• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Re-examining Photodetachment of H?near a Spherical Surface using Closed-Orbit Theory?

    2016-05-14 12:51:05XiaoPengYou曉鵬andMengLiDu杜孟利
    Communications in Theoretical Physics 2016年3期

    Xiao-Peng You(曉鵬)and Meng-Li Du(杜孟利)

    Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    1 Introduction

    Photodetachment of negative ions in different external fields has been studied during the past decades.[1?11]The most interesting aspect of these studies is to understand and characterise the induced oscillations in various systems by the additional external fields.different methods have also been introduced to calculate the photodetachment cross sections.As a prelude to the present system,the photodetachment cross section for a negative ion H?near a reflective wall was first introduced and studied[12]using closed orbit theory.At almost the same time,Afaq and Du[13]applied a theoretical imaging method to study the same problem.More recently,Haneef et al.[14]studied the photodetachment of H?near a spherical surface by using the theoretical imaging method.[13]They found oscillations in the total photodetachment cross sections.

    In this paper,we re-examine the total cross section of H?near a spherical surface by directly applying the closed-orbit theory.When we compare our result and that by Haneef et al.,significant difference between the two results is found.We also find the difference vanishes in the limit of large radius of the reflective sphere.We argue the discrepancy between the two results is caused by the incorrect application of the theoretical imaging method developed originally for photodetachment near a flat surface.

    This article is organized as follows.In Sec.2,the system is briefly described.In Sec.3,the total photodetachment cross section is calculated using the standard closed-orbit theory.[15]In Sec.4,we calculate and compare our photodetachment cross sections with those by Haneef et al.[14]for various values of parameters such as the radius of the sphere and the distance between the sphere and the negative ion.Conclusions are given in Sec.5.Atomic units are used throughout this paper unless otherwise noted.

    2 The System

    For convenience,here we first briefly describe the system considered by Haneef et al.[14]As shown schematically in Fig.1 we study the photodetachment of H?near a spherical surface.The system is three-dimensional and Fig.1 represents only the intersection of the system with the x–z plane,assuming z-axis points upward.The reflective spherical surface is represented by the higher circle centered at O1with a radius rc.Outside the sphere is a negative ion H?located at O.The distance between the negative ion and the center of the spherical surface O1is assumed to be(d+rc).

    For the photodetachment process,the initial bound state of H?can be regarded as a one-electron system.[7?8]In such state,the electron moves in a short-range potential of the hydrogen atom. In the one active electron approximation for the system,the initial bound state Ψi=B e?kbr/r,where B is the normalization constant and equals 0.31552.kbis the momentum related to the binding energy Ebof H?.Ebis approximately 0.754 eV.

    When a laser is turned on,the ion may absorb a photon and the electron then moves under the fields of combined short-range potential of the hydrogen atom and the reflective sphere.The photodetachment cross section is a measure of the amount of excited electron cloud after the absorption of a photon by the negative ion.The cross section depends sensitively on the parameters of the system including the radius of the reflective sphere and photon energy.The cross section also reveals much about the motion of the excited electron after a photon has been absorbed.

    Fig.1 The schematic of photodetachment of H?near a reflective spherical surface.The radius of the reflective spherical surface centered at O1is rc.H?is outside the sphere.The distance between H?and the closest tangent plane to it is d.The origin of coordinate is set at the negative ion located at O.The z axis points upward.A trajectory from O to M and from M to B is also shown.

    3 Closed-Orbit Theory for Photodetachment Cross Section

    Let us assume the laser polarization is linear and parallel to the z axis.According to closed-orbit theory,[15]the active electron goes into outgoing pzwaves after a photon is absorbed.The outgoing waves emerging from O propagate away from the hydrogen atom in all directions.Suf-ifciently far from the residual atom,the wave propagates according to semiclassical mechanics.Part of these waves propagating upward toward the sphere gets reflected by the sphere.The waves then reverse its direction near the surface of the sphere and propagate downward toward the negative ion.The interference of the outgoing electron wave and the returning wave in the region of the negative ion leads to the oscillation in the photodetachment cross section.The outgoing and returning wave follows a closed-orbit.In Fig.1,the closed-orbit goes along the z-axis from O first to C and then goes back to O.This is the only closed-orbit that goes out from and returns to the point O in this system.

