• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collapse of Self-Interacting Scalar Field in Anti-de Sitter Space?

    2016-05-14 12:50:58RongGenCai蔡榮根LiWeiJi季力偉andRunQiuYang楊潤(rùn)秋
    Communications in Theoretical Physics 2016年3期

    Rong-Gen Cai(蔡榮根), Li-Wei Ji(季力偉), and Run-Qiu Yang(楊潤(rùn)秋)

    State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    Recently,a lot of attention has been focused to gravitational collapse in anti-de Sitter(AdS)spacetime.On the one hand,AdS spacetime is one of three maximal symmetric spacetimes(the other two are Minkowskian and de Sitter spacetimes).The gravitational collapse in AdS spacetime is an interesting issue in its own right.On the other hand,AdS spacetime is a ground state of some superstring/M theories.Due to the so-called AdS/CFT correspondence,the form of black holes in AdS space is equivalent to the thermalization process of dual conformal field theory(CFT)in the AdS boundary.

    However,due to the complexity of Einstein’s field equations,it is quite hard to solve this problem analytically.Numerical methods and perturbation methods are usually employed for this goal.The pioneering numerical study on this issue finds that an arbitrary small spherically symmetric initial data of massless scalar field will collapse to form black hole.[1?3]Other class of perturbations leads to a similar conclusion.[4]This implies that the AdS spacetime is unstable nonlinearly,quite different from the cases of Minkowskian and de Sitter spacetimes.Later on,exceptions were found in works,[5?6]which show that there exist stable initial data immune to the black hole formation.Generalizations to massive scalar fields are investigated in Refs.[7–9].

    On the perturbation method side,improved perturbative expansions have been constructed to describe the small amplitude dynamics on time scales of order 1/?2,where ? denotes the amplitude of perturbation.The effective equations which describe the variations of the amplitudes and phases of AdS normal modes due to non-linearities are derived using multiscale,[10]renormalization,[11]and averaging[12]methods.

    There are two crucial ingredients which are responsible for the instability of AdS space:confinement property of AdS boundary and local non-linearity.To investigate the role played by local non-linearity,new non-linearity due to higher curvature terms has been studied in[13].They found that the stability of AdS in 5D Einstein–Gauss–Bonnet gravity can be restored for small perturbations,due to the existence of mass gap of the Gauss–Bonnet black hole.Instead of adding new non-linear terms from gravity sector,in this paper,we consider the effect of selfinteraction of matter field itself on the stability of AdS space.For simplicity,we consider the λφ4model of a massless scalar field.

    The self-interaction has been considered in asymptotically flat spacetime,[14]which provides effective confinement and gives rise to some interesting phenomena.This is believed to have some connection with the massless scalar collapse in AdS spacetime.The energy flow between different modes on a fixed AdS background has been observed in[15]with self-interaction providing the nonlinearity.And the same authors have also studied the scalar field dynamics with self-interaction in a fixed AdS space by using the two-time formalism in Ref.[16].Note that the energy flow is very important for the weakly turbulence instability of AdS spacetime.Therefore,the self-interaction provides another “instability engine”.These two engines may compete or cooperate with each other,which means that the self-interaction may enhance or suppress the instability of the system.

    Our main motivation is to explore the effect of selfinteraction on the instability of AdS spacetime.One of our main results is that a positive λ suppresses the formation of black hole while a negative one promotes it.In addition,we find a universal scaling relation on the sensibility of black hole formation time with respect to the self-interaction strength λ.The paper is organized as follows.In Sec.2 we present the setup of the massless scalar collapse with self-interaction.Section 3 is devoted to our numerical results.We conclude in Sec.4.

    2 Setup

    We consider a real massless scalar field with selfinteraction in(3+1)-dimensional spherically symmetric asymptotic AdS spacetime.The system is described by the following action,

    where R is the Ricci scalar curvature,G is the Newtonian gravitation constant,and λ is a real parameter,describing the self-interaction strength of the scalar field.The Einstein’s field equation and the equation of motion of the scalar field read

    In order to find the solution of Eqs.(2)–(3)in spherically symmetric AdS spacetime,we take the ansatz for the metric

    where ?2= ?3/Λ and d?2is the standard metric on the round unit two-dimensional sphere,and A,δ and φ are all functions of time t and radial coordinate x.

    We now introduce two auxiliary variables Φ = φ′and Π=A?1eδand set ?=4πG=1,then the equations of motion can be written as

    where an overdot stands for the derivative with respect to time t and a prime to the radial coordinate x.This model shares the same boundary conditions as the case without the self-interaction.[1]At the origin x=0,

    and at the spatial in fi nity x=π/2,

    where ρ = π/2?x.

    The λφ4model appears in many toy models to study the effects of the self-interaction.For quantum field theory in flat spacetime,we need λ≥0 so that the scalar field has a stable ground state.In asymptotic AdS spacetime,because the asymptotic boundary at x=π/2 gives an in finite high potential barrier,the massless scalar field can still be stable when λ<0.In this paper,we will consider both λ >0 and λ <0 to see how these two kinds of interactions influence the evolution of the scalar field in AdS space.

