杜德壯 曾琦 凌良仲 張克勤
摘要:石墨烯及其復(fù)合材料近年來成為研究熱點(diǎn),目前對(duì)石墨烯復(fù)合纖維材料的潛在應(yīng)用已有大量研究,如儲(chǔ)能材料、轉(zhuǎn)換設(shè)備、傳感器、導(dǎo)線等。與石墨烯基氣溶膠和石墨烯復(fù)合膜等多維材料相比,石墨烯復(fù)合纖維的機(jī)械性能和導(dǎo)電性能突出。此外,石墨烯復(fù)合纖維可以彎曲、打結(jié),甚至織成柔性導(dǎo)電織物。本文綜述了石墨烯復(fù)合纖維的主要制備方法、性能及應(yīng)用,并對(duì)這一領(lǐng)域的發(fā)展進(jìn)行了展望。
關(guān)鍵詞:石墨烯;石墨烯復(fù)合纖維;導(dǎo)電率;機(jī)械性能
中圖分類號(hào): TQ127.1+1 文獻(xiàn)標(biāo)志碼:A
The Development and Application of Graphene Composite Fiber
Abstract: Graphene and related composite materials have become a popular research topic. Up to now, a lot of efforts have been made to investigating the potential applications of graphene composite materials in such fields as energy-storing materials, conversion equipment, sensor and conducting wire. Graphene composite fiber outperforms multi-dimensional materials such as graphene-based aerosol and graphene composite membrane in terms of mechanical properties and conductivity. Moreover, graphene fiber can be curved, knotted, or even woven into flexible conductive fabric. The paper introduces main production methods, properties and applications of graphene fiber and anticipates its future development.
Key words: graphene; graphene composite fiber; electrical conductivity; mechanical property
1 前言
石墨烯是從石墨中剝離出來的只有 1 層原子厚度的二維晶體,厚度約為0.34 nm。繼1985年C60(富勒烯)和1991年碳納米管的首次報(bào)道后,2004年石墨烯的發(fā)現(xiàn)再次推動(dòng)了人們對(duì)碳元素納米材料的研究。研究表明,石墨烯具有非凡的機(jī)械性能、導(dǎo)電性能、熱學(xué)性能以及光學(xué)性能。為了將石墨烯的這些優(yōu)異性能進(jìn)行實(shí)際應(yīng)用,人們研發(fā)了三維石墨烯泡沫、二維石墨烯薄膜和一維的石墨烯復(fù)合纖維。然而,石墨烯復(fù)合纖維的特性以及制備方法還未被全面的介紹,不同制備方法與纖維性能之間的關(guān)系仍需討論。
本文主要對(duì)石墨烯復(fù)合纖維的特點(diǎn)、制備方法及應(yīng)用進(jìn)行了系統(tǒng)論述,并探討了不同制備方法對(duì)石墨烯復(fù)合纖維性能的影響。本文同時(shí)介紹了近年來石墨烯復(fù)合纖維的一些代表性應(yīng)用,也對(duì)其潛在的研究與發(fā)展前景進(jìn)行了展望。
2 石墨烯復(fù)合纖維
石墨烯復(fù)合纖維材料大致分為 3 類:石墨烯-聚合物復(fù)合纖維材料、石墨烯-無機(jī)金屬復(fù)合纖維材料和石墨烯-無機(jī)非金屬復(fù)合纖維材料。表 1 為石墨烯復(fù)合纖維的幾種制備方法及其對(duì)應(yīng)纖維的力學(xué)性能和導(dǎo)電性能。
2.1 石墨烯-聚合物復(fù)合纖維
鮑橋梁等人利用靜電紡絲技術(shù)將共軛有機(jī)分子修飾的石墨烯與聚乙烯醇(PVA)混紡得到石墨烯復(fù)合纖維(圖1)。隨著石墨烯的加入,纖維的拉伸強(qiáng)度從3.45 MPa提高到了12.39 MPa,且纖維的吸光度提高了約10倍。
高超等人提出了“液晶自構(gòu)模板”的方法,將石墨烯與超支化聚縮水甘油醚(HPG)結(jié)合得到了超高拉伸強(qiáng)度的仿貝殼纖維。該仿貝殼纖維展現(xiàn)出了可觀的拉伸強(qiáng)度(652 MPa),約為貝殼的 5 ~ 8 倍。同時(shí)還提出了新的“倒置”策略,利用濕法紡絲自組裝將石墨烯與聚甲基丙烯酸縮水甘油酯(GMA)結(jié)合再次制備了仿貝殼纖維(圖 2)。該仿貝殼纖維的拉伸強(qiáng)度(500 MPa)是貝殼的 3 ~ 4 倍。