    According to closed-orbit theory,[15]the photodetachment cross section can be written as

    whererepresents the photodetachment cross section of H?in free space,again B=0.31522 is related to the normalization of the initial bound state Ψiof H?,c is the speed of light and its value is approximately 137 a.u.,E denotes the energy of the escaping electron,the photon energy is Ep=E+Eb.As mentioned earlier,Ebis the binding energy of the negative ion of H?. σret(E)is the oscillatory term which is identified with the closed orbit,

    Epis the incident photon energy and D is the dipole operator,Ψidenotes the initial bound state wave function of H?. In the closed orbit theory,it is crucial to get Ψret,which is a returning wave obtained by propagating an outgoing wave along the closed-orbit O?C?O when it comes back to the negative ion region.In the case of linear polarization parallel to the z axis,D is simply z.

    The outgoing wave is defined as the outgoing solution of an inhomogeneous Schr¨odinger equation,(E ?H0)Ψout(r,θ,φ)=DΨi,where H0represents the Hamiltonian of the detached electron moving in a short-range potential excluding the spherical sphere after absorbing a photon.H0=p2/2+Vp(r),where Vp(r)represents a short-range potential for the detached electron.The outgoing wave has been obtained[8]and has the form

    wher(kr)is an outgoing Bessel function.The outgoing wave in Eq.(3)describes the outgoing photodetached electron with an angular factor cos(θ).Far away from the source region,for example,when r is larger than 20 a.u.from the negative ion,the outgoing wave is well correlated with classical trajectories.As mentioned before,there is only one closed-orbit for this system.After a photon is absorbed,the detached electron as a wave first travels towards the sphere centered at O1.Then,it is reflected back to the region of the hydrogen atom at O by the spherical surface.Consider a small sphere centered at the negative ion.Its radius is R.For the moment,R has a value around 20 a.u.However,the final result will be independent of R as we will see.For r≥R the asymptotic approximationcan be used.Then the direct outgoing wave for the detached electron on the surface of sphere with a radius of R centered at O has the form

    The returning wave function is constructed using the standard semiclassical method.[15]

    where A and S are respectively the amplitude and the action along the closed orbit,μrepresents the Maslov index and indicates the phase loss caused by the reflective spherical surface centered at O1.Assume the reflective surface is“hard”,[13]then μ equals two.In the region of the negative ion,the returning wave function can be well represented by a plane wave propagating downward,[9]Ψret=N e?ikz.Therefore,N=Aei(S?π)Ψout(R,θ=0,φ).

    When the outgoing wave propagates out from the source region along the closed orbit,its amplitude and phase change accordingly.The electron travels in free space until it meets the spherical surface centered at O1,it then travels toward and finally returns back to the region of hydrogen atom.The action S along the full closed orbit O?C?O is easy to obtain,

    The amplitude A is calculated with[15]

    where T is the time of the full closed orbit and J(2)(ρ,z,t)is the two dimension Jacobian.

    Note the elements of the Jacobian matrix are calculated with respect to the closed orbit.As shown schematically in Fig.1,when the trajectory first travels from O vertically to the sphere surface centered at O1,it is reflected at C and travels back to O,forming the closedorbit.In order to calculate the amplitude in Eqs.(7)and(8),we now launch a trajectory from O slightly away from the vertical upward direction.It first travels along OM,and then along MB.The angle between OC and OM is assumed small.

    The distance between the initial point O and the reflection point M is denoted as l.For the triangle OMO1,using the law of cosines and noting O1M=rc,we have=l2+(d+rc)2? 2l(d+rc)cosθ.Solving the above equation for l,we get

    Assume the line BM is extended and it intersects the vertical line OO1at F.Similarly the line O1M is extended to M1and outside the reflective surface.To simplify the notations,we denote∠OFM= θ1and ∠OMM1= θ2.In the triangle OMO1,one may use the law of sines sin(π ? θ2)/OO1=sinθ/O1M to obtain

    Then because sin2θ2+cos2θ2=1,it leads to

    In the triangle OFM of Fig.1,one has the relationship θ1= π ? θ? (π ? 2θ2)=2θ2? θ.We can use the above equation to rewrite the sine and cosine function of θ1:cosθ1=cos(2θ2? θ)=cos2θ2cosθ+sin2θ2sinθ

    similarly,

    Substitute Eqs.(10)and(11)to the above two expressions,one can obtain

    Now we are ready to evaluate the amplitude A in Eqs.(7)and(8).When t is small and the electron is not far away from the artificial surface of sphere center at O,the trajectories are