    3 Numerical Results

    Following Ref.[2],we use a 4th-order Runge–Kutta method to solve the time evolution equations(5)–(6).At each time step,the metric functions A and δ are given by integrating the constraint equations(7)–(8)from the origin to the infinity also using a 4th-order Runge–Kutta method,while the scalar field φ is given by integrating Eq.(9)backward from the infinity to the origin.In order to clearly see the influence of the self-interaction,we also take the Gaussian initial data for the scalar field as

    where ? stands for the amplitude,while σ for the width of the initial wave packet.

    Under this class of initial data,the stability of spacetime depends on whether a black hole could form after some time,which is signalled by the appearance of an apparent horizon at a point xHwhere A(t,x)falls into zero.There exists strong evidence that the initial data are classified into two categories:unstable states and stable states.For those unstable states,the wave configuration oscillates between the origin and the boundary a few times,then collapses to black hole.For those stable states,the wave configuration stays regular everywhere in the cavity all the time.This kind of states is often referred to as“stable island”in the initial data phase space.There are three parameters in this system:self-interaction strength λ,amplitude ? and width σ of the initial data.We will study the effect of self-interaction on these two kinds of states separately for different amplitude ? and width σ.

    3.1 Effect on Unstable States

    To see the effect of the self-interacting term on the instability of the system,we first fix width σ=1/16,and try to find out the influence of λ on the unstable states with different ?.Then we try to find out the influence of self-interaction on the unstable states with a few different σ.

    AThe case withσ=1/16

    Since the apparent horizon is formed very close to the center of the space,the time difference of black hole formation due to the different strength of the self-interaction is diluted by the travel time over the whole cavity(from the origin to the boundary).So the time of black hole formation is still dominated by the time of the scalar field oscillation in the cavity.As a result,it is expected that the time difference caused by the self-interaction is small in general.

    Fig.1 Formation time of black hole from scalar field with different self-interaction strength λ,we set σ =1/16.In the top panel,we plot the formation time t with respect to amplitude ? for different λ.The middle and bottom panels show the formation time t when ?∈ [30,34]for different λ,respectively.

    We fix the width of the initial data σ=1/16 and set λ=?500,?100,0,100,500,respectively.We show the influence of self-interaction on the formation time of black hole in Fig.1.The general behavior of the black hole formation time is similar to the case of λ =0 for every λ.As the amplitude ? decreases,it approximately forms ascending steps and increases monotonically on every step.On every step,the black hole formation time is almost the same for every λ.But as we improve the resolution,which is shown in the middle and bottom plots in Fig.1,we can see the difference.Figure 1(b)shows the case around ?∈ [30,34]and t? 4× (π/2),while Fig.1(c)shows the case in the same ? region but t ? 2 × (π/2)(which are around the second critical amplitude ?1? 32.5).If we fix the amplitude,the black hole formation time is decreased with the decrease of λ,although very small.However,around the critical amplitude,this time difference between different λ can be huge.We look at the critical amplitude around ?~ 31.5,for instance.As we can see in Fig.1(b),when ?.31,the formation time decreases a little as we decrease λ.In this case,the time difference between λ = ?500 and λ =0 is roughly 0.006 × (π/2).When ?&31.5,some of the initial data disappear in Fig.1(b)and jump to the previous step shown in Fig.1(c).The smaller the self-interaction coefficient,the faster the jump happens.These jumps cause huge time difference between different λ.In this case,the time difference between λ = ?500 and λ =0 could be more than 2 × (π/2).When ? is large enough(?>32.5 in this case),all the formation times jump to the previous step.The similar time jump of black hole formation also happens in the case of λ>0.

    This kind of time jump caused by λ near the critical amplitude can be understood as follows.When λ<0,the self-interaction enhances the instability of the system,which makes the black hole formation a bit earlier than the case without the self-interaction.When this small time shift happens near the critical point,it may push the black hole formation out of the effective concentration region which is a small region very close to the origin of the space.This means that the black hole formation has to occur in the previous effective concentration region,which causes a huge time jump(earlier).When λ>0,the situation is just opposite.The self-interaction makes the formation of black hole a bit later.When this suppressing effect happens near the critical amplitude,it may pull the formation of black hole out of the effective concentration region and make the scalar oscillate one more time in the cavity.It causes a huge time delay in the formation of black hole.

    Besides the time for the appearance of apparent horizon is influenced by the self-interaction,the critical amplitudes ?nwhich give the zero apparent horizon radius are also shifted by λ,though this shift is very small in the first few critical amplitudes.From Figs.1(b)and 1(c),we see that the second critical amplitude ?1is increased for positive λ but decreased for negative λ.For a given integer n ≥ 0,the critical amplitude ?nis an increasing function of λ in the region our numerical computation can cover.This critical amplitude shift with λ is consistent with the behavior of the time shift of black hole formation in the previous paragraph.To explore this,one can suppose that,for a given λ = λ0,there is amplitude ?′which is larger but very close to a critical amplitude ?iand gives the apparent horizon radius xH(?′,λ0)is very close to zero.Now suppose we alter λ a little such as λ = λ+δλ with δλ >0.Because the larger λ will lead the apparent horizon to appear later,the peak of the Φ and Π or the bottom of A can propagate into the region closer to the origin before an apparent horizon appears,which leads the apparent horizon radius to be smaller.By adjusting the value of δλ,we can make apparent horizon radius decrease to zero and ?′is a new critical amplitude.We see that by increasing the value of λ,the new critical amplitude is larger than the old one.

