石曄,龍廣成,王申,劉巍, 謝友均
(中南大學(xué) 土木工程學(xué)院,湖南 長沙 410075)
納米顆粒對超低水膠比復(fù)合水泥漿體水化和孔結(jié)構(gòu)的影響
石曄,龍廣成,王申,劉巍, 謝友均
(中南大學(xué) 土木工程學(xué)院,湖南 長沙 410075)
摘要:為掌握納米顆粒材料對超低水膠比水泥基材料水化與微結(jié)構(gòu)的影響規(guī)律,采用熱重分析法和BET測孔方法測試分析nano-SiO2,nano-Al2O3,nano-Fe2O3及nano-CaCO34種納米顆粒對超低水膠比復(fù)合水泥漿體結(jié)合水含量與孔隙結(jié)構(gòu)的影響,并探討相應(yīng)的機理。研究結(jié)果表明:相對于普通水泥體系,上述4種納米顆粒更顯著地促進了超低水膠比復(fù)合水泥漿體的水化進程,且存在最佳的納米顆粒摻量,使得超低水膠比漿體28 d齡期的結(jié)合水量最大;納米顆??捎行Ц纳瞥退z比復(fù)合水泥漿體的孔隙結(jié)構(gòu),降低其總孔隙體積和平均孔徑,很好地發(fā)揮了納米尺度充填密實作用。納米顆粒在制備超低水膠比高性能水泥基材料具有顯著的優(yōu)勢。
關(guān)鍵詞:納米顆粒; 超低水膠比復(fù)合水泥漿體;水化;孔結(jié)構(gòu)
納米顆粒材料具有粒徑小、比表面積大、表面能高等特點,表現(xiàn)出獨特的特性,引起了水泥混凝土材料研究者的廣泛興趣[1-6]。既有研究實踐表明,納米顆粒對水泥基材料水化作用以及宏觀性能具有較大的影響,如納米二氧化硅(nano-SiO2)可促進水泥早期水化作用[7-9],加速C3S的溶解及水化速率[10],縮短凝結(jié)時間,這種效應(yīng)隨著納米顆粒摻量的增加而增強[7,8,11-13],nano-SiO2也表現(xiàn)出較大的活性效應(yīng),減少水化產(chǎn)物中的CH的含量[14-16],能有效改善水泥基材料的耐久性[16-20],同時對水泥基材料的強度也有較明顯的影響,并隨著齡期的延長而發(fā)生較大變化[21-25]。一些研究者也調(diào)查了分別摻納米三氧化二鋁(nano-Al2O3)、納米三氧化二鐵(nano-Fe2O3)以及納米碳酸鈣(nano-CaCO3)水泥基材料體系的水化過程、強度及微觀結(jié)構(gòu)[26-36],結(jié)果表明:nano-Al2O3,nano-Fe2O3及nano-CaCO3也可促進水泥基材料的早期水化作用及強度的發(fā)展,表現(xiàn)出較明顯的水化晶核效應(yīng),并對體系微觀結(jié)構(gòu)產(chǎn)生較大影響。上述研究實踐表明,納米顆??蓪λ囿w系發(fā)揮較好的物理化學(xué)作用效應(yīng),使得其在水泥基材料中有較好的應(yīng)用潛力。然而,現(xiàn)有的研究主要是針對水膠比相對較大的普通水泥材料體系,而且相關(guān)研究還基本處于初級探索研究階段,特別是針對上述納米顆粒在非常低水膠比的超高(強)性能水泥基材料,如活性粉末混凝土(Reactive Powder Concrete)中的作用效應(yīng)的研究還鮮見報道[34,37-38]?;谏鲜?,本文通過試驗手段,探討了nano-SiO2,nano-Al2O3,nano-Fe2O3及nano-CaCO34種常見的納米顆粒對超低水膠比復(fù)合水泥漿體水化進程及孔隙結(jié)構(gòu)的影響,為利用納米技術(shù)制備超高性能水泥基材料提供一定的技術(shù)支持。
1試驗簡介
1.1原材料
試驗采用的復(fù)合水泥漿體主要包括了水泥(PC)、粉煤灰(FA)、硅灰(SF)等組份。水泥為湖南東坪水泥有限公司生產(chǎn)的P.O 42.5水泥,粉煤灰為I級低鈣灰,硅灰為上海艾肯公司提供。水泥、粉煤灰和硅灰的化學(xué)組成見表1所示,其各自粒徑分布曲線如圖1所示。試驗采用了nano-SiO2(NS),nano-Al2O3(NA),nano-Fe2O3(NF)及nano-CaCO3(NC) 4種納米顆粒,均為杭州萬景新材料生產(chǎn)提供,其基本性質(zhì)如表2所示。超塑化劑(SP)為安徽中鐵材料公司提供的減水率為26 %的聚羧酸高效減水劑,拌合水(W)為飲用自來水。