    For t=0,

    The elements of Jacobian at the initial point are obtained,

    Substituting the above four elements to Eq.(8),we get

    For t larger than(l?R)/k,the trajectories have been reflected by the sphere centered at O1.The returning trajectories near the region of the negative ion are given by

    From Eq.(24)one has immediately(?ρ/?t)θ=0=0.So only two elements are needed to determine the Jacobian in Eq.(8)for the returning trajectory.From Eqs.(24)and(25)we have

    For the closed orbit,we have also l=d and t=(2d?R)/k.

    Denoting the transit time of the closed-orbit by T,we have

    The Jacobian for the closed orbit at the returning time T is then

    For small θ,Eq.(24)also gives the following approximation

    Now combine it with the expression of ρ(θ,0)obtained earlier,one can show

    When Eqs.(23),(30),and(32)are used in Eq.(7),we finally obtain the amplitude

    for the closed orbit in the present system.

    Since the amplitude A primarily determines the amplitude of the oscillation in the photodetachment cross section corresponding to the closed-orbit,its importance can not be over-estimated.As a check,we now demonstrate explicitly that the expression for A in Eq.(33)satisfies the conservation of the electron fl ux.

    Denoting the short arc segment AA1by ρiand the short horizontal line OB by ρf.That part of the detached electron crossing AA1must also cross OB.When θ is small and when the cylindrical symmetry of the system is taken into consideration,the electron flux crossing AA1is approximately viπρi2and the electron flux crossing OB is approximately vfπρf2,where we have used Aiand Afto represent the amplitudes of the detached electron wave when crossing AA1and OB.Since the initial speed of the electron viequals to the final returning speed vf.The conservation of electron fl ux requires

    From Fig.1 we have

    Therefore

    When θ approaches 0,

    Combining Eqs.(34)and(38),we get

    A is equal to Afby assuming Ai=1.This provides confirmation on the correctness of the result in Eq.(33).

    The returning wave function near the source region is now written as

    Substitute this wave function in Eq.(2),the overlap integral hDΨi|Ψreti is written as

    with

    where we have used

    Consequently we have

    After combining the above equation and Eq.(2),we ob-tain the oscillatory part of the cross section

    The smooth background is the total photodetachment cross section without any external fields.It has the expressionOur total photodetachment cross section using closed-orbit theory is obtained as

    4 Comparisons and Discussions

    We now show the results based on closed-orbit theory in Eq.(45)and compare it with the formula obtained by Haneef et al.[14]using an imaging method.For the convenience of comparison,their formula is re-written below,

    where h=1+1/(1+2d/rc).In Fig.2 the results of total cross sections from both Eqs.(45)and(46)as a function of photon energy Epis plotted for d=25 a.u.and rc=50 a.u.The dashed lines represent the smooth cross section σ0(E)in free space.The thick solid line is the cross section of the closed-orbit theory calculated from Eq.(45),and the thin solid line is the cross section calculated using Eq.(46).As mentioned earlier,the oscillation in the cross section is explained as an interference between the direct outgoing wave and reflected wave in closed orbit theory.With the increase of the photon energy,the oscillation amplitude decreases.We note the difference between our result and the result of Haneef et al.[14]is very significant,especially in the phase of the oscillation.

    Fig.2 The thick solid line represents the total photodetachment cross section of H?near a reflective spherical surface obtained using closed-orbit theory in Eq.(45)with d=25 a.u.and rc=50 a.u.and the thin solid line represents that obtained by Haneef et al.[14]in Eq.(46).The dashed lines represent the cross section in free space.The difference in the oscillations is significant and is discussed in the text.

    Fig.3 Similar to Fig.1 but here we fix d=25 a.u.and compare the cross sections for several values of rc.It is noted that for larger rc,the present cross sections in Eq.(45)and that obtained by Haneef et al.[14]in Eq.(46)are much closer.

    If the radius of the reflective spherical surface changes,the oscillation changes accordingly.In Fig.3 we fix the distance d(indicated by OC in Fig.1)between the negative ion and the surface of the sphere and compare the total photodetachment cross sections for the radius of the sphere going from rc=50 a.u.to rc=5000 a.u.We note that in general the results from the two theories differ.But for large rc,the difference between the results of the two theories becomes smaller,and when rc=5000 a.u.the two results are almost identical as shown in Fig.3(d).In fact,one can readily show that in the limit of large radius rcthe expression in Eq.(45)is dominated by the first two terms and it approaches

    The formula in Eq.(46)also approaches this limit.

