)磷[49]。圖8(c)是O 1s的譜圖,O 1s峰時(shí)不對(duì)稱的,高結(jié)合能方向伴有明顯的拖尾現(xiàn)象。在530.6 eV的強(qiáng)峰歸屬于鍵[50],而側(cè)峰位于532~533 eV,主要是表面吸附的氧物種[51-52]。催化劑中Ce3+/Ce4+電對(duì)和吸附氧物種(可動(dòng)氧)的存在,說(shuō)明可以發(fā)生氧化還原反應(yīng),預(yù)計(jì)磷酸鈰催化劑在丙烷氧化脫氫制丙烯催化反應(yīng)中,有較高丙烷轉(zhuǎn)化率和丙烯選擇性。
圖8 樣品CePβ-500的光電子能譜圖Fig.8 XPS analysis of sample CePβ-500
圖9 磷酸鈰CePβ-500催化劑的催化性能結(jié)果Fig.9 Catalytic activity of CePβ-500 catalyst
2.2丙烷氧化脫氫催化性能結(jié)果
通過(guò)水熱合成技術(shù),在β-CD和磷酸鈰納米晶粒的協(xié)同自組裝下,合成出高表面積具有分級(jí)結(jié)構(gòu)的卷心菜葉狀的磷酸鈰材料,這種材料作為催化劑,應(yīng)用于丙烷氧化脫氫制丙烯的反應(yīng)中。據(jù)文獻(xiàn)報(bào)道[53],適當(dāng)?shù)乃崃靠梢蕴岣弑榈霓D(zhuǎn)化率,但是酸性位容易吸附丙烯,造成丙烯的深度氧化,丙烯的選擇性降低。合成的磷酸鈰材料CePβ-500主要是弱酸,這對(duì)催化反應(yīng)有利,既可以提高丙烷轉(zhuǎn)化率,又可以提高丙烯選擇性。磷酸鈰催化劑的催化性能結(jié)果如圖9所示。從圖9中可以看出,樣品的轉(zhuǎn)化率呈先升高后降低的趨勢(shì),從350℃的0.93%上升到500℃的32.93%,但是550℃時(shí)轉(zhuǎn)化率降低(23.67%)。恰恰相反,丙烯的選擇性呈先降低后增加的趨勢(shì)(350℃最高70.35%;500℃最低29.82%,550℃提高到55.47%)。出現(xiàn)此現(xiàn)象,分析原因可能是高溫條件下,在氧氣一定的條件下,消耗氧氣完畢后,將發(fā)生丙烷直接脫氫反應(yīng),但是直接脫氫反應(yīng)容易發(fā)生積碳,使催化劑失活,所以轉(zhuǎn)化率反而降低,選擇性升高。通過(guò)數(shù)學(xué)計(jì)算(產(chǎn)率=轉(zhuǎn)化率×選擇性),產(chǎn)率在550℃的達(dá)最大值為13.13%。田春良[30]報(bào)道了介孔磷酸鈰納米棒催化劑在550℃條件下,產(chǎn)率為7.68%。利用b-CD制備出具有分級(jí)結(jié)構(gòu)卷心菜葉形磷酸鈰納米纖維材料雖然比表面積(97 m2·g-1)小于報(bào)道的介孔磷酸鈰納米棒催化劑(153 m2·g-1)[30],但是在550℃條件下,丙烯產(chǎn)率提高約2倍。原因可能是納米纖維磷酸鈰CePβ-500催化劑有適宜的酸量,具有卷心菜葉形的分級(jí)結(jié)構(gòu)和納米纖維之間組成的適宜的孔徑大小,最終導(dǎo)致CePβ-500和介孔磷酸鈰納米棒催化劑在轉(zhuǎn)化率相差不大的條件下,納米纖維CePβ-500催化劑丙烯選擇性高,最后導(dǎo)致丙烯產(chǎn)率高。以上結(jié)果表明,利用此方法合成的磷酸鈰催化劑在丙烷氧化脫氫制丙烯的反應(yīng)中,表現(xiàn)良好的催化活性。