表1所用水泥、粉煤灰和硅灰的化學(xué)組成及燒失量
Table 1 Chemical compositions and ignition loss of cement, fly ash and silica fume
(by wt / %)
表2 納米顆粒的基本性質(zhì)
圖1 粒徑分布曲線Fig.1 Particle size distribution of cement, fly ash and silica fume
1.2試驗配合比
為掌握上述4種納米顆粒對超低水膠比復(fù)合水泥漿體水化進程和孔隙結(jié)構(gòu)的影響,試驗采用如表3所示的基準(zhǔn)復(fù)合水泥漿體組成配比,在此基礎(chǔ)上分別外摻水泥質(zhì)量0~3 %的不同納米顆粒制備測試試樣,表中水膠比為水與膠凝材料(水泥、粉煤灰、硅灰及納米顆粒)總量之比,超塑化劑(SP)摻量以膠凝材料總質(zhì)量計,超塑化劑中的水計算在水膠比中。
1.3試件的制備、養(yǎng)護及試驗方法
各試樣采用膠砂攪拌機進行拌合,按以下程序進行試樣混合攪拌,首先將水泥、粉煤灰、硅灰以及納米顆粒添加至攪拌鍋內(nèi),緩慢攪拌120 s將干燥狀態(tài)粉體混合物拌合均勻,然后徐徐加水和減水劑慢攪180 s,然后快速攪拌120 s,至拌合均勻。采用40 mm×40 mm×160 mm的不銹鋼試模成型,成型后立即用塑料薄膜覆蓋,并置于20 ℃室內(nèi),各試件于成型1 d后拆模,放入(20±2) ℃水中養(yǎng)護至指定齡期。在相應(yīng)齡期,對試樣進行破碎和終止水化處理以備測試。熱分析委托中南大學(xué)材料學(xué)院采用NETZSCH-STA449C差熱分析儀進行測試,升溫速率為10 ℃/min,最高溫度為1 000 ℃,以105 ℃~1 000 ℃之間的失重為基準(zhǔn)計算相應(yīng)的結(jié)合水量。試樣孔結(jié)構(gòu)分析采用氮吸附方法(BET)測試,委托中南大學(xué)粉末冶金國家重點實驗室進行測試。試樣的比表面積采用BET方法分析得到,總的孔隙體積、孔徑分布采用解吸等溫線數(shù)據(jù)按BJH分析方法得到[39]。
表3 基準(zhǔn)試樣和摻納米顆粒試樣配比
2實驗結(jié)果和分析
2.1納米顆粒對試樣水化進程的影響
水化作用攸關(guān)水泥基材料微結(jié)構(gòu)形成和性能發(fā)展。如前所述,納米顆粒對水泥體系水化作用的影響已有一些研究者進行了探索[7-9,30,34]。為進一步分析納米顆粒對超低水膠比復(fù)合漿體水化進程的影響,本試驗研究了齡期和納米顆粒摻量對各試樣結(jié)合水含量的影響,試樣結(jié)果如表4和圖2所示。
表4基準(zhǔn)試樣和摻1 %納米顆粒試樣的化學(xué)結(jié)合水隨齡期變化結(jié)果
Table 4 Non-evaporable water content of specimens without and with 1% nanoparticles
(%)
從表4中給出的基準(zhǔn)試樣(control)和分別摻1 % NS,NC,NA和NF4種納米顆粒凈漿試樣在3 ,7和28 d齡期時的化學(xué)結(jié)合水含量測試結(jié)果可以得知,所調(diào)查NS,NC,NA和NF四種納米顆粒對體系水化作用均呈現(xiàn)出較大的影響效應(yīng)。在3 d齡期時,分別摻NS,NC,NA和NF試樣的結(jié)合水含量均顯著高于基準(zhǔn)試樣,表現(xiàn)出明顯的加速水化效應(yīng),其中NS和NA對水化作用的促進作用最為明顯,結(jié)合水含量較基準(zhǔn)組分別提升了45 %和36 %,而NC和NF對水化的促進作用則稍弱,僅為12 %和15 %;在7 d及28 d齡期時,分別摻NS,NC,NA和NF試樣的結(jié)合水含量也均高于基準(zhǔn)試樣;而且比較各試樣的結(jié)合水含量還可得知,相對于3 d齡期,在7 d齡期和28 d齡期時,納米顆粒對體系水化促進作用的速率減弱。這些結(jié)果表明,NS,NC,NA和NF 4 種納米顆粒能夠較好地促進28 d齡期內(nèi)超低水膠比復(fù)合水泥漿體的水化進程,尤其是顯著加速了3 d齡期內(nèi)的水化作用。同時,對比MADANI H[8],Hou Pengkun等[4]關(guān)于摻NS的水灰比為0.4~0.27水泥體系的結(jié)合水含量的研究結(jié)果,可以發(fā)現(xiàn)納米顆粒NS對超低水膠比水泥體系的水化作用影響更為顯著,特別是早期的促進作用更加顯著。