    The oscillation in the cross section also depends on the distance d between the negative ion and the spherical surface(OC in Fig.1).In Fig.4 the photodetachment cross sections are displayed for several values of d with a fixed rc=50 a.u.One can see the amplitude of the oscillation decreases and the cross section approaches the cross section in free space σ0(E)when d increases.On the other hand,the difference between the results from the two theories become smaller for smaller d.

    Fig.4 Similar to Fig.1 but here we fix rc=50 a.u.and compare the cross sections for several values of d(the distance between the negative ion and the surface or OC in Fig.1).It is noted that for smaller d,the oscillation in Eq.(45)obtained based on closed orbit theory in the present work and that in Eq.(46)by Haneef et al.[14]agree better.

    5 Conclusions

    We have studied the photodetachment of H?near a reflective spherical surface using the standard closed-orbit theory.[15]Closed-orbit theory has been obtained for various systems over the decades with success.[16?19]The present system of H?photodetachment near a reflective spherical surface was first proposed by Haneef et al.[14]They applied an imaging method to study the cross section of the present system.The imaging method was originally developed for the photodetachment near a flat reflective surface.[13]Because the problem is interesting,we have studied the photodetachment cross section of it based on the closed orbit theory.We have shown the cross section in Eq.(45)based on standard closed-orbit theory differs from the cross section in Eq.(46)based on an imaging method.However,we have also observed that the difference decreases when either the radius of the reflective surface rcincreases or when the distance between the negative ion and the reflective surface d(OC in Fig.1)decreases.Larger rcor smaller d correspond to a more flat reflective surface relative to the negative ion.Inspection of the formula in Eq.(46)suggests both the phase and the amplitude are incorrect in the first dominating oscillation term.It is our belief that the imaging method originally developed for photodetachment near a flat reflective surface can not be directly applied to the photodetachment near a reflective surface of sphere as is done.[14]Further theoretical study or experiment of this system should clarify the situation and seems necessary.

    References

    [1]Yu.N.Demkov,V.D.Kondratovich,and V.N.Ostrovskii,JETP Lett.34(1981)403.

    [2]I.I.Fabrikant,Sov.Phys.JETP 52(1980)1045.

    [3]H.C.Bryant,A.Mohagheghi,J.E.Stewart,et al.,Phys.Rev.Lett.58(1987)2412.

    [4]J.E.Stewart,H.C.Bryant,P.G.Harris,et al.,Phys.Rev.A 38(1988)5628.

    [5]A.R.P.Rau and Hin-Yiu Wong,Phys.Rev.A 37(1988)632.

    [6]A.R.P.Rau and Chitra Rangan,Phys.Rev.A 64(2001)037402.

    [7]M.L.Du and J.B.Delos,Phys.Rev.A 38(1988)5609.

    [8]M.L.Du,Phys.Rev.A 40(1989)4983.

    [9]M.L.Du,Phys.Rev.A 70(2004)055402.

    [10]N.D.Gibson,B.J.Davies,and D.J.Larson,Phys.Rev.A 47(1993)1946.

    [11]N.D.Gibson,B.J.Davies,and D.J.Larson,Phys.Rev.A 48(1993)310.

    [12]G.Yang,Y.Zheng,and X.Chi,Phys.Rev.A 73(2006)043413.

    [13]A.Afaq and M.L.Du,J.Phys.B:At.Mol.Opt.Phys.40(2007)1309.

    [14]M.Haneef,Iftikhar Ahmad,A.Afaq,and A.Rahman,J.Phys.B:At.Mol.Opt.Phys.44(2011)195004.

    [15]M.L.Du and J.B.Delos,Phys.Rev.Lett.58(1987)1731;Phys.Rev.A 38(1988)1896;38(1988)1913.

    [16]H.J.Zhao and M.L.Du,Phys.Rev.A 79(2009)023408.

    [17]De-hua Wang,Yi-hao Wang,and Jian-Wei Li,Braz.J.Phys.43(2013)121.

