• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structure of Helium Atom in a Quantum Dot?

    2016-05-14 12:51:03JayantaSahaBhattacharyyaandMukherjee
    Communications in Theoretical Physics 2016年3期

    Jayanta K.Saha,S.Bhattacharyya,and T.K.Mukherjee

    1Indian Association for the Cultivation of Science,Jadavpur,Kolkata 700032,India

    2Aliah University,IIA/27,New Town,Kolkata 700156,India

    3Acharyya Prafulla Chandra College,New Barrackpore,Kolkata 700131,India

    4Narula Institute of Technology,Agarpara,Kolkata 700109,India

    1 Introduction

    The subject of atomic systems under spatial confinement is of immense interest among the researchers since the advent of quantum mechanics as the spectral characteristics of atomic systems placed under different confinements change appreciably as compared to those of free atoms.[1?2]different types of phenomenological potentials have been used by researchers to model atoms within cavities,[3]atoms under pressure,[4]impurities in quantum dots or nano crystals,[5]nanopores,[6?7]fullerenes,[8]foreign atoms in liquid helium environment[9]etc.The study of quantum dots(QD)has got considerable attention in recent times due to its fundamental importance in theoretical researches as well as in fabricating new functional devices.The QD’s(or artificial atoms),in general,contain several electrons subjected to an external confining potential and they show similar structural properties as compared to pure atoms.The structural changes of the impurity atoms inside QD’s with reference to the parameters of confining potentials provide huge physical insight about the interactions of the atoms with surroundings.Although the bound states of confined hydrogen and helium atoms have been studied extensively by several researchers,[1?2,4]very few attempts have so far been made towards the quasi bound or resonance states of one electron impurity atom in an isolated QD[10?11]and also in case of confined two electron systems.[12?14]Transformations of two-electron bound states to Feshbach and then to shape resonances depending upon a parameter of model rectangular well-type potential representing the QD have been studied by Bylicki et al.[12]Sajeev et al.[13]and Genkinet al.[14]showed that the singly excited bound states of a two-electron atom become resonance states for appropriately chosen parameters of an external attractive spherical Gaussian type con fining potential used to model the QD.

    In the present work,we have considered a spherically symmetric finite oscillator(FO)potential[3,15?16]of the type,

    for modeling the QD con finement.Here V0is the depth of the potential well and the cavity constant cwis defined as,

    where?is the width of the potential.By tuning the parameters V0and?,one can change the shape of the potential given by Eq.(1).Such type of two-parameter(V0and?)potential provides much control and flexibility in modeling the size of a QD.When r→0 i.e.near the center of QD,Vc(r)~r2and thus a harmonic nature is observed in the potential for a given cavity constant cw.But for large “r”,it deviates from the harmonic behavior.In fact,The FO potential is quite similar in profile to that of Gaussian potential.At the same time,it facilitates the computation of matrix elements in a simple and efficient manner,especially when the Slater-type orbitals are used in constructing the wave function with appropriate boundary conditions for a confined system.This FO potential was used by Winkler[15]to study the two-electron bound and resonant states of helium in QD where the electron correlation was not included initially in the optimized wave function.Even the inclusion of electron correlation could not remove the uncertainties in their calculations.[15]Later,Kimani et al.[16]applied the restricted Hartree–Fock method to estimate the ground states of many-electron close-shell quantum dots modeled by the FO potential where the electron correlations were included approximately.Chakraborty and Ho[3]made a sophisticated approach to deal with this problem by expanding the wave function in single exponent Hylleraas type basis within the framework of stabilization method,but their work was restricted to only the lowest lying doubly excited resonance state 2s2(1Se)of helium.It is worthwhile to mention that an appropriate knowledge of resonance structure of few-electron QD with and without a central impurity atom will help to understand the electron transport phenomena occurring in real semiconductor QDs.[12]

    Under such circumstances,we have studied the resonance parameters of1Sestates originated from 2sns and 2pnp(n=2–5)configurations of QD confined helium below N=2 ionization threshold of He+in the framework of stabilization method[17]by using explicitly correlated multi-exponent Hylleraas type basis set.This method was successfully employed by the present workers[18?22]for calculations of resonance parameters of different resonance states of the free and confined helium-like ions.In the present study,the resonance parameters of the states under consideration are estimated over a wide range of width(?)for a fixed depth(V0)of the FO potential.The energy values of bound 1sns(1Se)states(n=1?6)have also been reported.Moreover,the positions of 1s,2s(2S)and 2p(2P)states of He+have been estimated for a comprehensive understanding about the structure of QD confined helium.The variation of ionization potential of QD confined He with respect to the width of the FO potential has been studied.It has also been shown that the potential given by Eq.(1)breaks the orbital angular momentum(l)degeneracy in Coulomb field for the energy levels of hydrogen-like atoms.Finally,we have shown that for a fixed cavity depth(V0),the widths of the resonance states show oscillatory behavior with respect to the width(?)of the quantum cavity.It has been noted that for higher excited states,such oscillations are more pronounced.The paper is arranged as follows:a brief discussion on the present methodology is given in Sec.2,followed by a discussion on the results in Sec.3,and finally concluding in Sec.4 with a view towards further use of the present techniques in related studies of spatially confined atomic systems e.g.QD,pressure confinement,strongly coupled plasma confinement etc.