為了考察催化劑的穩(wěn)定性,在500℃的條件下,催化劑CePβ-500和CeP-500重新對(duì)丙烷轉(zhuǎn)化率進(jìn)行了測(cè)試,催化性能結(jié)果如圖10所示。新鮮的催化劑CePβ-500在起初的實(shí)驗(yàn)階段,丙烷轉(zhuǎn)化率為33.21%,這與第一次的測(cè)試結(jié)果(32.93%)比較接近,但有所提高。隨著時(shí)間的推移,丙烷轉(zhuǎn)化率有所降低,但是降低幅度不大,說(shuō)明了催化劑CePβ-500的催化性能相對(duì)穩(wěn)定。尤其是在100 min后,丙烷轉(zhuǎn)化率相對(duì)更穩(wěn)定,保持在27.0%左右。催化材料CeP-500的催化性能也相對(duì)穩(wěn)定,但丙烷轉(zhuǎn)化率遠(yuǎn)不及制得的催化劑CePβ-500的催化效果,丙烷轉(zhuǎn)化率保持在13%~14%左右。近年來(lái),隨著納米材料的快速發(fā)展,通過(guò)納米催化材料的形貌可控合成,從而大幅度提高催化反應(yīng)活性、選擇性和穩(wěn)定性,這就是納米催化中的形貌效應(yīng)[54-55]。催化劑CePβ-500是由無(wú)數(shù)條具有一定彎曲度的納米纖維組成的分級(jí)卷心菜形催化材料;而CeP-500是塊狀顆粒,是由納米短棒組成的催化材料,因?yàn)樾蚊驳牟煌ㄐ蚊残?yīng)),最終導(dǎo)致催化活性和穩(wěn)定性的不同。
2.3催化機(jī)理分析
在磷酸鈰納米纖維催化劑上發(fā)生的丙烷氧化脫氫反應(yīng)應(yīng)遵循Mars van Krevelen機(jī)理,即氧化還原機(jī)理[56-59]。在本催化系統(tǒng)中,催化劑比表面高,具有卷心菜葉形的分級(jí)結(jié)構(gòu),有利于反應(yīng)物的擴(kuò)散和產(chǎn)物的脫附,提高反應(yīng)物利用率。通過(guò)XPS數(shù)據(jù)可以看出,有Ce4+/3+電對(duì)和吸附氧物種(可動(dòng)氧)的存在,可動(dòng)氧可以在一定范圍內(nèi)流動(dòng),進(jìn)而發(fā)生一系列的氧化還原反應(yīng)。丙烷首先被催化劑表面的氧化活性位MO活化,生成活性中間體(X),活性中間體(X)再進(jìn)一步轉(zhuǎn)化為產(chǎn)物C3H6和H2O,催化劑被還原。若生成的產(chǎn)物C3H8來(lái)不及脫附,可能被催化劑的酸性中心吸附,被活性中間體或氧化活性位進(jìn)一步氧化,生成副產(chǎn)物CxOy(圖11)。催化體系中金屬陽(yáng)離子氧化態(tài)的變化,氣相中的氧或催化體系中吸附氧物種(可動(dòng)氧)的傳遞,能迅速補(bǔ)充到晶格,并遷移到活性位,實(shí)現(xiàn)了整個(gè)氧化還原過(guò)程。
圖10 催化劑CePβ-500和CeP-500的丙烷轉(zhuǎn)化率Fig.10 C3H8conversion of CePβ-500 and CeP-500 catalysts
圖11 磷酸鈰CePβ-500催化劑的催化反應(yīng)機(jī)理Fig.11 Catalytic mechanism on CePβ-500 catalyst
(1)磷酸鈰納米晶在β-CD為結(jié)構(gòu)導(dǎo)向劑的作用下,通過(guò)水熱合成出具有分級(jí)結(jié)構(gòu)的卷心菜形磷酸鈰納米纖維。
(2)磷酸鈰納米纖維是六方和單斜晶型共存的混晶相,具有分級(jí)結(jié)構(gòu)的“卷心菜葉”形貌,每個(gè)葉片是由寬約5 nm,長(zhǎng)達(dá)幾百納米到幾千不等的納米纖維組成。氮?dú)馕奖碚鳂悠返谋缺砻娣e97 m2·g-1,孔容0.256 cm3·g-1。
(3)磷酸鈰納米纖維材料作為催化劑在丙烷氧化脫氫制丙烯的催化反應(yīng)中表現(xiàn)出優(yōu)秀的催化活性,丙烯產(chǎn)率在550℃的達(dá)最大值為13.13%。催化機(jī)理符合Mars van Krevelen氧化還原機(jī)理。
References
[1]RAJESH K,SIVAKUMAR B,PILLAR P K,et al. Synthesis ofnanocrystalline lanthanum phosphate for low temperature densification to monzite cetamics [J]. Materials Letters,2004,58 (11): 1687-1791.