    BThe case with differentσ

    In this subsection,we fix λ = ?100,0,100,and consider the width of initial data as σ=1/16,1/8,1/4,respectively.In order to see the influence of self-interaction on the gravitational collapse,we magnify the region around the first critical amplitude(?0),while Fig.1 magnifies the region around the second critical amplitude(?1).The results are shown in Fig.2.

    Fig.2 Formation time of black hole from scalar field collapse with different initial widthes.(a)σ=1/16,(b)σ=1/8,(c)σ=1/4.We set λ= ?100,0,100.

    Qualitatively,the influence of self-interaction with different initial widths is the same. It enhances(when λ<0)or suppresses(when λ>0)the formation of black hole.Quantitatively,there exist differences.Figures 2(a)–2(c)show the black hole formation times for the initial data with widthes σ=1/16,1/8,1/4,respectively.When σ=1/16,the time difference between the two cases with a nonzero λ and vanishing λ is very small,less than 0.005× (π/2).As we increase the width of initial data,the enhancement(or suppressing)effect caused by the same strength of self-interaction becomes obvious.

    When σ=1/8,the time difference between the two cases with a nonzero λ and vanishing λ is bigger,and reaches about 0.01×(π/2).When σ =1/4,it is more obvious,the time difference is around 0.05×(π/2).The time difference is much obvious for the case with a negative λ.

    The above observation can be understood as follows.When σ is small,the wave packet decays rapidly in space,which means that the self-interaction only happens in a very narrow region and gives very weak influence on the system.In this case,one can expect that the time differences of black hole formation for different λ are very small.However,when we increase the value of σ,the region where the self-interaction plays its role is enlarged,so its influence on the system become stronger.In this case,one can expect that the time differences for different λ become obvious.

    CSensibilities

    To characterize the influence of the self-interaction on the critical amplitude and time of black hole formation with respect to the self-interaction strength λ under the initial data(12),we define two sensibility coefficients,

    The first one in Eqs.(13)describes the sensibility of critical amplitude and the second one describes the sensibility of forming time of black hole.

    In Table 1,we list the first four χ?n(σ)when σ =1/16.One can see that the values of χ?nare all positive,which is in agreement with our numerical calculations that a larger λ leads to a larger critical amplitude.In addition,we see that the values of χ?ndecrease with n(the exception is the case with n=0).This shows the fact that the sensibility of critical amplitude of scalar field to λ is decreased with n.

    Table 1 Sensibility of critical amplitude ?nto λ when σ =1/16.

    One of very interesting results by including the λφ4from our numerical computations is about χt(?,σ).By the definition in(13),we can see that χt(?)diverges when ?= ?n.Near the critical amplitude ?→ ?n,we observe a scaling relation as,

    Figure 3 shows the relation of χt(?,σ)with respect to ? when σ =1/8.In Fig.3(a),we scan ? from 11.25 to 22.As is expected,χt(?,σ)is always positive and a pole appears for every ?= ?n.In Fig.3(b),we show the value of χt(?,σ)around ?= ?1.By this figure,we can see it clear that when ? is near to its critical value,the system is very sensitive to the self-interaction λφ4term.At the critical amplitude,an infinitesimal λφ4term can give rise to a very essential difference.This is not very surprising.Because there is a naked singularity at the center of the space when ?= ?n,which will lead to the breaking of causality and stability of the space time.[17]To find the values of α and α′in Eqs.(14),we fit the values of χt(?,σ)when ?→ ?nfor different n.We find that α ? α′? 0.74(2),which are independent on n and σ,up to numerical errors.

    Fig.3 (Color online)The relation of χt(?,σ)with respect to ? when σ =1/8.In the upper plot(a),we scan ? from 11.25 to 22,and show that there is a pole for every ?= ?n.In the bottom plot(b),we show the value of χt(?,σ)around ?= ?1.The inset in the bottom plot shows the fitting curves using Eqs.(14).The blue is the case ?→ ?+1,while the red is the case ?→ ??1.

    3.2 Effect on Stable States

    “Stable islands” have been claimed to exist in the free scalar case.We want to see whether the self-interaction plays any role on these “islands” in the initial data.For simplicity,we here consider only the“island” with a large σ.[5]

    We set the width of initial data σ=2/5.The result is shown in Fig.4 for three different self-interaction strengthes:λ= ?10,0,10,respectively.We can see that all these three initial data sets show similar behavior for the black hole formation time and that there is a transition from the black hole formation phase to stable phase as ? decreases.We also notice the existence of the “bump”,as in[5],in the black hole formation time before it grows monotonically with the decrease of ?.

    Fig.4 (Color online)Formation time of black hole from scalar filed collapse with large width σ=2/5.Red:λ=?10,Black:λ=0,Blue:λ=10.

    When the self-interaction of the scalar field is not vanishing,the bump is shifted.When λ=10,the center of the bump is around ?? 5.81 which is larger than the case of λ =0 whose bump is centered around ?? 5.78.We believe that the shift of the bump is a sign of expansion of the size of “stable island” due to positive λ.When λ= ?10,the situation is opposite.The center of the bump is around 5.75,which indicates the size of“stable island”shrinks due to a negative λ.