    2 Method

    For any1S state of even parity arising from two electrons having same azimuthal quantum number,the variational equation[23]can be written as,

    subject to the normalization condition,

    where the symbols used in Eqs.(3)and(4)are same as in Ref.[23].The effective potential is given by

    The multi-exponent correlated wavefunction[20]considered in the present calculation is expressed as

    with

    where σ’s are the non-linear parameters.Here,r1and r2are the radial co-ordinates of the electrons and r12is the relative distance between them.In a multiexponent basis set,if there are p number of non-linear parameters,then the number of terms in the radially correlated basis is p(p+1)/2 and,therefore,the dimension of the full basis(N)including angular correlation will be[(p(p+1)/2)×q],where q is the number of terms involving r12.[24]For example,as we have used here nine non-linear parameters,the number of terms in the radially correlated basis is 45 and with 10 terms involving different powers of r12,the dimension of the full basis(N)becomes 450.The values of the non-linear parameters are taken in a geometrical sequence:σi= σi?1γ,γ being the geometrical ratio.[25]The wavefunction can be squeezed or can be made more di ff use by changing the geometrical ratio(γ)keeping σ1constant throughout.To have a preliminary guess about the initial and final values of nonlinear parameter σ,we optimize the energy eigenvalues of1Sestates below N=1 ionization threshold of He+by using Nelder–Mead procedure.[26]The energy eigenroots(E)are then obtained by solving the generalized eigenvalue equation

    whereis the Hamiltonian matrix,is the overlap matrix and C is a column matrix consisting of linear variational coefficients.The wavefunction is normalized for each width(?)of the FO potential to account for the modi fi ed charge distribution inside the QD.Each energy eigenroot plotted against the geometrical ratio(γ)produces the stabilization diagram.Subsequently,we can calculate the densities of resonance states from the inverse of tangents at different points near the stabilization plateau in the neighborhood of avoided crossings for each energy eigenroot.The plots of calculated densities of resonance states versus energy for each eigenroot are then fitted separately to a standard Lorentzian pro file.The best fit,i.e.,with the least chi square(χ2)and the square of correlation(R2)near unity yields the desired position(Er)and width(Γ)of the resonance state.

    For each width(?)of the con fining potential,the energy eigenvalues of2S and2P states of confined oneelectron ion He+are obtained by using Ritz variational technique considering the wavefunction as

    where η’s are the nonlinear parameters and C’s are the linear variational coefficients.For He+(ns)states(n=1?2),we have considered 14-parameter basis set whereas for He+(2p)state we have taken 13 parameters in the basis.In both the cases,l is ranging from 0 to 4.All calculations are carried out in quadruple precision.Atomic units have been used throughout unless otherwise specified.

    3 Results and Discussions

    To construct the stabilization diagram corresponding to each width(?)of the FO potential,repeated diagonalization of the Hamiltonian matrix in the Hylleraas basis set of 450 parameters is performed in the present work for 400 different values of γ ranging from 0.63 a.u.to 0.77 a.u.A portion of the stabilization diagram for1Sestates of confined helium below N=2 ionization threshold of He+is given in Fig.1 where we have taken V0=0.2 a.u.and?=4.0 a.u.It is evident from Fig.1 that there exist two classes of states:

    (i)First few energy eigenroots lying below He+(1s)(?2.184 879 a.u.)level are insensitive with the variation of γ.This feature clearly suggests that these energy eigenroots originating from 1sns configurations of QD confined helium are bound i.e.stable against auto-ionization.

    (ii)Energy eigenrootslying between He+(1s)and He+(2s)(?0.607 849 a.u.)are sensitive with the variation of γ and give rise to flat plateaus in the vicinity of avoided crossings of the energy eigenroots in the neighborhoods of some particular energy values.This is a signature of the presence of1Seresonance states of QD con fined helium.

    The present calculated bound state energy eigenvalues(?E)of 1sns(1Se)(n=1–6)states of He as well as the He+(1s)energies for different cavity widths(?)starting from a very low value of 0.001 a.u.(corresponds to almost a free case)to a high value of 1000.0 a.u.are illustrated in Fig.2.It is to be noted that for a very small cavity width? =0.001,the 1sns(n=1–6)energy eigenvalues of helium and the He+(1s)threshold energy inside the cavity are nearly identical to the respective energy eigenvalues of the free ions and they remain almost unaltered upto the cavity width?=0.1 a.u.We can see from Eq.(1)that,for?→0,cw→∞and thus,Vc→0 which produces no effect of confinement.In between?=0.1 a.u.and 10.0 a.u.,the energy eigenvalues of helium decrease monotonically and ultimately saturate at(E1sns+2×V0)a.u.In a similar fashion,the threshold energy He+(1s)saturates at(E1s+V0)a.u.This feature is physically consistent as we can note from Eq.(1)that for?→∞,the cavity constant cw→ 0,so that Vc(r)→ ?V0.Thus the one-and two-electron energy levels undergo a downward shift by V0and 2V0respectively for? → ∞.The variation of the ionization potential(IP)i.e.the amount of energy required(in eV)to ionize one electron from the ground state(1s2)of helium atom is plotted against the width(?)of the cavity in Fig.3.In accordance with the variation of energy eigenvalues of helium and its oneelectron subsystem i.e.He+,it is evident from Fig.3 that,the IP is identical with the vacuum IP for low values of? while,for high values of?,it increases by an amount V0~5.44 eV(=0.2 a.u.).It is thus evident from Figs.2 and 3 that the rates of variations of energy values of the ions are significant when the size of the confining cavity is of the order of atomic dimensions.It is thus remarkable that the stability of an impurity atom can be controlled by suitably tuning the size of a QD i.e.the depth and width of the representing cavity.