[2]LI Q,YAM V W W. Redox luminescence switch based on energy transfer in CePO4: Tb3+nanowires [J]. Angew. Chem. Int. Ed.,2007,46 (19): 3486-3489.
[3]ZHU L,LIU X M,LIU X D,et al. Facile sonochemical synthesis of CePO4: Tb/LaPO4core/shell nanorods with highly improved photoluminescent properties [J]. Nanotechnology,2006,17 (16): 4217-4222.
[4]DEZFULI A S,GANJALI M R,NOROUZI P. Facile sonochemical synthesis and morphology control of CePO4nanostructures via an oriented attachment mechanism: application as luminescent probe for selective sensing of Pb2+ion in aqueous solution [J]. Materials Science and Engineering C,2014,42: 774-781.
[5]YANG Z,JI C. Interface mechanism of a rapid and mild aqueous-organic method to prepare CePO4nanostructures [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2014,444: 246-251.
[6]RAMíREZ D P,DOMíNGUEZ-CRESPO,TORRES-HUERTA A M,et al. Microwave-assisted hydrothermal synthesis of CePO4nanostructures: correlation between the structural and optical properties [J]. Journal of Alloys and Compounds,2015,643: s209-s218.
[7]BAO J R,ZHU X W,LIU Y,et al. N,N-Dimethylformamide-induced synthesis and photoluminescence of CePO4and Ce0.95PO4:Tb0.05with sphere-like nanostructures [J]. Materials Letters,2014,124: 97-100.
[8]CAO M,HU C,WU Q,et al. Controlled synthesis of LaPO4and CePO4nanorods/nanowires [J]. Nanotechnology,2005,16 (2): 282-286.
[9]FANG Y P,XU A W,SONG R Q,et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires [J]. J. Am. Chem. Soc.,2003,125 (51): 16025-16034.
[10]ZHANG Y W,YAN Z G,YOU L P,et al. General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires [J]. Eur. J. Inorg. Chem.,2003,2003 (22): 4099-4104.
[11]BU W B,HUA Z L,CHEN H R,et al. Hydrothermal synthesis of ultraviolet-emitting cerium phosphate single-crystal nanowires [J]. Chem. Lett.,2004,33 (5): 612-613.
[12]ZHANG Y J,GUAN H M. Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4single-crystal nanowires [J]. J. Cryst. Growth,2003,256 (1/2): 156-161.
[13]YAN Z G,ZHANG Y W,YOU L P,et al. General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate [J]. J. Cryst. Growth,2004,262 (1/2/3/4): 408-414.
[14]YAN Z G,ZHANG Y W,YOU L P,et al. Controlled synthesis and characterization of monazite type monocrystalline nanowires of mixed lanthanide orthophosphates [J]. Solid State Commun.,2004,130 (1/2): 125-129.
[15]TANG C C,BANDO Y,GOLBERG D,et al. Cerium phosphate nanotubes: synthesis,valence state and optical properties [J]. Angew Chem. Int. Ed.,2005,117 (4): 582-585.
[16]XING Y,LI M,DAVIS S A,et al. Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media [J]. J. Phys. Chem. B,2006,110 (3): 1111-1113.
