楊宏
【摘要】利用LeraySchauder不動點定理,研究了一類非線性項可變號的帶一般微分算子的非線性帶二階周期邊值問題正解的存在性.
【關鍵詞】周期邊值問題; 正解; LeraySchauder不動點定理
近年來,非線性常微分方程邊值問題正解的研究備受眾多學者關注,例如文獻[1-8].由于周期現象的普遍存在,有很多作者更是運用LeraySchauder非線性抉擇、Schauder不動點理論及錐上的不動點定理研究了二階非線性周期邊值問題正解的存在性.2009年,文獻[2]利用Schauder不動點定理,考慮了問題(1)-(2)正解的存在性.
【參考文獻】
[1]馬如云.非線性微分方程非局部問題[M].北京:科學出版社,2004.
[2]LI X,ZHONG Z.periodic solutions for differential equation with a weak repulsive sigularity[J].Nonlinear.Analysis,2009,70:2395-2399.
[3]MA R.Existence of Positive solutions of a fourthorder boundary value problem[J].Comput.Appl.Math,2005,168:1219-1231.
[4]HENDERSON J,WANG H.Positive solutions for nonlinear eigenalue problems[J].Math.Anal.Appl,1997,208:252-259.
[5]JIANG D.On the existence of positive solutions to second order periodic BVPs[J].Acta.Math.Scientia.1998,18:31-35.
[6]GRAEF J,KONG L,WANG H.Existence,multiplicity,and dependence on a parameter for a periodic boundary value problems[J].Diff.Eqns.2008,245:1185-1197.
[7]XU J,MA R.Bifurcation from interval and positive solutions for second order periodic boundary value
problem[J].Comput.Appl.Math.2010,16:2463-2471.
[8]DANCER E.Global solution branches for positive mappings[J].Arch.Ration.Mech.Anal.1973,52:181-192.