    Fig.1 Stabilization diagram for1Sestates of helium atom under quantum cavity.Width of the cavity is set at 4.0 a.u.

    Fig.2 The variation of bound state energy eigenvalues with reference to the width of the cavity.

    Fig.3 The variation of IP with reference to the width of the cavity.

    An enlarged view of the stabilization diagram(given in Fig.1)for1Sestates of He within the energy range?0.8 a.u.to?0.64 a.u.is given in Fig.4.The1Sestates of He below N=2 ionization threshold of He+(2s)can arise due to 2sns and 2pn′p(n,n′≥ 2)configurations.From a closer look at Fig.4,we can see that for a short range of γ,each eigenroot between N=1 and N=2 ionization thresholds of He+becomes almost flat in the vicinity of avoided crossings in the neighborhood of different energies.In order to calculate the exact resonance parameters,the density of states(DOS)ρ(E)is calculated by evaluating the inverse of the slope at a number of points near these flat plateaus of each energy eigenroot using the formula[18]given by:

    The estimated DOS ρn(E)is then fitted to the following Lorentzian form[18]

    where y0is the baseline background,A is the total area under the curve from the baseline,Eris the position of the center of the peak of the curve and Γ represents the full width of the peak of the curve at half maxima.Among different fitting curves for each eigenroot corresponding to a particular resonance state,the best fitted curve i.e.the curve with least χ2and the square of correlation(R2)closer to unity[18]yields the desired resonance energy(Er)and width(Γ).For example,the calculated DOS and the corresponding fitted Lorentzian for the 2s2(1Se)resonance state of He below He+(1s)threshold for cavity width?=4.0 a.u.(given in Fig.5)yields resonance position Erat?0.98163 a.u.and width Γ =6.9961×10?3a.u.The evaluation of DOS following this fitting procedure has been repeated for each width of the confining potential(?).

    Fig.4 Enlarged view of the stabilization diagram for 1Sestates of helium atom under quantum cavity in the energy range between?8.0 a.u.to?0.64 a.u.Width of the cavity is set at 4.0 a.u.

    Fig.5 Density of states and fitted lorentzian for cavity width 4.0 a.u.

    Fig.6 The variation of resonance energies(Er)of 2sns(n=2–5)(1Se)states and corresponding 2s and 2p threshold energies with the cavity width(?).

    The estimated resonance energies of doubly excited 2sns(1Se)states(n=2–5)of helium and corresponding 2s and 2p threshold energies for the cavity depth V0=0.2 a.u.and cavity width(?)ranging from 0.001 a.u.to 1000 a.u.are given in figure 6,while the variations of resonance energies(Er)of 2pnp(n=2–5)(1Se)states and corresponding 2s and 2p threshold energies versus?are given in Fig.7.We have noted the following points.

    (i)It is clear from Figs.6 and 7 that for?=0.001 a.u.,the He+(2s)and He+(2p)states are degenerate and coincide with the energy value of N=2 ionization threshold of free He+ion.As?increases,the He+(2s)and He+(2p)states become non-degenerate.Initially,the 2s level of He+lies energetically below the 2p level for?up to 0.5 a.u.At?=1.0 a.u.,the 2s state moves above the 2p level.These results exhibit that an “incidental degeneracy”takes place for 2s and 2p states of He+at some value of?between 0.5 a.u.and 1.0 a.u.and then a “l(fā)evel crossing” occurs between these two states having different symmetry properties.Finally,these states become degenerate again for?≥100.0 a.u.The incidental degeneracy for He+(2s)and He+(2p)states occur for?in the range 0.5≤?≤1.0.Such incidental degeneracy and subsequent level crossing phenomenon have been noted earlier by Sen et al.[27]in case of cage confined hydrogen atom and by Bhattacharyya et al.[28]in case of helium-like ions within strongly coupled plasma environment.

    Fig.7 The variation of resonance energies(Er)of 2pnp(n=2?5)(1Se)states and corresponding 2s and 2p threshold energies with the cavity width(?).

    (ii)It is seen from both Figs.6 and 7 that all the resonance energies(Er)are almost unaltered up to?=0.5 a.u.,then decrease rapidly up to?=20.0 a.u.,and ultimately saturate.For low values of?(say 0.001 a.u.) the resonance energies are identical with those of the free He atom whereas for?=1000.0 a.u.the resonance energies are equal to those of free He atom plus 0.4 a.u.(i.e.2.0×V0).Thus,for a given depth(V0)of the finite oscillator potential,the variations of energies of the bound states and the resonance states of helium with reference to the width of the cavity(?)are nearly identical.

    The variation of widths(Γ)of 2sns and 2pnp(1Se)(n=2–5)resonance states with reference to ? are given in Figs.8 and 9 respectively.A closer look at Figs.8 and 9 leads us to the following observations.

    (i)In general,it can be argued that the variation of widths shows an oscillatory behavior which are more pronounced for the higher excited states.It is worthwhile to mention here that recently Chakraborty and Ho[3]also reported such oscillation of resonance width(Γ)for 2s2(1S)state of QD confined helium atom.This feature clearly indicates a possibility of controlling the autoionization lifetimes of doubly excited states of two-electron ions by tuning the parameters of the confining FO potential representing the quantum dot.