    The expansion or shrink of the size of“stable island” is an indication of suppressing or enhancing the instability of the system.So the self-interaction has the same effect on stable states as on unstable states:positive λ suppresses the instability of the system,while negative λ enhances it.

    3.3 Effect on the Energy Transfer

    For small amplitude ?,the system can evolute a very long time before a trapped surface forms which indicts the appearance of apparent horizon.To see further the influence of λφ4on the instability of AdS space,in this section,following Ref.[1],we investigate the energy transfer between different modes.

    In the case with small amplitude ?,we can expand the functions{φ,A,δ}as,

    Then at the linear order of ?,the solutions of Eqs.(5)–(9)are A=1,δ=0 and φ can be expressed by hypergeomet-ric function such as,[1]

    with some constants aj,βjand

    Here ωjwith j=0,1,2,...

    Using the linear order solutions(16),we can project a general solution{Φ,Π}(not only in the linear order of ?)as,

    Here the inner product is defined asThen the energy of j-mode can be expressed as,

    Fig.5 (Color online)The value of?kfor different λ with large width σ=2/5.Here we take k=2.

    To investigate the influence of λφ4term on the energy transfer,we use the two modes initial data as in Ref.[1],i.e.,φ(0,x)= ?[e0(x)/d0+e1(x)/d1]and define,

    For a given λ0,?k(λ0)describes the difference of the energy staying in the first k models between the cases with λ06=0 and with λ =0.Thus if it is negative,it means that the λφ4term can accelerate the energy transfer into high energy modes,and vice versa.

    In Fig.5,we plot ?k(λ0)when ?=0.088 for different λ0and show the result for λ = ?100,?10,10 and 100,respectively.It can be clearly seen that?(λ0)is positive when λ >0,which means that a positive λ can enhance the stability and make the energy stay in low energy modes much long.We can expect the in this case it will lead the black hole to form later than the case of λ=0,which is consistent with our numerical computation in the case with large amplitudes.

    4 Conclusion

    We have studied the gravitational collapse of massless scalar field with a self-interaction λφ4in AdS space,paying attention on the in fl uence of the self-interaction on the instability of AdS space.This self-interaction leads to an enhancing(λ <0)or suppressing(λ >0)effect on the formation of black hole.We have seen that near the critical amplitude ?,this self-interaction may cause a large time difference of black hole formation between free scalar field case and self-interacting scalar field case(oscillating one more or one less in the cavity).We have defined two susceptibilities to characterize the effect of the self-interaction,one is the amplitude with respect to the self-interaction strength λ,the other is the formation time of black hole.We have found a universal scaling relation for the formation time of black hole near the critical amplitude,which is found independent of n and σ;the critical exponent α≈0.74.We have also investigated the effect of λφ4on the energy transfer.The results show that a positive λ will delay energy transfer into high energy modes,while a negative λ can accelerate this transfer.In addition,we have studied the effect of the self-interaction on the “stable island” in the initial data with a large σ,and found that a positive(negative)λ expands(shrinks)the size of the“stable island”and leads to a shift of the critical amplitude.

    References

    [1]P.Bizon and A.Rostworowski,Phys.Rev.Lett.107(2011)031102,arXiv:1104.3702[gr-qc].

    [2]M.Maliborski and A.Rostworowski,Proceedings,Spring School on Numerical Relativity and High Energy Physics(NR/HEP2),Int.J.Mod.Phys.A 28(2013)1340020,arXiv:1308.1235[gr-qc].

    [3]A.Buchel,L.Lehner,and S.L.Liebling,Phys.Rev.D 86(2012)123011,arXiv:1210.0890[gr-qc].

    [4]O.J.C.Dias,G.T.Horowitz,and J.E.Santos,Class.Quant.Grav.29(2012)194002,arXiv:1109.1825[hepth].

    [5]A.Buchel,S.L.Liebling,and L.Lehner,Phys.Rev.D 87(2013)123006,arXiv:1304.4166[gr-qc].

    [6]M.Maliborski and A.Rostworowski,Phys.Rev.Lett.111(2013)051102,arXiv:1303.3186[gr-qc].

    [7]N. Kim, Phys. Lett. B 742 (2015) 274,arXiv:1411.1633[hep-th].

    [8]H.Okawa,J.C.Lopes,and V.Cardoso,(2015),arXiv:1504.05203[gr-qc].

    [9]N.Deppe and A.R.Frey,J.High Energy Phys.12(2015)004.

    [10]V.Balasubramanian,A.Buchel,S.R.Green,L.Lehner,and S.L.Liebling,Phys.Rev.Lett.113(2014)071601,arXiv:1403.6471[hep-th].

    [11]B.Craps,O.Evnin,and J.Vanhoof,J.High Energy Phys.10(2014)48,arXiv:1407.6273[gr-qc].

    [12]B.Craps,O.Evnin,and J.Vanhoof,J.High Energy Phys.01(2015)108,arXiv:1412.3249[gr-qc].

    [13]N.Deppe,A.Kolly,A.Frey,and G.Kunstatter,Phys.Rev.Lett.114(2015)071102,arXiv:1410.1869[hep-th].

    [14]H.Okawa,V.Cardoso,and P.Pani,Phys.Rev.D 89(2014)041502,arXiv:1311.1235[gr-qc].