納米顆粒對水泥早期水泥促進作用一般認為是納米顆粒提供了C-S-H凝膠的成核場所[24,35],且這種加速效果取決于比表面積的大小。顯然,在超低水膠比水泥混合體系中,顆粒之間的水膜層厚度非常小,顆粒之間的距離縮短,納米顆粒將更易于發(fā)揮其晶核效應(yīng),促進水化作用也更為顯著;同時,從所測結(jié)合水含量來看,相對于納米碳酸鈣顆粒和納米三氧化二鐵,納米二氧化硅、納米三氧化二鋁的活性效應(yīng)也進一步促進了該復(fù)合水泥體系的早期水化作用,相應(yīng)試樣結(jié)合水含量更多。
進一步從圖2給出的納米顆粒摻量對體系28 d齡期結(jié)合水含量的結(jié)果可以發(fā)現(xiàn),隨著納米顆粒摻量的增加,試樣的結(jié)合水含量先增加,然后又呈現(xiàn)緩慢的下降,而且分別摻4種納米顆粒的試樣均表現(xiàn)出相似的規(guī)律,在本試驗條件下,4種納米顆粒摻量均為水泥質(zhì)量的2 %時,相應(yīng)試樣的結(jié)合水量達到最大。這表明,存在最佳的納米顆粒摻量,使得體系水化程度最佳。這很可能是由于,在超低水膠比水泥體系有限自由水量的情況下,此摻量條件最佳發(fā)揮了納米顆粒的促進水化作用效應(yīng),從而使得相應(yīng)的結(jié)合水含量最多。
2.2納米顆粒對試樣孔隙結(jié)構(gòu)的影響
表5和表6分別給出了基準(zhǔn)試樣和分別摻1 %NS,1 %NC,1 %NA及1 %NF試樣28 d齡期條件下的孔隙結(jié)構(gòu)參數(shù)測試結(jié)果。從表5中的結(jié)果可知,分別摻1 %的NS,NC和NA 3種納米顆粒試樣的總孔體積以及平均孔徑都小于基準(zhǔn)試樣,孔隙比表面積也大于基準(zhǔn)試樣;摻1%NF試樣的總孔體積也顯著小于基準(zhǔn)試樣,但其孔隙比表面積卻稍小于基準(zhǔn)試樣,這可能主要是由于NF幾何形貌等原因造成試樣孔隙平均直徑及內(nèi)部結(jié)構(gòu)無顯著變化而導(dǎo)致。從上可知,納米顆粒摻入后,有效降低了試樣的總孔隙體積,較基準(zhǔn)試樣降低達15 %。
圖2 納米顆粒摻量對28 d齡期各漿體試樣結(jié)合水含量的影響Fig.2 Influence of content of nanoparticles on chemically bound water of samples
進一步從表6中給出的各試樣的孔徑分布結(jié)果可以看到,各試樣的孔徑均處于200 nm以內(nèi),基準(zhǔn)試樣和摻納米顆粒試樣的各孔徑的分布存在明顯的不同。相對于基準(zhǔn)試樣,摻納米顆粒試樣孔徑大于50 nm 的孔隙數(shù)量顯著減小,而孔徑小于50 nm的孔隙數(shù)量增多,因此,盡管摻納米顆粒后試樣的總孔體積降低,但由于小孔徑的孔數(shù)量增多,從而使得其孔隙比表面積較大。從所測孔隙結(jié)構(gòu)結(jié)果表明,納米顆粒摻入后進一步細化了超低水膠比復(fù)合水泥漿體的孔隙結(jié)構(gòu),降低了總孔隙率,較好地發(fā)揮了其納米填充效應(yīng),從而進一步增強體系的宏觀性能。同時,上述結(jié)果亦表明,不同的納米顆粒對試樣孔隙結(jié)構(gòu)的影響也存在不同,NS和NA具有更高的化學(xué)活性,更為顯著的減小了試樣的孔隙率;另外,納米顆粒本身的顆粒大小、形貌等也對試樣的孔隙結(jié)構(gòu)存在一定影響。
表5 基準(zhǔn)試樣和分別摻1 %納米顆粒試樣的孔結(jié)構(gòu)參數(shù)結(jié)果
表6基準(zhǔn)試樣和分別摻1 %納米顆粒試樣的孔徑分布結(jié)果
Table 6 Pore distribution of specimens without and with 1% nanoparticles
controlNSNCNANF<10nm(%)12.816.214.315.614.010-50nm(%)41.063.255.257.747.850-200nm(%)46.220.730.526.838.2