    Fig.8 The variation of resonance width(Γ)of 2sns(n=2–5)(1Se)states with the cavity width(?).

    Fig.9 The variation of resonance width(Γ)of 2pnp(n=2–5)(1Se)states with the cavity width(?).

    (ii)The variations of widths of 2s2and 2p2(1Se)states with respect to?are exactly opposite in nature.For1Sestate originating from 2s2configuration,the autoionization width first decreases within the range 0.1≤?≤1.0 and after reaching the minima,it shows a large bump around??6.0 a.u.After that it starts to decrease and fi nally the autoionization width saturates where it becomes equal to that of a free He atom.In contrast,for 2p2state,the autoionization width first increases for 0.1≤?≤1.0 and then shows a large dip approximately at the same value of?for which the 2s2state shows the bump.

    (iii)The values of?corresponding to the largest bump in the values of autoionization widths(Γ)of 2sns states and the lowest dip for 2pnp states shift towards the higher values of the cavity width(?)for higher excited states.

    Inside the QD i.e.due to the presence of the surrounding FO potential,the charge distribution of the impurity ion gets reoriented,which produces the behavioral changes as compared to a free ion.The nodes or antinodes of the resonance wavefunction lie at the boundary of the QD cavity and the interference caused inside the cavity gives rise to the oscillatory behavior of the resonance widths.[3,29]The number of nodes or antinodes of the wavefunction increases for high-lying resonance states and the oscillation becomes more prominent.

    4 Conclusion

    Structural properties of He atom confined in a QD,efficiently modeled by a two-parameter weakly confining FO type potential,have been investigated in the framework of stabilization method using explicitly correlated Hylleraastype basis sets.It has been observed that the structure of the impurity ion is a sensitive function of the dot size.For very small values of the cavity width,the system behaves almost like a free ion whereas,for very high cavity widths,a constant shift equals to the depth of the potential are observed in the energy values of the bound as well as the resonance states.When the dot size becomes comparable to the dimensions of the impurity atom,the effects are more pronounced and many remarkable behaviors such as increase in ionization potential,oscillations in the widths of two-electron resonance states,incidental degeneracy and subsequent level-crossing phenomena for one-electron ions are observed.The present work is expected to lead to future investigations on the autoionizing states of different angular momenta for QD confined two-electron systems.

    References

    [1]W.Jaskolski,Phys.Rep.1(1996)271.

    [2]J.Sabin,E.Brandas,and S.A.Cruz,Adv.Quantum Chem.57(2009)1334;58(2009)1297.

    [3]S.Chakraborty and Y.K.Ho,Phys.Rev.A 84(2011)032515.

    [4]S.Bhattacharyya,J.K.Saha,P.K.Mukherjee,and T.K.Mukherjee,Phys.Scr.87(2013)065305 and references therein.

    [5]D.J.Norris,A.L.Efros,and S.C.Erwin,Science 319(2008)1776.

    [6]N.L.Rosi,J.Eckert,M.Eddaoudi,et al.,Science 300(2003)1127.

    [7]J.L.C.Rowsell,E.C.Spencer,J.Eckert,J.A.K.Howard,and O.M.Yaghi,Science 309(2005)1350.

    [8]J.A.Ludlow,T.G.Lee,and M.S.Pindzola,J.Phys.B 43(2010)235202.

    [9]Solvation Effects on Molecules and Biomolecules,Computational Methods and Applications,ed.S.Canuto,Springer,Berlin(2008).

    [10]S.Sahoo,Y.C.Lin,and Y.K.Ho,Physica E 40(2008)3107.

    [11]S.Sahoo and Y.K.Ho,Phys.Rev.B 69(2004)165323.

    [12]M.Bylicki,W.Jasklski,A.Stachw,and J.Diaz,Phys.Rev.B 72(2005)075434.

    [13]Y.Sajeev and N.Moiseyev,Phys.Rev.B 78(2008)075316.

    [14]M.Genkin and E.Lindroth,Phys.Rev.B 81(2010)125315.

    [15]P.Winkler,Int.J.Quant.Chem.100(2004)1122.

    [16]P.Kimani,P.Jones,and P.Winkler,Int.J.Quant.Chem.108(2008)2763.

    [17]V.A.Mandelshtam,T.R.Ravuri,and H.S.Taylor,Phys.Rev.Lett.70(1993)1932.

    [18]J.K.Saha and T.K.Mukherjee,Phys.Rev.A 80(2009)022513

    [19]J.K.Saha,S.Bhattacharyya,and T.K.Mukherjee,J.Chem.Phys.132(2010)134107.

    [20]J.K.Saha,S.Bhattacharyya,T.K.Mukherjee,and P.K.Mukherjee,Int.J.Quant.Chem.111(2011)1819.

    [21]J.K.Saha,S.Bhattacharyya,and T.K.Mukherjee,Int.Rev.At.Mol.Phys.3(2012)1.

    [22]S.Kasthurirangan,et al.,Phys.Rev.Lett.111(2013)243201.

    [23]T.K.Mukherjee and P.K.Mukherjee,Phys.Rev.A 50(1994)850.

    [24]J.K.Saha,S.Bhattacharyya,T.K.Mukherjee,and P.K.Mukherjee,J.Phys.B 42(2009)245701.