    [15]P.Basu,C.Krishnan,and A.Saurabh,Int.J.Mod.Phys.A 30(2015)1550128,arXiv:1408.0624[hep-th].

    [16]P.Basu,C.Krishnan,and P.N.Bala Subramanian,Phys.Lett.B 746(2015)261,arXiv:1501.07499[hep-th].

    [17]D.Christodoulou,Ann.Math.Second Series 149(1999)183.

    只有这里有精品99| 最近最新中文字幕大全电影3| 99精国产麻豆久久婷婷| 香蕉精品网在线| 亚洲av免费在线观看| 五月开心婷婷网| 精品人妻熟女av久视频| 亚洲一级一片aⅴ在线观看| 岛国毛片在线播放| 国产精品国产三级国产专区5o| 日韩三级伦理在线观看| 美女脱内裤让男人舔精品视频| 国产久久久一区二区三区| 一区二区三区免费毛片| 亚洲天堂av无毛| 亚洲在久久综合| 国产视频内射| 免费观看性生交大片5| 日本色播在线视频| 搞女人的毛片| 超碰97精品在线观看| 久久ye,这里只有精品| 亚洲av国产av综合av卡| 人人妻人人看人人澡| 久久精品夜色国产| 国国产精品蜜臀av免费| 91午夜精品亚洲一区二区三区| 久久这里有精品视频免费| 日韩 亚洲 欧美在线| 夫妻午夜视频| 午夜日本视频在线| 国产一区二区三区综合在线观看 | 亚洲av欧美aⅴ国产| 国产伦在线观看视频一区| 日日啪夜夜爽| 精品一区二区三区视频在线| 听说在线观看完整版免费高清| 自拍偷自拍亚洲精品老妇| 国产黄片美女视频| 成年女人在线观看亚洲视频 | 日韩av在线免费看完整版不卡| 国产精品99久久久久久久久| 高清在线视频一区二区三区| 人妻少妇偷人精品九色| 精品少妇久久久久久888优播| 欧美精品国产亚洲| 日韩一本色道免费dvd| 国产成人精品福利久久| 国产精品麻豆人妻色哟哟久久| 97热精品久久久久久| 高清视频免费观看一区二区| 亚洲不卡免费看| 丝袜脚勾引网站| 国产高清有码在线观看视频| 亚洲一级一片aⅴ在线观看| freevideosex欧美| 看十八女毛片水多多多| 欧美潮喷喷水| 亚洲人成网站在线播| 欧美97在线视频| 国产伦理片在线播放av一区| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 2021天堂中文幕一二区在线观| 精品国产三级普通话版| 国产亚洲午夜精品一区二区久久 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费电影在线观看免费观看| 国产男女内射视频| 国精品久久久久久国模美| 亚洲最大成人av| 日日摸夜夜添夜夜添av毛片| 国产精品伦人一区二区| 中文字幕免费在线视频6| 2021少妇久久久久久久久久久| 午夜亚洲福利在线播放| 99九九线精品视频在线观看视频| 国内揄拍国产精品人妻在线| 天天躁夜夜躁狠狠久久av| 国产精品.久久久| 久久久欧美国产精品| 国产乱人偷精品视频| 国产精品国产三级国产专区5o| 国产亚洲精品久久久com| 免费大片18禁| xxx大片免费视频| 欧美bdsm另类| 亚洲av中文av极速乱| 在线天堂最新版资源| 久久鲁丝午夜福利片| 国产午夜精品一二区理论片| 涩涩av久久男人的天堂| 国产精品久久久久久久久免| av女优亚洲男人天堂| 国产精品久久久久久av不卡| 成人特级av手机在线观看| 男女下面进入的视频免费午夜| 国产乱人视频| 最近中文字幕2019免费版| 欧美人与善性xxx| 日韩一区二区视频免费看| 高清在线视频一区二区三区| 又爽又黄无遮挡网站| 久久久久九九精品影院| 免费观看无遮挡的男女| 青春草亚洲视频在线观看| 中国三级夫妇交换| 看非洲黑人一级黄片| 亚洲真实伦在线观看| 国产女主播在线喷水免费视频网站| 一个人看的www免费观看视频| av在线亚洲专区| 久久精品熟女亚洲av麻豆精品| 精品亚洲乱码少妇综合久久| 热re99久久精品国产66热6| 亚洲va在线va天堂va国产| 少妇裸体淫交视频免费看高清| 啦啦啦在线观看免费高清www| 在线观看一区二区三区| av播播在线观看一区| 搞女人的毛片| 亚洲精华国产精华液的使用体验| 国产成人a区在线观看| 97在线人人人人妻| 欧美成人精品欧美一级黄| 麻豆乱淫一区二区| 丝袜脚勾引网站| 在现免费观看毛片| 精品久久久精品久久久| 国精品久久久久久国模美| 超碰av人人做人人爽久久| 日韩av免费高清视频| 最近最新中文字幕免费大全7| 日韩伦理黄色片| 国产真实伦视频高清在线观看| 精品人妻偷拍中文字幕| 午夜福利在线观看免费完整高清在| 