3結(jié)論
1)納米SiO2、納米CaCO3、納米Al2O3和納米Fe2O3摻入可有效增加超低水膠比復(fù)合水泥漿體的結(jié)合水量,特別是可顯著提高試樣3 d齡期的結(jié)合水量,且活性的納米SiO2、納米Al2O3對提高試樣結(jié)合水量比納米CaCO3、納米Fe2O3更為顯著。相對于普通水泥體系,上述納米顆粒更為顯著地促進了超低水膠比復(fù)合水泥漿體的水化作用。
2)納米顆粒摻量對試樣水化進程存在較大影響。所測4種納米顆粒摻量均為水泥質(zhì)量的2 %左右時,分別使得超低水膠比漿體28 d齡期的結(jié)合水量最大。
3)納米顆??捎行Ц纳瞥退z比復(fù)合水泥漿體的孔隙結(jié)構(gòu),降低總孔隙體積和平均孔徑,顯著發(fā)揮了納米尺度充填密實作用;其中,相對于納米CaCO3和納米Fe2O3,納米SiO2與納米Al2O3更能有效細化超低水膠比復(fù)合水泥漿體的孔徑并降低其總孔隙率。
參考文獻:
[1] RASHAD A M. Effects of ZnO2, ZrO2, Cu2O3, CuO, CaCO3, SF, FA, cement and geothermal silica waste nanoparticles on properties of cementitious materials A short guide for Civil Engineer [J]. Construction and Building Materials, 2013, 48(11):1120-1133.
[2] RASHAD A M. A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4and nano-clay on some properties of cementitious materials A short guide for Civil Engineer[J]. Materials and Design, 2013, 52(24):143-157.
[3] SINGH L P, KARADE S R, BHATTACHARYYA S K, YOUSUF M M and AHALAWAT S. Beneficial role of nanosilica in cement based materials A review[J]. Construction and Building Materials, 2013, 47(5):1069-1077.
[4] HOU Pengkun, Kawashima S, KONG Deyu, et al. Modification effects of colloidal nano-SiO2on cement hydration and its gel property [J]. Composites: Part B, 2013, 45(1):440-448.
[5] 熊國宣,鄧敏,宋碧濤,等. 納米材料在混凝土中應(yīng)用的思考[J]. 混凝土與水泥制品,2002,05:18-21.
XIONG Guoxuan, DENG Min, SONG Bitao, et al. Thinking about the application of nanomaterials in concrete [J]. China Concrete Cement Products, 2002, 05:18-21.
[6] 侯學(xué)彪,黃丹,王委. 摻納米SiO2高性能混凝土研究進展[J].混凝土,2013(3):5-9.
HOU Xuebiao, HUANG Dan, WANG Wei. Research progress on high performance concrete with nano-SiO2[J]. Concrete, 2013 (3):5-9.
[7] Ltifa M, Guefrechb A, Mounangad P. Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars [J]. Procedia Engineering, 2011(10):900-905.