Akihiko Tanioka等人將氧化石墨烯加入到聚丙烯腈(PAN)紡絲液中,利用靜電紡絲的方法制得石墨烯/PAN復(fù)合纖維。紡絲過程中,氧化石墨烯沿著纖維軸向排列分布。當(dāng)氧化石墨烯的含量為0.5%時(shí),所得復(fù)合纖維的導(dǎo)電率最高,為165 S/cm。
2.2 石墨烯-無機(jī)金屬復(fù)合纖維
Sang Su Yoon等人利用濕法紡絲將大片的石墨烯(56±20)μm與納米銀顆粒結(jié)合起來制備了石墨烯/納米銀復(fù)合纖維(圖 3)。這種復(fù)合纖維的導(dǎo)電率高達(dá)15 800 S/cm。而且這種復(fù)合纖維很容易被剪斷粘附在柔性基底上,將被廣泛應(yīng)用于纖維型電極材料、纖維型晶體管、纖維型電容器等領(lǐng)域。
高超等人利用類似的方法制備了石墨烯/納米銀復(fù)合纖維。他們同樣采用濕法紡絲的方法將氧化石墨烯與納米銀顆?;旒?,然后用氫碘酸還原,得到的復(fù)合纖維的導(dǎo)電率為930 S/cm。
曲良體等人利用電化學(xué)沉積的方法在石墨烯纖維的外層電沉積MnO2顆粒,得到復(fù)合纖維(圖 4)。這種多層結(jié)構(gòu)復(fù)合纖維制備的纖維型電容器展現(xiàn)出了較強(qiáng)的電化學(xué)電容器特性。
2.3 石墨烯-無機(jī)非金屬復(fù)合纖維
劉杰等人直接將未功能化的多壁碳納米管分散到氧化石墨烯溶液中進(jìn)行濕法紡絲,然后還原得到石墨烯/碳納米管(CNTs)復(fù)合纖維。CNTs的加入使得石墨烯纖維的拉伸強(qiáng)度從193.3 MPa增加到385.7 MPa,導(dǎo)電率從53.3 S/cm增加到210.7 S/cm。同時(shí),石墨烯/CNTs復(fù)合纖維用于線形超級(jí)電容時(shí)大大提高了其比電容和能量密度,在石墨烯基電極材料領(lǐng)域有較好的發(fā)展前景。
鄒祖煒等人也利用濕法紡絲將碳納米管薄膜包覆在還原氧化石墨烯的外層,得到石墨烯/CNTs復(fù)合纖維。CNTs的加入使石墨烯纖維的強(qiáng)度和導(dǎo)電率分別增加了22%和49%。
曲良體等人以Fe3O4為催化劑用化學(xué)氣相沉淀(CVD)的方法將CNTs直接生長在石墨烯纖維的表面,得到石墨烯/CNTs復(fù)合纖維。除了可以用作織物超級(jí)電容器外,石墨烯/CNTs復(fù)合纖維還可以被應(yīng)用到更多的領(lǐng)域,如催化、分離和吸附材料。
3 石墨烯復(fù)合纖維的應(yīng)用
由于石墨烯復(fù)合纖維具有柔性較好,質(zhì)輕,導(dǎo)電性能、熱學(xué)性能優(yōu)異等優(yōu)點(diǎn),因此被廣泛應(yīng)用于各個(gè)領(lǐng)域。根據(jù)近年文獻(xiàn),其應(yīng)用主要集中在如下幾個(gè)方面。
3.1 生物醫(yī)用材料
2013年,Nadnudda Rodthongkum和Nipapan Ruecha等人利用靜電紡絲構(gòu)建了一種新穎的高靈敏度的用來檢測多巴胺的電化學(xué)系統(tǒng)。他們?cè)诮z網(wǎng)印刷碳電極的表面修飾了一層石墨烯/聚苯胺/聚苯乙烯復(fù)合纖維。在最優(yōu)條件下,多巴胺的檢測量可以達(dá)到0.05 nM。另外,這種電極系統(tǒng)具有非常寬的動(dòng)力學(xué)范圍:0.1 nM ~ 100 μM。
3.2 儲(chǔ)能材料(超級(jí)電容器)
Robert A. W. Dryfe等人用電泳沉積的方法在碳纖維的表面沉積石墨烯碳納米管復(fù)合層,得到石墨烯-碳納米管/碳纖維(G-CNT/CC)復(fù)合纖維(圖 5)。所得電極的比電容(151 F/g)是純石墨烯纖維電極(58.8 F/g)的2.5倍,而且其能量密度(14.5 W·h/kg)也遠(yuǎn)高于純石墨烯纖維電極(5.6 W·h/kg)。曲良體等人在石墨烯纖維表面沉積MnO2,將石墨烯纖維的比電容提高到了36 F/g。
3.3 導(dǎo)線
董澤琳等人以石墨烯復(fù)合纖維為導(dǎo)線織成導(dǎo)電織物;高超等人將石墨烯復(fù)合纖維作為LED晶體管的導(dǎo)線,同時(shí)還將納米銀與石墨烯混紡制得高導(dǎo)電率的石墨烯/納米銀復(fù)合纖維(導(dǎo)電率為930 S/cm);彭慧勝等人從碳納米管片中抽出碳納米管陣列,沿著軸向堆疊,加入氧化石墨烯溶液,最后將混合物扭曲得到石墨烯/CNT復(fù)合纖維。
3.4 光催化
高孟春等人在氧化石墨烯的乙醇溶液中加入硝酸銦、聚乙二醇和氧化二乙酰丙酮合釩制得紡絲液,靜電紡后煅燒得到石墨烯/氧化釩銦(RGO/InVO4)復(fù)合纖維(圖 6)。這種復(fù)合纖維表現(xiàn)出了很好的光催化性能。Bo-Hye Kim等人利用靜電紡絲的方法得到含氧化石墨烯的聚合物纖維,經(jīng)煅燒得到石墨烯/碳復(fù)合纖維,再將得到的纖維浸泡在含鈦的氧化物溶液中,高溫煅燒得到石墨烯復(fù)合纖維。