网址你懂的国产日韩在线| www.av在线官网国产| 亚洲欧美成人精品一区二区| 久久久久久久国产电影| 一二三四中文在线观看免费高清| 青春草亚洲视频在线观看| a级毛片免费高清观看在线播放| 国产国拍精品亚洲av在线观看| 成人国产av品久久久| 白带黄色成豆腐渣| 国产探花极品一区二区| 久久久精品免费免费高清| 特级一级黄色大片| 日韩欧美一区视频在线观看 | 亚洲欧美成人综合另类久久久| 欧美日韩精品成人综合77777| 亚洲欧美日韩无卡精品| 街头女战士在线观看网站| 亚洲激情五月婷婷啪啪| 日韩一本色道免费dvd| 久久热精品热| 22中文网久久字幕| 国产爱豆传媒在线观看| 91久久精品电影网| 夜夜看夜夜爽夜夜摸| 美女脱内裤让男人舔精品视频| 大陆偷拍与自拍| 看免费成人av毛片| 国产成人freesex在线| 精品少妇黑人巨大在线播放| 中文资源天堂在线| 亚洲性久久影院| 国产伦在线观看视频一区| 麻豆成人av视频| 亚洲最大成人中文| 五月开心婷婷网| 久久久久久久久久久免费av| 大香蕉久久网| 国产黄片美女视频| 大陆偷拍与自拍| 欧美日韩一区二区视频在线观看视频在线 | 国产精品精品国产色婷婷| 听说在线观看完整版免费高清| 欧美一区二区亚洲| 校园人妻丝袜中文字幕| 国精品久久久久久国模美| 少妇猛男粗大的猛烈进出视频 | 亚洲,欧美,日韩| 日韩国内少妇激情av| 亚洲无线观看免费| 十八禁网站网址无遮挡 | 少妇的逼好多水| 精品一区在线观看国产| 欧美丝袜亚洲另类| 亚洲,一卡二卡三卡| 男男h啪啪无遮挡| 能在线免费看毛片的网站| 国产亚洲精品久久久com| 亚洲精品日本国产第一区| 亚洲人与动物交配视频| 成年免费大片在线观看| 极品教师在线视频| 久久久久久久大尺度免费视频| 18禁在线无遮挡免费观看视频| 国产 精品1| 精品久久久精品久久久| 国产精品嫩草影院av在线观看| 国产成人aa在线观看| 国产精品一二三区在线看| 女人被狂操c到高潮| 欧美极品一区二区三区四区| 高清在线视频一区二区三区| 亚洲av成人精品一区久久| 久久这里有精品视频免费| 欧美高清成人免费视频www| 久久精品国产亚洲av涩爱| 久久久久久久久久成人| 五月开心婷婷网| 日本免费在线观看一区| 成人毛片a级毛片在线播放| 国产亚洲5aaaaa淫片| 哪个播放器可以免费观看大片| 日韩制服骚丝袜av| 18禁裸乳无遮挡动漫免费视频 | av在线老鸭窝| 小蜜桃在线观看免费完整版高清| 日韩,欧美,国产一区二区三区| 成人免费观看视频高清| 国产亚洲精品久久久com| 国产亚洲一区二区精品| 女的被弄到高潮叫床怎么办| 老女人水多毛片| 少妇的逼水好多| 国产欧美亚洲国产| 肉色欧美久久久久久久蜜桃 | 婷婷色综合www| 最近2019中文字幕mv第一页| 婷婷色av中文字幕| 丝瓜视频免费看黄片| 国产老妇女一区| 啦啦啦在线观看免费高清www| 国精品久久久久久国模美| 国产黄色免费在线视频| 99热网站在线观看| 国产精品成人在线| www.色视频.com| 18禁裸乳无遮挡免费网站照片| 日本三级黄在线观看| 国产有黄有色有爽视频| 我的女老师完整版在线观看| 少妇人妻久久综合中文| 99精国产麻豆久久婷婷| 亚洲av日韩在线播放| 免费高清在线观看视频在线观看| 日本午夜av视频| 免费电影在线观看免费观看| 激情五月婷婷亚洲| 亚洲aⅴ乱码一区二区在线播放| 国内精品宾馆在线| a级毛色黄片| 久久久久久久久久久丰满| 亚洲经典国产精华液单| 欧美最新免费一区二区三区| 精品国产露脸久久av麻豆| 在线看a的网站| 精品人妻偷拍中文字幕| 哪个播放器可以免费观看大片| 欧美bdsm另类| 一级毛片 在线播放| 九色成人免费人妻av| 久久久久久国产a免费观看| 听说在线观看完整版免费高清| 一级毛片久久久久久久久女| 一区二区三区四区激情视频| 王馨瑶露胸无遮挡在线观看| 18禁裸乳无遮挡免费网站照片| 日本一二三区视频观看| 国产淫片久久久久久久久| 免费在线观看成人毛片| 欧美日韩亚洲高清精品| 熟妇人妻不卡中文字幕| 国产色爽女视频免费观看| 久久这里有精品视频免费| 91狼人影院| 成人亚洲精品一区在线观看 | 国产片特级美女逼逼视频| 在线免费十八禁| 韩国高清视频一区二区三区| 晚上一个人看的免费电影| 久久精品国产鲁丝片午夜精品| 国产又色又爽无遮挡免| 黄色配什么色好看| 国产av码专区亚洲av| 22中文网久久字幕| 日本午夜av视频| 国产精品国产三级国产av玫瑰| 国产国拍精品亚洲av在线观看| av在线天堂中文字幕| 在线观看免费高清a一片| 男插女下体视频免费在线播放| 亚洲欧美中文字幕日韩二区| 欧美丝袜亚洲另类| 亚洲图色成人| av专区在线播放| 搞女人的毛片| 欧美激情久久久久久爽电影| 国产熟女欧美一区二区| 