    [25]M.Bylicki,J.Phys.B 30(1997)189.

    [26]J.A.Nelder and R.Mead,Comput.J.7(1965)308.

    [27]K.D.Sen,J.Chem.Phys.122(2005)194324.

    [28]S.Bhattacharyya,J.K.Saha,and T.K.Mukherjee,Phys.Rev.A 91(2015)042515.

    [29]L.G.Jiao and Y.K.Ho,Electronic Structure of Quantum Confined Atoms and Molecules,ed.K.D.Sen,Springer,Switzerland(2014)p.145.

    2021天堂中文幕一二区在线观| 亚洲综合色惰| 亚洲一区高清亚洲精品| 亚洲欧美日韩卡通动漫| 国产伦精品一区二区三区视频9| 大香蕉久久网| 久久午夜亚洲精品久久| 九九热线精品视视频播放| 亚洲欧美日韩无卡精品| 白带黄色成豆腐渣| 男人和女人高潮做爰伦理| 久久久久久久久大av| 日韩欧美精品v在线| 日日啪夜夜撸| 日韩人妻高清精品专区| 亚洲自拍偷在线| 日韩中字成人| 熟妇人妻久久中文字幕3abv| 特级一级黄色大片| 国产成人一区二区在线| 久久久久免费精品人妻一区二区| 国产精品电影一区二区三区| 夜夜夜夜夜久久久久| 欧美日韩乱码在线| 亚洲内射少妇av| 国产精品一区二区三区四区久久| 日韩三级伦理在线观看| ponron亚洲| 午夜精品在线福利| 欧美一区二区国产精品久久精品| 无遮挡黄片免费观看| 麻豆久久精品国产亚洲av| 婷婷精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 伦精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 日韩成人av中文字幕在线观看 | 日日干狠狠操夜夜爽| 国产精品人妻久久久影院| 亚洲国产精品sss在线观看| 久久久午夜欧美精品| 免费一级毛片在线播放高清视频| 色av中文字幕| 日韩欧美精品免费久久| 欧美精品国产亚洲| 日韩欧美三级三区| 国产精品免费一区二区三区在线| 国产欧美日韩精品亚洲av| 五月玫瑰六月丁香| 丰满乱子伦码专区| 精品久久久久久久久av| 国产黄a三级三级三级人| 成人特级黄色片久久久久久久| 啦啦啦观看免费观看视频高清| 天堂网av新在线| 成人美女网站在线观看视频| 亚洲三级黄色毛片| 亚洲欧美成人精品一区二区| 麻豆一二三区av精品| 人妻丰满熟妇av一区二区三区| 欧美3d第一页| 国产精品久久视频播放| 精品免费久久久久久久清纯| 91在线精品国自产拍蜜月| 亚洲婷婷狠狠爱综合网| 禁无遮挡网站| 欧美成人a在线观看| 欧美在线一区亚洲| 亚洲精品国产av成人精品 | 国产亚洲精品综合一区在线观看| 欧美高清成人免费视频www| 真实男女啪啪啪动态图| 久久人人爽人人片av| 免费观看的影片在线观看| 久久久精品欧美日韩精品| 亚洲欧美成人综合另类久久久 | 最后的刺客免费高清国语| 免费大片18禁| 免费高清视频大片| avwww免费| 欧美又色又爽又黄视频| 亚洲人成网站在线播放欧美日韩| 人人妻人人看人人澡| 国产色爽女视频免费观看| 亚洲最大成人手机在线| 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品亚洲av| 乱人视频在线观看| 天天躁日日操中文字幕| 精品久久久久久久末码| 国产一区二区激情短视频| 男女做爰动态图高潮gif福利片| 欧美日本亚洲视频在线播放| 男女做爰动态图高潮gif福利片| 哪里可以看免费的av片| 国产精品精品国产色婷婷| 免费大片18禁| 国产精品免费一区二区三区在线| 日韩中字成人| 亚洲欧美日韩无卡精品| 日产精品乱码卡一卡2卡三| 午夜福利18| 香蕉av资源在线| 亚洲自偷自拍三级| 国产一区二区激情短视频| 国产精品,欧美在线| 久久精品国产自在天天线| 村上凉子中文字幕在线| 91午夜精品亚洲一区二区三区| 成年女人看的毛片在线观看| 网址你懂的国产日韩在线| 色5月婷婷丁香| 亚洲,欧美,日韩| 久久久久免费精品人妻一区二区| 日韩,欧美,国产一区二区三区 | 欧美一区二区亚洲| 亚洲av成人av| 亚洲熟妇熟女久久| 91久久精品国产一区二区三区| 免费看美女性在线毛片视频| 最后的刺客免费高清国语| 三级毛片av免费| 在线播放国产精品三级| 精品午夜福利视频在线观看一区| 99久国产av精品| 丝袜喷水一区| 内射极品少妇av片p| 高清午夜精品一区二区三区 | 老女人水多毛片| 久久久精品大字幕| 