[8] Madani H, Bagheri A Parhizkar T. The pozzolanic reactivity of mono-dispersed nano-silica hydrosols and their influence on the hydration characteristics of portland cement [J]. Cement and Concrete Research, 2012, 42(12):1563-1570.
[9] JO B W, KIM C H, LIM J H. Investigations on the development of powder concrete with nano-SiO2particles [J]. KSCE J Civil Engineering, 2007, 11(1):37-42.
[10]Bjornstrom J, Martinelli A, Matic A. Accelerating effects of colloidal nano-silica for beneficial calcium silicate hydrate formation in cement[J]. Chemical Physics Letters, 2004, 392(1):242-248.
[11] Singh L P, Bhattacharyya S K, Ahalawat P S. Granulometric synthesis and characterization of dispersed nanosilica powder and its application in cementitious system [J]. Advances in Applied Ceramics, 2012, 111(4):220-227.
[12] SINGH L P, AHALAWAT S. Preparation of size controlled silica nano-particles and its functional role in cementitious system [J]. Journal of Advanced Concrete Technology,2012, 10(11):345-352.
[13] SINGH L P, AGARWAL S K, BHATTACHARYYA S K, et al. Preparation of silica nano-particles and its beneficial role in cementitious materials [J].Nanomaterials Nanotechnologe, 2011,1(1):44-51.
[14] JO B W, KIM C H, TAE G H, et al. Characteristics of cement mortar with nano-SiO2particles [J]. Construction and Building Materials, 2007, 21(4):1351-1355.
[15] KONTOLENTOS F., TSAKIRIDIS P E, MARINOS A, et al. Influence of colloidal nano-silica on ultrafine cement hydration: physicochemical and microstructural characterization [J]. Construction and Building Material, 2012, 35(10):347-360.
[16] KONG Deyu, DU Xiangfei, WEI Su, et al. Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials [J]. Construction and Building Material, 2012, 37(3):707-715.
[17] GIVI A N, RASHID S A, AZIZ F N A, et al. Investigations on the permeability properties development of binary blended concrete with nano-SiO2particles [J]. Journal of Composites Materials, 2010, 45(19):1931-1938.
[18] GIVI A N, RASHID S A, AZIZ F N A, et al. The effects of lime solution on the properties of SiO2nanoparticles binary blended concrete [J]. Composites part: B, 2011, 42(3):562-569.
[19] ZHANG Maohua, LI Hui. Pore structure and chloride permeability of concrete containing nano-particles for pavement [J]. Construction Building Materials, 2011, 25(2):608-616.
[20] SHAMSAI A, PEROTI S, RAHMANI K, et al. Effect of water-cement ratio on abrasive strength, porosity and permeability of nano-silica concrete [J]. World Applied Sciences Journal, 2012, 7(8):929-933.
[21] STEFANIDOU M, PAPAYIANNI I. Influence of nano-SiO2on the Portland cement pastes [J]. Composites Part B, 2012, 43(6):2706-2710.
[22] QUERCIA G, HUSKEN G, BROUWERS H J H. Water demand of amorphous nano silica and its impact on the workability of cement paste [J]. Cement and Concrete Research, 2012, 42(2):344-357.
[23] HOU Pengkun, WANG Kejin, QIAN Jueshi, et al. Effects of colloidal nano-SiO2on fly ash hydration [J]. Cement and Concrete Composites, 2012, 34(10):1095-1103.
[24] KAWASHIMA S, HOU Pengkun, CORR D J, et al. Modification of cement-based materials with nanoparticles [J]. Cement and Concrete Composites, 2012, 36(1):8-15.
[25] LIN D F, LIN K L, CHANG W C, LUO H L, et al. Improvements of nano-SiO2on sludge/fly ash mortar [J]. Waste Management, 2008, 28(6):1081-1087.
[26] AREFI M R, JAVERI M R, MOLLAAHMADI E. To study the effect of adding Al2O3nanoparticles on the mechanical properties and microstructure of cement mortar [J]. Life Science Journal, 2011, 8(4):613-617.
[27] LI Zhenhua, WANG Huafeng, HE Shan, et al. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite[J]. Materials Letters, 2006, 60(3):356-359.
[28] CAMPILLO I, GUERRERO A, DOLADO J S, PORRO A, et al. Improvement of initial mechanical strength by nano alumina in belite cements [J]. Materials Letters, 2007, 61(8):1889-1892.