天天躁夜夜躁狠狠久久av| 日本色播在线视频| 中国三级夫妇交换| 国产视频首页在线观看| 久久国内精品自在自线图片| 秋霞在线观看毛片| 久久久久久久国产电影| 大又大粗又爽又黄少妇毛片口| 人人妻人人爽人人添夜夜欢视频 | 深夜a级毛片| 亚洲精品乱久久久久久| 嫩草影院精品99| 欧美xxxx黑人xx丫x性爽| 日韩 亚洲 欧美在线| 内地一区二区视频在线| 男女无遮挡免费网站观看| 久久久久久久久久成人| 亚洲国产高清在线一区二区三| 国产永久视频网站| 欧美日韩精品成人综合77777| 亚州av有码| 国产黄片视频在线免费观看| 男插女下体视频免费在线播放| 免费在线观看成人毛片| 高清在线视频一区二区三区| 亚洲av免费在线观看| 亚洲欧洲日产国产| 少妇猛男粗大的猛烈进出视频 | 男的添女的下面高潮视频| 日韩中字成人| 色哟哟·www| 一区二区三区免费毛片| 狂野欧美激情性bbbbbb| 久久精品国产鲁丝片午夜精品| 精品久久久久久久人妻蜜臀av| 亚洲第一区二区三区不卡| 国产真实伦视频高清在线观看| 国产男人的电影天堂91| av国产精品久久久久影院| 简卡轻食公司| 亚洲国产精品国产精品| 久久女婷五月综合色啪小说 | 国产精品爽爽va在线观看网站| 日本一二三区视频观看| 精品亚洲乱码少妇综合久久| 岛国毛片在线播放| 日本色播在线视频| 欧美性感艳星| 久久精品国产亚洲网站| a级一级毛片免费在线观看| 在线看a的网站| 亚洲精品乱久久久久久| 一级毛片我不卡| 亚洲国产精品国产精品| 国产精品.久久久| 黄片wwwwww| av国产精品久久久久影院| 亚洲精品中文字幕在线视频 | 一区二区三区精品91| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区| 男人添女人高潮全过程视频| 国产午夜福利久久久久久| 成人国产av品久久久| 国产一区二区亚洲精品在线观看| 久久久久九九精品影院| 中文在线观看免费www的网站| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美成人综合另类久久久| 国产免费视频播放在线视频| 久久久久久久国产电影| 大香蕉久久网| 搡女人真爽免费视频火全软件| 国产成人a∨麻豆精品| 亚洲久久久久久中文字幕| 伦理电影大哥的女人| 日韩精品有码人妻一区| 一个人观看的视频www高清免费观看| 国产精品久久久久久久久免| 国产探花极品一区二区| 国产精品福利在线免费观看| 偷拍熟女少妇极品色| 男人狂女人下面高潮的视频| 国产一区二区三区综合在线观看 | 日韩电影二区| 国产成人精品久久久久久| 亚洲自偷自拍三级| 亚洲精品日本国产第一区| 免费人成在线观看视频色| 欧美精品人与动牲交sv欧美| 成人特级av手机在线观看| 免费黄色在线免费观看| 欧美日本视频| 亚洲成人精品中文字幕电影| 观看美女的网站| 中文字幕制服av| 亚洲经典国产精华液单| 亚洲av男天堂| 日韩亚洲欧美综合| 秋霞伦理黄片| 亚洲精品日韩在线中文字幕| 舔av片在线| 亚洲精品中文字幕在线视频 | 黄片wwwwww| 亚洲高清免费不卡视频| 中文在线观看免费www的网站| 日本-黄色视频高清免费观看| 高清av免费在线| 秋霞在线观看毛片| 特级一级黄色大片| 亚洲欧洲国产日韩| 亚洲高清免费不卡视频| av线在线观看网站| 欧美xxⅹ黑人| 亚洲内射少妇av| 麻豆精品久久久久久蜜桃| 国产伦在线观看视频一区| 婷婷色综合大香蕉| 一区二区三区免费毛片| 国产日韩欧美在线精品| 久久精品人妻少妇| 国产综合精华液| 国产久久久一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 午夜日本视频在线| 久久99热这里只频精品6学生| av线在线观看网站| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区三区| tube8黄色片| 下体分泌物呈黄色| 亚洲无线观看免费| 亚洲欧洲国产日韩| 日本欧美国产在线视频| 成人一区二区视频在线观看| 亚洲真实伦在线观看| 色播亚洲综合网| 老师上课跳d突然被开到最大视频| 国产精品无大码| 六月丁香七月| 精品久久久久久久人妻蜜臀av| 街头女战士在线观看网站| 国产高清国产精品国产三级 | 最近手机中文字幕大全| 成人午夜精彩视频在线观看| 一区二区三区精品91| 性插视频无遮挡在线免费观看| 黄色欧美视频在线观看| 蜜臀久久99精品久久宅男| 国产精品久久久久久av不卡| 黄色欧美视频在线观看| 黄片无遮挡物在线观看| 国产免费一区二区三区四区乱码| 日韩视频在线欧美| 欧美日韩在线观看h| videossex国产| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜| 