国产精品亚洲美女久久久| 欧美日韩综合久久久久久| av天堂在线播放| 国产高潮美女av| 国产极品精品免费视频能看的| 中文亚洲av片在线观看爽| 亚洲专区国产一区二区| 国产精品亚洲一级av第二区| 免费观看在线日韩| 一区二区三区高清视频在线| 日韩av不卡免费在线播放| 91av网一区二区| 日韩精品有码人妻一区| 国产成年人精品一区二区| 嫩草影院精品99| 亚洲av一区综合| 国产成人一区二区在线| 亚洲国产精品国产精品| 欧美国产日韩亚洲一区| 国产精品久久电影中文字幕| 午夜精品国产一区二区电影 | 亚洲丝袜综合中文字幕| 国产精品野战在线观看| 欧美+日韩+精品| 91在线观看av| 熟妇人妻久久中文字幕3abv| 三级男女做爰猛烈吃奶摸视频| 欧美日韩在线观看h| 久久精品综合一区二区三区| 18禁在线无遮挡免费观看视频 | 久久久久久久久久久丰满| 国产av一区在线观看免费| 国产av麻豆久久久久久久| 九九在线视频观看精品| 亚洲精品在线观看二区| av免费在线看不卡| 欧美日韩乱码在线| 欧美日韩乱码在线| 久久综合国产亚洲精品| 日韩欧美免费精品| 日韩av在线大香蕉| 99riav亚洲国产免费| 非洲黑人性xxxx精品又粗又长| 黄色欧美视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久热精品热| 亚洲av成人av| 18禁在线播放成人免费| 激情 狠狠 欧美| 久久综合国产亚洲精品| 99国产精品一区二区蜜桃av| 熟女人妻精品中文字幕| 国产在视频线在精品| 免费看光身美女| 村上凉子中文字幕在线| 国产精品一及| 国国产精品蜜臀av免费| 一个人观看的视频www高清免费观看| 国产单亲对白刺激| 久久亚洲国产成人精品v| 亚洲第一区二区三区不卡| 男女下面进入的视频免费午夜| 亚洲av免费在线观看| 99在线人妻在线中文字幕| 97在线视频观看| 观看美女的网站| 亚洲高清免费不卡视频| 最后的刺客免费高清国语| 久久久色成人| 热99re8久久精品国产| 成人鲁丝片一二三区免费| 午夜精品国产一区二区电影 | 久久精品国产亚洲av天美| 久久精品国产鲁丝片午夜精品| 国产欧美日韩精品一区二区| 熟妇人妻久久中文字幕3abv| 精品一区二区三区人妻视频| av天堂在线播放| 亚洲av中文av极速乱| 91午夜精品亚洲一区二区三区| 久久这里只有精品中国| 我要看日韩黄色一级片| 最近2019中文字幕mv第一页| 啦啦啦观看免费观看视频高清| 欧美区成人在线视频| 国产一区二区在线观看日韩| 国产私拍福利视频在线观看| 久久久久久久久久黄片| 成年女人永久免费观看视频| 男女之事视频高清在线观看| 亚洲欧美日韩高清专用| 久久精品国产99精品国产亚洲性色| 亚洲中文日韩欧美视频| 国产女主播在线喷水免费视频网站 | 国产精品一区www在线观看| 狂野欧美白嫩少妇大欣赏| 精品无人区乱码1区二区| 色视频www国产| 亚洲图色成人| 99热精品在线国产| 欧美日本视频| 黄色配什么色好看| 欧美日韩综合久久久久久| 国产成人91sexporn| 两个人视频免费观看高清| 精品一区二区三区视频在线| 国产亚洲欧美98| 精品久久久久久久久久久久久| 欧美一级a爱片免费观看看| 搡老熟女国产l中国老女人| 三级男女做爰猛烈吃奶摸视频| 国内少妇人妻偷人精品xxx网站| 国产一区二区在线观看日韩| 亚州av有码| 久久综合国产亚洲精品| 国产成人影院久久av| 成人亚洲欧美一区二区av| 一级黄色大片毛片| 亚洲自拍偷在线| 久久久久久国产a免费观看| 免费观看的影片在线观看| 老师上课跳d突然被开到最大视频| 国产黄片美女视频| 在线天堂最新版资源| 人人妻人人澡欧美一区二区| 国国产精品蜜臀av免费| 欧美成人一区二区免费高清观看| 一级av片app| 久久鲁丝午夜福利片| 热99在线观看视频| 亚洲高清免费不卡视频| 亚洲一区高清亚洲精品| 一级毛片aaaaaa免费看小| 日本黄色视频三级网站网址| 黑人高潮一二区| 国内精品宾馆在线| 国产综合懂色| 欧美区成人在线视频| 亚洲精品日韩av片在线观看| 91麻豆精品激情在线观看国产| 一夜夜www| 国产日本99.