    [18]B.C.Yang,J.B.Delos,and M.L.Du,Phys.Rev.A 88(2013)023409.

    [19]B.C.Yang,J.B.Delos,and M.L.Du,Phys.Rev.A 89(2014)013417 and references therein.

    日韩高清综合在线| 国产激情偷乱视频一区二区| 免费av不卡在线播放| 22中文网久久字幕| 日韩三级伦理在线观看| 久久久精品欧美日韩精品| 久久九九热精品免费| 亚洲av电影不卡..在线观看| 成人永久免费在线观看视频| 99国产极品粉嫩在线观看| 国产国拍精品亚洲av在线观看| 97热精品久久久久久| 免费看日本二区| 国产在线男女| 欧美又色又爽又黄视频| 成年女人永久免费观看视频| 精品欧美国产一区二区三| 国产av一区在线观看免费| 岛国毛片在线播放| 国产乱人视频| 欧美性猛交黑人性爽| 国产片特级美女逼逼视频| 中文在线观看免费www的网站| 黄色一级大片看看| 日韩中字成人| av卡一久久| 男人狂女人下面高潮的视频| 黄色配什么色好看| 国产精品av视频在线免费观看| 观看美女的网站| 99热全是精品| 国产成人午夜福利电影在线观看| 国产av在哪里看| 国产一区二区亚洲精品在线观看| 热99re8久久精品国产| 成人综合一区亚洲| 午夜福利高清视频| 国产视频首页在线观看| 一进一出抽搐动态| 亚洲欧美成人精品一区二区| 2022亚洲国产成人精品| 日韩成人av中文字幕在线观看| 熟女人妻精品中文字幕| 亚洲精华国产精华液的使用体验 | 少妇人妻精品综合一区二区 | 国产蜜桃级精品一区二区三区| 国产精品久久久久久av不卡| 亚洲人成网站高清观看| 12—13女人毛片做爰片一| 波多野结衣高清作品| 毛片一级片免费看久久久久| 精品久久久久久成人av| 亚洲色图av天堂| 色噜噜av男人的天堂激情| 我要搜黄色片| 麻豆精品久久久久久蜜桃| 亚洲人成网站在线观看播放| 22中文网久久字幕| 久久久精品欧美日韩精品| 麻豆乱淫一区二区| 国产成人freesex在线| 亚洲自拍偷在线| 欧美性感艳星| 干丝袜人妻中文字幕| 赤兔流量卡办理| 精品人妻偷拍中文字幕| 18禁在线播放成人免费| 欧洲精品卡2卡3卡4卡5卡区| 日本-黄色视频高清免费观看| 欧美日韩精品成人综合77777| 亚洲av第一区精品v没综合| 啦啦啦啦在线视频资源| 日韩国内少妇激情av| 久久99蜜桃精品久久| 免费大片18禁| 女人被狂操c到高潮| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 99九九线精品视频在线观看视频| 午夜福利成人在线免费观看| 国产黄片美女视频| 国产不卡一卡二| 色哟哟·www| 一本一本综合久久| 看片在线看免费视频| 中文字幕av成人在线电影| 变态另类丝袜制服| 一级黄片播放器| 在线播放无遮挡| 国产av麻豆久久久久久久| 日本-黄色视频高清免费观看| 精品午夜福利在线看| 男人的好看免费观看在线视频| 中文在线观看免费www的网站| 精品熟女少妇av免费看| a级毛片免费高清观看在线播放| 欧美xxxx性猛交bbbb| av专区在线播放| 日韩一本色道免费dvd| 久久久久久久午夜电影| 欧美丝袜亚洲另类| 久久久久久久久久久免费av| 亚洲精品色激情综合| videossex国产| 又黄又爽又刺激的免费视频.| 午夜福利在线观看免费完整高清在 | 美女内射精品一级片tv| 国产亚洲av片在线观看秒播厂 | 国产亚洲av片在线观看秒播厂 | 成人一区二区视频在线观看| 国产三级在线视频| 国产黄色小视频在线观看| 免费看日本二区| 亚洲经典国产精华液单| 一区福利在线观看| 亚洲欧洲日产国产| 日韩高清综合在线| 中文字幕制服av| 久久久久久久久久久免费av| 亚洲国产欧美在线一区| 色视频www国产| 不卡视频在线观看欧美| 亚洲综合色惰| 亚洲四区av| 午夜视频国产福利| 少妇被粗大猛烈的视频| 亚洲精品国产av成人精品| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄 | 久久久久久久久久久丰满| 国产高清不卡午夜福利| 亚洲最大成人av| 日本撒尿小便嘘嘘汇集6| 特级一级黄色大片| 免费电影在线观看免费观看| 午夜爱爱视频在线播放| 国产精品.