[17]LI B,SHEN L Y,LIU X Z,et al. Structure and morphology transition of CePO4coating on alumina fibers [J]. Journal of materials Science Letters,2000,19 (4): 343-347.
[18]邵高聳. 一種簡(jiǎn)單方法制備具有項(xiàng)鏈結(jié)構(gòu)的介孔磷酸鈰材料 [J],化工新型材料,2013,41 (11): 31-33. SHAO G S. A simple preparating route of necklace-like cerium phosphate mesoporous materials [J]. New Chemical Materials,2013,41 (11): 31-33.
[19]RAJESH K,MUKUNDAN P,PILLAR P K,et al. High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route [J]. Chem. Mater.,2004,16 (14): 2700-2705.
[20]FANG Y P,XU A W,DONG W F. Highly improved green photoluminescence from CePO4: Tb/LaPO4core/shell nanowires [J]. Small,2005,1 (10): 967-971.
[21]YAN R X,SUN X M,WANG X,et al. Crystal structures,anisotropic growth,and optical properties: controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials [J]. Chem. Eur. J.,2005,11 (7): 2183-2195.
[22]KITAMURA N,AMEZAWA K,YAMAMOTO N,et al. Electrical conduction properties of Sr-doped LaPO4and CePO4under oxidizing and reducing conditions [J]. J. Electrochem. Soc.,2004,152 (4): A658-A663.
[23]ZHAO X F,TENG Y C,YANG H,et al. Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4ceramics prepared by hot-press and pressureless sintering [J]. Ceramics International,2015,41: 11062-11068.
[24]YE C,GUO H,ZHANG M H,et al. Synthesis and enhanced electrochemical property of Au-doped cerium phosphate nanowires [J]. Materials Letters,2014,131: 141-144.
[25]TAKITA Y,SANO K,MURAYA T,et al. Oxidative dehydrogenation of iso-butane to iso-butene (Ⅱ): Rare earth phosphate catalysts [J]. Appl. Catal. A: General,1998,170 (1): 23-31.
[26]TAKITA Y,NINOMIYA M,MIYAKE H,et al. Catalytic decomposition of perfluorocarbons (Ⅱ): Decomposition of CF4over AlPO4-rare earth phosphate catalysts [J]. Phys. Chem. Chem. Phys.,1999,1: 4501-4504.
[27]ONODA H,NARIAI H,AI M,et al. Formation and catalytic characterization of various rare earth phosphates [J]. J. Mater. Chem.,2002,12: 1754-1760.
[28]KLOCHKOV V. Comparative analysis of photocatalytic activity of aqueous colloidal solutions of ReVO4:Eu3+(Re=La,Gd,Y),CePO4:Tb,CeO2and C60[J]. Journal of Photochemistry and Photobiology A: Chemistry,2015,310: 128-133.
[29]KANG J,BYUN S,NAM S,et al. Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts [J]. International Journal of Hydrogen Energy,2014,39: 10921-10926.
[30]田春良. 介孔磷酸鈰催化劑的合成、表征及丙烷氧化脫氫探究 [J].材料導(dǎo)報(bào),2008,22 (suppl.): 441-442,451. TIAN C L. Synthesis and characterization of mesoporous cerium phosphate and study of oxidative dehydrogenation of propane [J]. Materials Review,2008,22 (suppl.): 441-442,451.
[31]LEMONIDOU A A,NALBANDIAN L,VASALOS I. Oxidative dehydrogenation of propane over vanadium oxide based catalysts: effect of support and alkali promoter [J]. Catalysis Today,2000,61: 333-341.
[32]WAI H L,ZHOU X Q,WENG W Z,et al. Catalytic performance,structure,surface properties and active oxygen species of the fluoride-containing rare earth(alkaline earth)-based catalysts for oxidative coupling of methane and oxidative dehydrogenation of lightalkanes [J]. Catalysis Today,1999,51: 161-175.
[33]CADUS L E,GOMEZ M F,ABELLO M C. Synergy effects in the oxidative dehydrogenation of propane over Mg-MoO4-MoO3catalysts [J]. Catal. Lett.,1997,43: 229-233.