免费观看| 亚洲欧美成人精品一区二区| 亚洲精品一区av在线观看| 色综合站精品国产| 综合色丁香网| 国产精品嫩草影院av在线观看| 欧美极品一区二区三区四区| 欧美潮喷喷水| 夜夜看夜夜爽夜夜摸| 少妇丰满av| 国产精品精品国产色婷婷| 亚洲欧美清纯卡通| 精品久久久久久成人av| 欧美高清成人免费视频www| av天堂中文字幕网| 亚洲av.av天堂| 狠狠狠狠99中文字幕| 亚洲av熟女| 久久天躁狠狠躁夜夜2o2o| 亚洲五月天丁香| 美女高潮的动态| 国内精品久久久久精免费| 天天一区二区日本电影三级| 精品人妻偷拍中文字幕| 香蕉av资源在线| 嫩草影院新地址| 日本撒尿小便嘘嘘汇集6| 在线播放国产精品三级| 久久久久国产精品人妻aⅴ院| 久久精品久久久久久噜噜老黄 | 校园春色视频在线观看| 小蜜桃在线观看免费完整版高清| 欧美日韩综合久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久| 日本一本二区三区精品| 麻豆久久精品国产亚洲av| 长腿黑丝高跟| 久久久久国内视频| 桃色一区二区三区在线观看| 午夜视频国产福利| 两个人的视频大全免费| 长腿黑丝高跟| 国产精品一区www在线观看| 青春草视频在线免费观看| 国内少妇人妻偷人精品xxx网站| 国产精品日韩av在线免费观看| 韩国av在线不卡| 老熟妇乱子伦视频在线观看| 一级a爱片免费观看的视频| 亚洲国产欧美人成| 99riav亚洲国产免费| 校园春色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利18| 天天躁日日操中文字幕| 最近最新中文字幕大全电影3| 免费在线观看影片大全网站| 中国国产av一级| 蜜桃久久精品国产亚洲av| 一个人看的www免费观看视频| 欧美日本亚洲视频在线播放| 嫩草影院新地址| 天堂影院成人在线观看| 精品一区二区三区人妻视频| 亚洲国产欧美人成| 秋霞在线观看毛片| 天堂av国产一区二区熟女人妻| 久久久久国产精品人妻aⅴ院| 国产精品综合久久久久久久免费| 久久久久久久久久黄片| 亚洲aⅴ乱码一区二区在线播放| 最新在线观看一区二区三区| 亚洲不卡免费看| 亚洲欧美日韩东京热| 国产精品一及| 国产视频内射| 大香蕉久久网| 一卡2卡三卡四卡精品乱码亚洲| 免费人成在线观看视频色| 永久网站在线| 一级毛片电影观看 | 又黄又爽又刺激的免费视频.| 国产极品精品免费视频能看的| 综合色av麻豆| 亚洲人成网站在线播| 国产精品久久久久久久电影| 九九久久精品国产亚洲av麻豆| 女人十人毛片免费观看3o分钟| 内地一区二区视频在线| 变态另类成人亚洲欧美熟女| 久久99热这里只有精品18| 俺也久久电影网| 精品久久久久久久久久久久久| 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| 中文字幕免费在线视频6| 亚洲欧美日韩东京热| 国产高清激情床上av| 男女视频在线观看网站免费| 欧美另类亚洲清纯唯美| 白带黄色成豆腐渣| 男女做爰动态图高潮gif福利片| 亚洲国产精品成人综合色| 亚洲久久久久久中文字幕| 国语自产精品视频在线第100页| 国内揄拍国产精品人妻在线| 成人午夜高清在线视频| 成人亚洲精品av一区二区| 伦理电影大哥的女人| 在线观看一区二区三区| 欧美在线一区亚洲| 亚洲美女搞黄在线观看 | 波多野结衣高清作品| 在线免费观看不下载黄p国产| 日日摸夜夜添夜夜添小说| 国产高清视频在线播放一区| a级毛片a级免费在线| 中出人妻视频一区二区| 中文亚洲av片在线观看爽| 国产男人的电影天堂91| 成人性生交大片免费视频hd| 国产精品野战在线观看| 亚洲av中文av极速乱| 嫩草影院新地址| 午夜精品一区二区三区免费看| 国产av在哪里看| 久久九九热精品免费| 欧美人与善性xxx| 亚洲熟妇中文字幕五十中出| 女的被弄到高潮叫床怎么办| 午夜福利在线在线| 欧美成人一区二区免费高清观看| 精品一区二区三区av网在线观看| 久久欧美精品欧美久久欧美| 色播亚洲综合网| 午夜视频国产福利| 男女做爰动态图高潮gif福利片| 麻豆精品久久久久久蜜桃| 国产视频一区二区在线看| 成人午夜高清在线视频| 一级毛片aaaaaa免费看小| 草草在线视频免费看| 在现免费观看毛片| 啦啦啦观看免费观看视频高清| 色哟哟哟哟哟哟| 亚洲成av人片在线播放无| 欧美成人一区二区免费高清观看| 变态另类成人亚洲欧美熟女| 搞女人的毛片| 国产成人福利小说| 国产成人a区在线观看| 午夜福利高清视频| 给我免费播放毛片高清在线观看| 国产熟女欧美一区二区| 性色avwww在线观看| 欧美+日韩+精品| 久久久精品欧美日韩精品| 免费一级毛片在线播放高清视频| 一级毛片电影观看 | 天堂√8在线中文| 亚洲精品乱码久久久v下载方式| 男人舔女人下体高潮全视频| 中出人妻视频一区二区| 最新中文字幕久久久久| 一卡2卡三卡四卡精品乱码亚洲| eeuss影院久久| 久久草成人影院| 少妇被粗大猛烈的视频| 欧美另类亚洲清纯唯美| av免费在线看不卡| 欧美潮喷喷水| 深爱激情五月婷婷| 亚洲av五月六月丁香网| 春色校园在线视频观看| 老熟妇仑乱视频hdxx| 午夜激情欧美在线| 美女大奶头视频| 精品午夜福利视频在线观看一区| 国产蜜桃级精品一区二区三区| 午夜久久久久精精品| 丰满人妻一区二区三区视频av| 国产成人a区在线观看| 精品久久国产蜜桃| 免费av观看视频| 综合色丁香网| 国产精品1区2区在线观看.