久久久| 久久99热这里只有精品18| 男人的好看免费观看在线视频| 成人欧美大片| 自拍偷自拍亚洲精品老妇| 高清日韩中文字幕在线| 亚洲欧美日韩高清专用| 国产免费男女视频| 精品午夜福利在线看| 国产中年淑女户外野战色| 91狼人影院| 久久精品国产自在天天线| 午夜福利在线观看吧| 日韩大尺度精品在线看网址| 亚洲欧美日韩无卡精品| 一本一本综合久久| 人妻制服诱惑在线中文字幕| 波多野结衣高清作品| 韩国av在线不卡| 免费看光身美女| 99热网站在线观看| 少妇熟女欧美另类| 国产精品.久久久| 亚洲自偷自拍三级| 精品日产1卡2卡| 99视频精品全部免费 在线| 国产一区二区激情短视频| 色视频www国产| av福利片在线观看| 中国国产av一级| 女的被弄到高潮叫床怎么办| 变态另类成人亚洲欧美熟女| 九九热线精品视视频播放| 成人亚洲精品av一区二区| 美女脱内裤让男人舔精品视频 | 国产av一区在线观看免费| 精品一区二区三区人妻视频| 欧美日韩乱码在线| 国产色爽女视频免费观看| 国产乱人视频| 99久久无色码亚洲精品果冻| 国产成人午夜福利电影在线观看| 国产精品免费一区二区三区在线| 麻豆av噜噜一区二区三区| 成年版毛片免费区| 淫秽高清视频在线观看| 日本黄色片子视频| 麻豆一二三区av精品| 大型黄色视频在线免费观看| 美女内射精品一级片tv| 一级毛片aaaaaa免费看小| 夜夜看夜夜爽夜夜摸| 国产精品国产三级国产av玫瑰| 成人性生交大片免费视频hd| 人人妻人人澡人人爽人人夜夜 | 亚洲成人久久性| 午夜亚洲福利在线播放| 联通29元200g的流量卡| 26uuu在线亚洲综合色| 99久久精品国产国产毛片| 欧美日本视频| 黑人高潮一二区| 国产69精品久久久久777片| 夫妻性生交免费视频一级片| 我要搜黄色片| 国产激情偷乱视频一区二区| 日韩欧美三级三区| 晚上一个人看的免费电影| 寂寞人妻少妇视频99o| 免费看美女性在线毛片视频| 国产欧美日韩精品一区二区| 久久婷婷人人爽人人干人人爱| 亚洲国产色片| 婷婷亚洲欧美| 欧美一区二区亚洲| 免费观看精品视频网站| 午夜a级毛片| 国产美女午夜福利| 熟女电影av网| 一个人免费在线观看电影| av黄色大香蕉| 日本-黄色视频高清免费观看| 中文精品一卡2卡3卡4更新| 性色avwww在线观看| 男女那种视频在线观看| 国产真实伦视频高清在线观看| 一级毛片我不卡| 国产精品人妻久久久久久| 久久这里只有精品中国| 中文字幕精品亚洲无线码一区| 人妻制服诱惑在线中文字幕| 两个人的视频大全免费| av在线播放精品| 黄色欧美视频在线观看| 深夜a级毛片| 99在线视频只有这里精品首页| 九草在线视频观看| 国产一区二区三区在线臀色熟女| 精品国内亚洲2022精品成人| 国产不卡一卡二| 最近2019中文字幕mv第一页| 精品少妇黑人巨大在线播放 | 男女视频在线观看网站免费| 日日摸夜夜添夜夜添av毛片| 丰满人妻一区二区三区视频av| 精品无人区乱码1区二区| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 国产午夜精品论理片| 亚洲av免费在线观看| 久久精品夜色国产| 永久网站在线| 国产成人影院久久av| 精品少妇黑人巨大在线播放 | 国产成人aa在线观看| 国产精品99久久久久久久久| av免费观看日本| 99久久无色码亚洲精品果冻| 高清毛片免费看| 中文亚洲av片在线观看爽| 五月玫瑰六月丁香| 日本在线视频免费播放| 我的老师免费观看完整版| 久久久久久久午夜电影| 中文在线观看免费www的网站| 国产精品无大码| 久久久久网色| 国语自产精品视频在线第100页| 久久精品综合一区二区三区| 99久久成人亚洲精品观看| 国产亚洲5aaaaa淫片| 亚洲欧美清纯卡通| 亚洲色图av天堂| av在线天堂中文字幕| 黄色欧美视频在线观看| 国产蜜桃级精品一区二区三区| 啦啦啦啦在线视频资源| 日本五十路高清| 给我免费播放毛片高清在线观看| 国产精品1区2区在线观看.