[34]SHAHBAZI KOOTENAEI A H,TOWFIGHI J,KHODADADI A,et al. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane [J],Applied Surface Science,2014,298: 26-35.
[35]WU G J,HEI F,ZHANG N,et al. Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting: characterization and performance [J]. Applied Catalysis A: General,2013,468: 230-239.
[36]FAN X Q,LI J M,ZHAO Z,et al. Synthesis of a new ordered mesoporous NiMoO4complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane [J]. Journal of Energy Chemistry,2014,23 (2): 171-178.
[37]楊儒,李毓姝,鐘旭峰,等. CePO4納米線的熱穩(wěn)定性及光學(xué)性能[J]. 高等學(xué)?;瘜W(xué)學(xué)報(bào),2009,30 (3): 450-455. YANG R,LI Y S,ZHONG X F,et al. Thermal stability and optical performance of CePO4nanowires [J]. Chem. J. Chinese Universities,2009,30 (3): 450-455.
[38]CHO K S,TALAPIN D V,GASCHLER W,et al. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles [J]. J. Am. Chem. Soc.,2005,127: 7140-7147.
[39]COLEMAN A W,NICOLIS I,KELLER N,et al. Aggregation of cyclodextrins: an explanation of the abnormal solubility of b-cyclodextrin [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,1992,13: 139-143.
[40]JUN Y W,CHOI J S,CHEON J W. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes [J]. Angew. Chem. Ed.,2006,45: 3414-3439.
[41]KRUK M,JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chem. Mater.,2001,13 (10): 3169-3183.
[42]魏強(qiáng). 二維相關(guān)紅外光譜在淀粉分析中的應(yīng)用 [D]. 廣州: 華南理工大學(xué),2010. WEI Q. Application of two-dimensional infrared correlation spectroscopy in starch analysis [D]. Guangzhou: South China Unversity of Technology,2010.
[43]朱春山,張強(qiáng),宋佳. 改性b-環(huán)糊精微球的制備與表征 [J]. 高分子材料科學(xué)與工程,2011,27 (3): 150-153. ZHU C S,ZHANG Q,SONG J. Preparation and characterization of modified b-cyclodextrin microspheres [J]. Polymer Materials Science and Engineering,2011,27 (3): 150-153.
[44]顧海欣,施文健,吳薇,等. 殼聚糖交聯(lián)b-環(huán)糊精對(duì)水中鉻酸鹽的吸附研究 [J]. 環(huán)境科學(xué)學(xué)報(bào),2014,34 (9): 2233-2239. GU H X,SHI W J,WU W,et al. Research on the adsorption of chromate on CTS-CD in aqueous solution [J]. Acta Science Circumstantiae ,2014,34 (9): 2233-2239.
[45]MA T Y,ZHANG X J,SHAO G S,et al. Ordered macroporous titanium phosphonate materials: synthesis,photocatalytic activity,and heavy metal ion adsorption [J]. J. Phys. Chem. C,2008,112: 3090-3096.
[46]MASUI T,TATEGAKI H,F(xiàn)URUKAWA S,et al. Synthesis and characterization of new environmentally-friendly pigments based on cerium phosphate [J]. Journal of the Ceramic Society of Japan,2004,112: 646-651.
[47]JAIMEZ E,HIX G B,SLADE R C T. A phosphate-phosphonate of titanium (Ⅳ) prepared from phosphonomethyliminodiacetic acid: characterization,n-alkylamine intercalation and proton conductivity [J]. Solid State Ionics,1997,97: 195-201.
[48]TAKITA Y,QING X,TAKAMI A,et al. Oxidative dehydrogenation of isobutane to isobutene (Ⅲ): Reaction mechanism over CePO4catalyst [J]. Applied Catalysis A: General,2005,296: 63-69.
[49]SPLINTER S J,ROFAGHA R,MCINTYRE N S,et al. XPS characterization of the corrosion film formed on nanocrystalline Ni-P alloys in sulphuric acid [J]. Surf. Interface Anal.,1996,24: 181-186.