男人和女人高潮做爰伦理| 国产毛片在线视频| av免费在线看不卡| 亚洲精品第二区| 日本熟妇午夜| 日韩三级伦理在线观看| 建设人人有责人人尽责人人享有的 | 777米奇影视久久| 成人鲁丝片一二三区免费| 美女脱内裤让男人舔精品视频| 久久久精品94久久精品| 成人亚洲精品av一区二区| 亚洲欧美一区二区三区黑人 | 久久精品久久精品一区二区三区| 最近最新中文字幕大全电影3| 蜜臀久久99精品久久宅男| av国产久精品久网站免费入址| 国产免费又黄又爽又色| 久久国产乱子免费精品| 亚洲精品国产av成人精品| 国产伦理片在线播放av一区| 一级毛片 在线播放| 人妻系列 视频| 人体艺术视频欧美日本| 嫩草影院精品99| 国产综合懂色| 两个人的视频大全免费| 最近中文字幕高清免费大全6| 欧美一级a爱片免费观看看| 少妇人妻一区二区三区视频| 日本欧美国产在线视频| 天天一区二区日本电影三级| 午夜激情久久久久久久| 成人亚洲精品av一区二区| av网站免费在线观看视频| 国产成人a∨麻豆精品| 国产精品国产av在线观看| 国产成人91sexporn| 97热精品久久久久久| 日日啪夜夜爽| 久久99蜜桃精品久久| 午夜亚洲福利在线播放| 韩国高清视频一区二区三区| 制服丝袜香蕉在线| 亚洲欧美日韩卡通动漫| 久热这里只有精品99| 黄片无遮挡物在线观看| 成年人午夜在线观看视频| 色综合色国产| 亚洲最大成人av| 国产成人精品一,二区| 日韩伦理黄色片| 亚洲精品成人av观看孕妇| 全区人妻精品视频| 国产av国产精品国产| 另类亚洲欧美激情| 亚洲av免费在线观看| 午夜精品国产一区二区电影 | 又粗又硬又长又爽又黄的视频| 在线亚洲精品国产二区图片欧美 | 午夜日本视频在线| 国产亚洲av嫩草精品影院| 黄色一级大片看看| a级毛片免费高清观看在线播放| 乱码一卡2卡4卡精品| 精品久久久久久久久亚洲| 在线免费观看不下载黄p国产| 国产成人精品久久久久久| 色播亚洲综合网| 国产毛片在线视频| 久久久久久国产a免费观看| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 天堂俺去俺来也www色官网| 亚洲精品aⅴ在线观看| 18禁裸乳无遮挡免费网站照片| 免费大片黄手机在线观看| 舔av片在线| 成人欧美大片| 爱豆传媒免费全集在线观看| 亚洲美女搞黄在线观看| 国产黄频视频在线观看| 丝袜脚勾引网站| 亚洲第一区二区三区不卡| 天天躁日日操中文字幕| 亚洲在久久综合| 欧美性感艳星| 午夜免费男女啪啪视频观看| 又粗又硬又长又爽又黄的视频| 亚洲天堂国产精品一区在线| 欧美bdsm另类| 婷婷色av中文字幕| 午夜福利在线在线| 水蜜桃什么品种好| 国产免费一级a男人的天堂| 18禁裸乳无遮挡免费网站照片| 女人久久www免费人成看片| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线观看播放| 一级片'在线观看视频| av在线老鸭窝| 国模一区二区三区四区视频| 国产伦在线观看视频一区| 亚洲最大成人av| 国产午夜精品一二区理论片| 麻豆国产97在线/欧美| 国产成人精品一,二区| 国产精品国产三级国产av玫瑰| 精品亚洲乱码少妇综合久久| 久久久久精品久久久久真实原创| 国产精品伦人一区二区| 黄片无遮挡物在线观看| 日韩一区二区三区影片| 午夜日本视频在线| 免费黄色在线免费观看| 国产乱人视频| 麻豆成人午夜福利视频| av在线蜜桃| 亚洲精品日本国产第一区| 亚洲av日韩在线播放| 大香蕉97超碰在线| 日本-黄色视频高清免费观看| 久久久久九九精品影院| 麻豆久久精品国产亚洲av| 国产精品国产三级国产专区5o| 精品国产三级普通话版| 国产免费又黄又爽又色| 青春草亚洲视频在线观看| 春色校园在线视频观看| 亚洲最大成人中文| 精品久久久久久久末码| 我的老师免费观看完整版| 最近2019中文字幕mv第一页| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品古装| 久久99精品国语久久久| 亚洲av日韩在线播放| 国产精品国产三级国产专区5o| 在线观看一区二区三区| 国产综合懂色| 亚洲内射少妇av| 欧美+日韩+精品| 午夜老司机福利剧场| 亚洲人成网站高清观看| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区 | 麻豆精品久久久久久蜜桃| 亚洲精品,欧美精品| 婷婷色av中文字幕| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 精品久久久久久电影网| 在线观看人妻少妇|