| 免费观看人在逋| 成人欧美大片| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 26uuu在线亚洲综合色| 日韩一区二区三区影片| 12—13女人毛片做爰片一| videossex国产| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 尤物成人国产欧美一区二区三区| 村上凉子中文字幕在线| 夜夜夜夜夜久久久久| 国内精品美女久久久久久| 男女视频在线观看网站免费| 国产精品一区二区三区四区免费观看| 亚洲av一区综合| 亚洲三级黄色毛片| 国产男人的电影天堂91| 最近最新中文字幕大全电影3| 免费观看a级毛片全部| 秋霞在线观看毛片| 人妻夜夜爽99麻豆av| 天天躁日日操中文字幕| 黄色配什么色好看| 久久6这里有精品| 欧美日韩国产亚洲二区| 狂野欧美激情性xxxx在线观看| 中文字幕免费在线视频6| 亚洲电影在线观看av| 精品久久国产蜜桃| 亚洲av不卡在线观看| 夜夜看夜夜爽夜夜摸| 天堂√8在线中文| 91精品国产九色| 亚洲精品乱码久久久久久按摩| 男人的好看免费观看在线视频| 三级经典国产精品| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 在线观看美女被高潮喷水网站| 国产在线男女| 久久久久久大精品| 国产精品野战在线观看| 欧美一区二区国产精品久久精品| 久久人妻av系列| 日韩中字成人| 精品久久久久久成人av| 国产高清激情床上av| 国产精品久久久久久久久免| 日韩av不卡免费在线播放| 国产亚洲av嫩草精品影院| 夫妻性生交免费视频一级片| 国模一区二区三区四区视频| 免费av不卡在线播放| 91在线精品国自产拍蜜月| 91精品一卡2卡3卡4卡| 五月玫瑰六月丁香| 国产探花在线观看一区二区| 亚洲精品粉嫩美女一区| 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 天堂网av新在线| 丰满人妻一区二区三区视频av| 亚洲第一电影网av| www.色视频.com| 亚洲av电影不卡..在线观看| 一区福利在线观看| 国内久久婷婷六月综合欲色啪| 亚洲国产精品sss在线观看| 日本黄色片子视频| 日日啪夜夜撸| 少妇熟女欧美另类| 久久人人精品亚洲av| 日本撒尿小便嘘嘘汇集6| 亚洲精品自拍成人| 国产中年淑女户外野战色| 又粗又爽又猛毛片免费看| 亚洲最大成人手机在线| 亚洲中文字幕一区二区三区有码在线看| 夜夜爽天天搞| 国产精品一区二区在线观看99 | 26uuu在线亚洲综合色| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| 亚洲欧美精品综合久久99| 哪个播放器可以免费观看大片| 欧美丝袜亚洲另类| 亚洲乱码一区二区免费版| 夜夜夜夜夜久久久久| 国产三级在线视频| 极品教师在线视频| 亚洲美女视频黄频| 国产91av在线免费观看| 日韩制服骚丝袜av| 天堂影院成人在线观看| 丰满人妻一区二区三区视频av| 老女人水多毛片| 色综合亚洲欧美另类图片| 久久久久久久久久久丰满| 菩萨蛮人人尽说江南好唐韦庄 | 美女被艹到高潮喷水动态| 床上黄色一级片| 精品久久久噜噜| av免费在线看不卡| 中文字幕久久专区| 