4 結(jié)語
各種石墨烯復(fù)合纖維層出不窮,制備方法也不盡相同。通過對(duì)這些復(fù)合材料的研究發(fā)現(xiàn),復(fù)合纖維的制備方法對(duì)其拉伸強(qiáng)度和導(dǎo)電率有重要影響。其中,干法紡絲和濕法紡絲制得的復(fù)合纖維的拉伸強(qiáng)度明顯比靜電紡絲強(qiáng)。同時(shí),通過對(duì)比同種樣品的氧化石墨烯還原方式,發(fā)現(xiàn)相比于高溫煅燒,HI酸還原更能保存石墨烯的優(yōu)異性能。
盡管石墨烯復(fù)合纖維已經(jīng)表現(xiàn)出很好的應(yīng)用前景,但其制備工藝仍有待改進(jìn),以得到力學(xué)性能和導(dǎo)電性能優(yōu)于單層石墨烯的材料。此外,目前對(duì)其光學(xué)和熱學(xué)方面的研究還較少,相信在不久的將來性能更優(yōu)異的石墨烯復(fù)合纖維將會(huì)問世,且其應(yīng)用領(lǐng)域?qū)⒌玫竭M(jìn)一步擴(kuò)展。
參考文獻(xiàn)
[1] Kroto H W, Heath J R, Brien S C O, et al. C60:Buckminsterfullerene [J]. Nature, 1985, 318:162-163.
[2] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354:56-58.
[3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306:666-669.
[4] Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2007, 6(3):183-191.
[5] Novoselov K S, Fal′Ko V I, Colombo L, et al. A roadmap for graphene [J]. Nature, 2012, 490(7419):192-200.
[6] Geim A K. Graphene:status and prospects [J]. Science, 2009, 324(5934):1530-1534.
[7] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets [J]. Nature, 2007, 446(7131):60-63.
[8] Nieto A, Boesl B, Agarwal A. Multi-scale intrinsic deformation mechanisms of 3D graphene foam [J]. Carbon, 2015, 85:299-308.
[9] Shin M K, Lee B, Kim S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes [J]. Nature Communications, 2012, 3(48):19596-19600.
[10] Liu F, Song S, Xue D, et al. Folded structured graphene paper for high performance electrode materials [J]. Advanced Materials, 2012, 24(8):1089-1094.
[11] Wang D W, Li F, Zhao J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for highperformance flexible electrode [J]. ACS Nano, 2009, 3(7):1745-1752.
[12] Bao Q, Zhang H, Yang J, et al. Graphene–polymer nanofiber membrane for ultrafast photonics [J]. Advanced Functional Materials, 2010, 20(5):782-791.
[13] Yuan-Li H, Avinash B, Hsi-Wen T, et al. Self-assembly of graphene onto electrospun polyamide 66 nanofibers as transparent conductive thin films [J]. Nanotechnology, 2011, 22(47):475603-475609.
[14] Wei W, Yang S, Zhou H, et al. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage [J]. Advanced Materials, 2013, 25(21):2909-2914.