[50]GLORIEUX B,BERJOAN R,MATECKI M,et al. X-Ray photoelectron spectroscopy analyses of lanthanides phosphates [J]. Applied Surface Science,2007,253: 3349-3359.
[51]RAO M V R,SHRIPATHI T. Photoelectron spectroscopic study of X-ray induced reduction of CeO2[J]. J. Electron. Spectrosc. Relat. Phenom.,1997,87: 121-126.
[52]徐愛(ài)菊,照日格圖,林勤,等. 焦釩酸鎳的X射線光電子能譜及其氧化脫氫催化性能研究 [J]. 功能材料,2007,38 (9): 1489-1491. XU A J,BAO Z R G T,LIN Q,et al. The study of X-ray photoelectron spectroscopy and catalytic performance in ODH of pyro-Ni2V2O7catalysts [J]. Functional Material,2007,38 (9): 1489-1491.
[53]ZHANG Q H,WANG Y,OHISHI Y,et al. Vanadium-containing MCM-41 for partial oxidation of lower alkanes [J]. J. Catal.,2001,202: 308-318.
[54]李勇,申文杰. 金屬氧化物納米催化的形貌效應(yīng) [J]. 中國(guó)科學(xué):化學(xué),2012,42: 376-389. LI Y,SHEN W J. Morphology-dependent nanocatalysis on metal oxides [J]. Scientia Sinica: Chimica,2012,42: 376-389.
[55]ZHOU K B,LI Y D. Catalysis based on nanocrystals with well-defined facets [J]. Angew. Chem. Int. Ed.,2012,51: 602-613
[56]GELLINGS P J,BOUWMEESTER H J M. Solid state aspects of oxidation catalysis [J]. Catal. Today,2000,58: 1-53.
[57]BALDI M,F(xiàn)INOCCHIO E,PISTARINO C,et al. Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide [J]. Appl. Catal. A: Gen.,1998,173: 61-74.
[58]郭建平. VOx/SBA-15催化劑上提高丙烷氧化脫氫反應(yīng)選擇性的研究 [D]. 廈門(mén): 廈門(mén)大學(xué),2008. GUO J P. Studies on the improvement of selectivity of VOx/SBA-15 catalysts for the oxidative dehydrogenation of propane to propene [D]. Xiamen: Xiamen University,2008.
[59]CREASER D C,HUDGINS R R,SILVESTON P L,et al. Kinetic modeling of oxygen dependence in oxidative dehydrogenation of propane [J]. Canadian Journal of Chemical Engineering,2000,78: 182-193.
Preparation and catalytic activity of hierarchical interlinked structure of cabbage-leaf-like cerium phosphate materials
SHAO Gaosong
(The Chinese People’s Armed Police Forces Academy,Langfang 065000,Hebei,China)
Abstract:Cerium phosphate nanofibers were synthesized by thermal treatment with the help of the β-cyclodextrin (β-CD) as structure-director. Cerium phosphate materials were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM),F(xiàn)ourier transform infrared spectroscopy (FTIR) and N2sorption. The results showed that the synthesized cerium phosphate material was mix-crystal of hexagonal and monazite. Cerium phosphate with cabbage-leaf-like morphology was composed of nano-fibers with the width of 5 nm and the length of several of hundreds to thousands nanometer. The proposed formation mechanism was the cooperative self-assembly formation-controlled through oriented attachment growth mechanism. Thus,cerium phosphate materials as catalysts were applied for the oxidative dehydrogenation (ODH) of propane and exhibited significant catalytic performance and stability.
Key words:preparation; cerium phosphate; nanostructure; mechanism; catalyst; oxidative dehydrogenation of propane
DOI:10.11949/j.issn.0438-1157.20151308
中圖分類(lèi)號(hào):O611.2;O643.38
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0438—1157(2016)04—1601—09
基金項(xiàng)目:河北省自然科學(xué)基金項(xiàng)目(B2014507016)。
Corresponding author:SHAO Gaosong,shaogaosong2008@163.com