| 18禁裸乳无遮挡免费网站照片| 直男gayav资源| 国产蜜桃级精品一区二区三区| 国产成人a区在线观看| 成人特级av手机在线观看| 午夜日韩欧美国产| 嫩草影院新地址| 亚洲av二区三区四区| 午夜老司机福利剧场| 国产午夜福利久久久久久| 乱系列少妇在线播放| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 热99在线观看视频| 日本一本二区三区精品| 国产欧美日韩精品亚洲av| 免费一级毛片在线播放高清视频| 日本免费a在线| 白带黄色成豆腐渣| 亚洲最大成人手机在线| 免费在线观看影片大全网站| 久久人人爽人人片av| 亚洲乱码一区二区免费版| 男人狂女人下面高潮的视频| 99久久精品热视频| 国产探花在线观看一区二区| 亚洲av一区综合| 国产白丝娇喘喷水9色精品| 性色avwww在线观看| 天天躁夜夜躁狠狠久久av| 成人鲁丝片一二三区免费| avwww免费| 国产又黄又爽又无遮挡在线| 国产一区二区在线av高清观看| 尾随美女入室| 欧美成人a在线观看| 精品一区二区三区视频在线观看免费| 51国产日韩欧美| 亚洲国产精品sss在线观看| 亚洲国产精品久久男人天堂| 免费高清视频大片| 尾随美女入室| 久久久久国内视频| 亚洲av中文av极速乱| 晚上一个人看的免费电影| 一进一出好大好爽视频| 在线国产一区二区在线| 亚洲aⅴ乱码一区二区在线播放| 夜夜看夜夜爽夜夜摸| 日韩 亚洲 欧美在线| 深夜a级毛片| 精品久久久久久久久久久久久| 免费高清视频大片| 日本熟妇午夜| 亚洲欧美清纯卡通| 婷婷精品国产亚洲av在线| 蜜桃久久精品国产亚洲av| 精品午夜福利在线看| 18+在线观看网站| 亚洲aⅴ乱码一区二区在线播放| 午夜福利在线观看免费完整高清在 | 日韩制服骚丝袜av| 精品国内亚洲2022精品成人| 欧美日韩乱码在线| 在线天堂最新版资源| 久久精品夜色国产| 男人舔女人下体高潮全视频| 国产精品电影一区二区三区| av在线播放精品| 久久精品91蜜桃| 99热全是精品| 久久99热这里只有精品18| 免费观看精品视频网站| 国产黄色小视频在线观看| 欧美区成人在线视频| 狂野欧美白嫩少妇大欣赏| av国产免费在线观看| 国产精品一区二区免费欧美| 成人漫画全彩无遮挡| 亚洲精品一卡2卡三卡4卡5卡| 在线免费十八禁| 少妇人妻一区二区三区视频| 久久人妻av系列| 噜噜噜噜噜久久久久久91| 国产白丝娇喘喷水9色精品| 成人av在线播放网站| 少妇丰满av| 一级毛片aaaaaa免费看小| 亚洲av第一区精品v没综合| 中文亚洲av片在线观看爽| 秋霞在线观看毛片| 婷婷六月久久综合丁香| 可以在线观看毛片的网站| 日本免费a在线| 午夜福利在线观看免费完整高清在 | 老司机福利观看| 五月玫瑰六月丁香| 内射极品少妇av片p| 日韩高清综合在线| 日日啪夜夜撸| 国内久久婷婷六月综合欲色啪| 九九热线精品视视频播放| 黄色一级大片看看| 亚洲国产色片| 少妇被粗大猛烈的视频| 国产欧美日韩精品一区二区| 99国产精品一区二区蜜桃av| 悠悠久久av| 免费黄网站久久成人精品| 精品久久久久久久久av| 伦理电影大哥的女人| 好男人在线观看高清免费视频| 搡老岳熟女国产| 国产在线精品亚洲第一网站| 国产黄色小视频在线观看| 国产精品一区二区性色av| 老司机午夜福利在线观看视频| 国产私拍福利视频在线观看| 国产免费男女视频| 99久国产av精品国产电影| 亚洲精品日韩av片在线观看| 国产在线精品亚洲第一网站| 日日干狠狠操夜夜爽| 午夜福利在线观看免费完整高清在 | 久久99热6这里只有精品| av免费在线看不卡| 伦精品一区二区三区| 亚洲四区av| 欧美日韩在线观看h| 亚洲欧美日韩高清在线视频| 欧美日韩乱码在线| 成人毛片a级毛片在线播放| 特大巨黑吊av在线直播| 国产一区二区在线av高清观看| av福利片在线观看| 啦啦啦啦在线视频资源| 久久人人爽人人爽人人片va| 伦理电影大哥的女人| 欧美xxxx性猛交bbbb| 精品一区二区免费观看| 久久亚洲国产成人精品v| 伦理电影大哥的女人| 一级黄片播放器| 国产精品,欧美在线| 搞女人的毛片| 国产精品美女特级片免费视频播放器| 国产精品av视频在线免费观看| 成人精品一区二区免费| 久久久久国内视频| av国产免费在线观看| 人人妻人人看人人澡| 亚洲精品国产av成人精品 | 中文在线观看免费www的网站| 免费大片18禁| 12—13女人毛片做爰片一| av黄色大香蕉| 国产黄色小视频在线观看|