[15] Sohn K, Joo N Y, Chang H, et al. Oil absorbing graphene capsules by capillary molding.[J]. Chemical Communications, 2012, 48(48):5968-5970.
[16] Eda G, Chhowalla M. Graphene-based composite thin films for electronics [J]. Nano Letters, 2009, 9(2):814-818.
[17] Zhu J M, Li G, Jiang L Y. Fabrication and structural tuning of novel composite hollow fiber membranes for pervaporation [J]. Journal of Applied Polymer Science, 2016, 133(16):43324.
[18] Shao W, Wang S X, Liu H, et al. Preparation bacterial cellulose/ graphene nanosheets composite films with enhanced mechanical performances [J]. Carbohydrate Polymers, 2016, 138:166-171.
[19] Lu Y B, Yang Q S, He X Q, et al. Modeling the interfacial behavior of carbon nanotube fiber/polyethylene composites by molecular dynamics approach [J]. Computational Materials Science, 2016, 114:189-198.
[20] Kumar D, Singh K K. An approach towards damage free machining of CFRP and GFRP composite material:a review [J]. Advanced composite materials, 2015, 24:49-63.
[21] Hu X Z, Xu Z, Liu Z, et al. Liquid crystal self-templating approach to ultrastrong and tough biomimic composites [J]. Scientific Reports, 2013, 3:2374-2382.
[22] Zhao X, Xu Z, Zheng B, et al. Macroscopic assembled, ultrastrong and H2SO4-resistant fibers of polymer-grafted graphene oxide [J]. Scientific Reports, 2013, 3:3164-3171.
[23] Rodthongkum N, Ruecha N, Rangkupan R, et al. Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine [J]. Analytica Chimica Acta, 2013, 804:84-91.
[24] Bao Q, Zhang H, Yang J, et al. Graphene–polymer nanofiber membrane for ultrafast photonics [J]. Advanced Functional Materials, 2010, 20(5):782-791.
[25] Ma B, Li Y, Zhao J, et al. Preparation and characterization of graphene oxide/poly(vinyl alcohol)composite nanofibers via electrospinning [J]. Journal of Applied Polymer Science, 2013, 127(4):3026-3032.
[26] Sang S Y, Kang E L, Cha H J, et al. Highly conductive graphene/Ag hybrid fibers for flexible fiber-type transistors [J]. Scientific Reports, 2015, 5:16366-16378.
[27] Xu Z, Liu Z, Sun H, et al. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors [J]. Advanced Materials, 2013, 25(23):3249-3253.
[28] Chen Q, Meng Y, Hu C, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor [J]. Journal of Power Sources, 2014, 247(3):32-39.
[29] Ma Y, Li P, Sedloff J W, et al. Conductive graphene fibers for wireshaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes [J]. ACS Nano, 2015, 9(2):1352-1359.
[30] Meng F, Li R, Li Q, et al. Synthesis and failure behavior of superaligned carbon nanotube film wrapped graphene fibers [J]. Carbon, 2014, 72(3):250-256.
[31] Huhu C, Zelin D, Chuangang H, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors [J]. Nanoscale, 2013, 5(8):3428-3434.
[32] Xiaohua Z, Rui W, Wen Y, et al. Carbon nanotube and graphene multiple-thread yarns [J]. Nanoscale, 2013, 5(3):1183-1187.
[33] Matsumoto H, Imaizumi S, Konosu Y, et al. Electrospun composite nanofiber yarns containing oriented graphene nanoribbons [J]. ACS Applied Materials and Interfaces, 2013, 5(13):6225-6231.
[34] Wang S, Dryfe R A W. Graphene oxide-assisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors [J]. Journal of Materials Chemistry A, 2013, 1(17):5279-5283.
[35] Zelin Dong, Changcheng Jiang, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers [J]. Advanced Materials, 2012, 24(14):1856-1861.
[36] Liang K, Chao G. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers[J]. Nanoscale, 2013, 5(10):4370-4378.
[37] Zhen X, Yuan Z, Peigang L, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores [J]. ACS Nano, 2012, 6(8):7103-7113.
[38] Sun H, You X, Deng J, et al. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices[J]. Advanced Materials, 2014, 26(18):2868-2873.
[39] Ma D, Zhang Y, Gao M, et al. RGO/InVO4 hollowed-out nanofibers:Electros-pinning synthesis and its application in photocatalysis [J]. Applied Surface Science, 2015, 353:118-126.
[40] Chang H K, Kim B H, Yang K S. TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis [J]. Carbon, 2012, 50(7):2472-2481.