[29] OLTULU M, SAHIN R. Single and combined effects of nano-SiO2, nano-Al2O3and nano-Fe2O3powders on compressive strength and capillary permeability of cement mortar containing silica fume [J]. Journal of Materials Science & Technology, 2011, 528(22):7012-7019.
[30] KHOSHAKHLAGH A, NAZARI A, KHALAJ G. Effects of Fe2O3nanoparticles on water permeability and strength assessments of high strength self-compacting concrete [J]. Journal of Materials Science & Technology, 2012, 28(1):73-82.
[31] NAZARI A, RIAHI S, RIAHI S, et al. The effects of incorporation Fe2O3nanoparticles on tensile and flexural strength of concrete [J]. Journal of American Science. 2010, 6(4):90-93.
[32] LI Hui, XIAO Huigang, OU Jinping. A study on mechanical and pressure sensitive properties of cement mortar with nano phase materials [J]. Cement and Concrete Research, 2004, 34(3):435-438.
[33] NAZARI A, RIAHI S. Computer-aided design of the effects of Fe2O3nanoparticles on split tensile strength and water permeability of high strength concrete [J]. Materials and Design, 2011, 32(7): 3966-3979.
[34] CAMILETTI J, SOLIMAN A M, NEHDI M L. Effects of nano-and micro-limestone addition on early-age properties of ultra-high-performance concrete [J]. Materials & Structures, 2013, 46(6):881-898.
[35] LI Hui, XIAO Huigang, YUAN Jie, et al. Microstructure of cement mortar with nanoparticles [J]. Composites part B, 2004, 35(3):185-189.
[36] 李固華,高波. 納米微粉SiO2和CaCO3對混凝土性能影響[J].鐵道學(xué)報, 2006,28(1):131-136.
LI Guhua, GAO Bo. The influence of nano-SiO2and nano-CaCO3on properties of concrete [J]. J Chin Rail Society, 2006, 28(1): 131-136
[37] 龍廣成,謝友均,王培銘,等.活性粉末混凝土的性能與微細觀結(jié)構(gòu)[J].硅酸鹽學(xué)報,2005, 32(4):456-461.
LONG Guangcheng, XIE Youjun, WANG Peiming, et al. The properties and meco/microstructure of reactive powder concrete [J]. J Chin Ceram Soc, 2005, 32(4): 456-461.
[38] YU R, SPIESZ P, BROUWERS H J H. Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount [J]. Construction and Building Materials, 2014, 65(9):140-150.
[39] JUENGER M C G, JENNINGS H M. The use of nitrogen adsorption to assess the microstructure of cement paste [J]. Cement and Concrete Research, 2001, 31(01): 883-892
Influence of nano-particles on hydration and pore structure of compounded paste with very low water-binder ratio
SHI Ye, LONG Guangcheng, WANG Shen, LIU Wei, XIE Youjun
(School of Civil Engineering, Central South University, Changsha 410075, China)
Abstract:For the sake of understanding the effects of nanoparticles on hydration and microstructure of cement-based materials with very low water to binder ration, the chemically bound water and pore structure of cement paste with very low water-binder ratio incorporating four nanoparticles of nano-SiO2, nano-Al2O3, nano-Fe2O3 and nano-CaCO3 were investigated by TG and BET experimental methods, respectively. Results show that the incorporation of aforementioned nano-particles plays more significant role in promoting the hydration process of paste with very low water to binder ratio as compared to the ordinary cement paste. Due to the nano-scale filling role, the porosity and average pore diameter of samples can be reduced by adding nanoparticles. It proves obvious advantage in preparing high performance cement-based materials with very low water to binder ratio by utilizing nanoparticles.
Key words:nano-particles; compounded cement paste with very low water-binder ratio; hydration; pore structure
收稿日期:2015-10-22
基金項目:國家重點基礎(chǔ)研究發(fā)展計劃(973計劃)項目(2013CB036201);國家自然科學(xué)基金資助項目(51178467)
通訊作者:龍廣成(1973-),男,江西萬載人,教授,博士,從事先進水泥基材料研究;E-mail:scc2005@csu.edu.cn
中圖分類號:TU528
文獻標(biāo)志碼:A
文章編號:1672-7029(2016)05-0836-06