精品久久国产蜜桃| 中文资源天堂在线| 听说在线观看完整版免费高清| 看黄色毛片网站| 欧美一区二区国产精品久久精品| 国产伦理片在线播放av一区 | 久久这里有精品视频免费| 有码 亚洲区| 天堂av国产一区二区熟女人妻| 一边亲一边摸免费视频| 久久久久久久久中文| 久久久精品94久久精品| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| av天堂中文字幕网| 国产成人影院久久av| 免费观看在线日韩| 国产美女午夜福利| 2022亚洲国产成人精品| 国产v大片淫在线免费观看| 91av网一区二区| a级毛色黄片| 国产av在哪里看| 免费看av在线观看网站| av免费观看日本| 欧美另类亚洲清纯唯美| 日日撸夜夜添| av黄色大香蕉| 国产精品,欧美在线| 十八禁国产超污无遮挡网站| 国产精品一及| 国产av一区在线观看免费| 美女黄网站色视频| 国产精品野战在线观看| 久久综合国产亚洲精品| 国产精品.久久久| 一区二区三区四区激情视频 | а√天堂www在线а√下载| 国产欧美日韩精品一区二区| АⅤ资源中文在线天堂| 成人午夜精彩视频在线观看| 九九久久精品国产亚洲av麻豆| 国产精品一区www在线观看| ponron亚洲| 国产淫片久久久久久久久| 永久网站在线| 国产中年淑女户外野战色| 欧美日本亚洲视频在线播放| 啦啦啦啦在线视频资源| 国产精品av视频在线免费观看| 观看免费一级毛片| 97在线视频观看| 国产伦在线观看视频一区| 亚洲av熟女| 黄色一级大片看看| 男插女下体视频免费在线播放| 成年女人看的毛片在线观看| 国产老妇伦熟女老妇高清| 亚洲精品自拍成人| 特大巨黑吊av在线直播| 国产蜜桃级精品一区二区三区| 又黄又爽又刺激的免费视频.| 床上黄色一级片| 久久亚洲国产成人精品v| av在线播放精品| 在线a可以看的网站| 久久国内精品自在自线图片| 久久欧美精品欧美久久欧美| 人妻久久中文字幕网| 欧美bdsm另类| 乱码一卡2卡4卡精品| 九色成人免费人妻av| 国产午夜精品一二区理论片| 一区二区三区四区激情视频 | 精品无人区乱码1区二区| 精品人妻视频免费看| 国产v大片淫在线免费观看| 国产成人91sexporn| 亚洲av成人精品一区久久| 一边亲一边摸免费视频| 亚洲,欧美,日韩| 六月丁香七月| 日本黄大片高清| 麻豆乱淫一区二区| 亚洲欧洲国产日韩| 亚洲在线自拍视频| 99九九线精品视频在线观看视频| 人人妻人人澡人人爽人人夜夜 | 国产亚洲91精品色在线| 国产午夜精品论理片| 国产精品久久久久久av不卡| 悠悠久久av| 国产成人福利小说| 国产伦精品一区二区三区四那| 在线观看美女被高潮喷水网站| 人人妻人人澡人人爽人人夜夜 | 又粗又硬又长又爽又黄的视频 | 有码 亚洲区| 亚洲,欧美,日韩| 精品久久久久久久末码| 国产免费一级a男人的天堂| 成年免费大片在线观看| 国产精品久久久久久精品电影| 99精品在免费线老司机午夜| 日本爱情动作片www.在线观看| 人体艺术视频欧美日本| 熟女人妻精品中文字幕| 黄片wwwwww| 亚洲人成网站高清观看| 18禁在线播放成人免费| 欧美日韩综合久久久久久| 1024手机看黄色片| 久久人人精品亚洲av| 国产乱人偷精品视频| 天堂√8在线中文| 欧美激情国产日韩精品一区| 亚洲精品国产av成人精品| 亚洲精品亚洲一区二区| 成人亚洲精品av一区二区| 五月玫瑰六月丁香| 熟妇人妻久久中文字幕3abv| 禁无遮挡网站| 日本与韩国留学比较| 99久久成人亚洲精品观看| 国产精品日韩av在线免费观看| 久久精品国产亚洲av涩爱 | 日产精品乱码卡一卡2卡三| 高清毛片免费看| 麻豆国产97在线/欧美| 欧美激情国产日韩精品一区| 免费观看的影片在线观看| 蜜臀久久99精品久久宅男| 精品99又大又爽又粗少妇毛片| 久久久久久久久久黄片| 日日摸夜夜添夜夜添av毛片| 18禁裸乳无遮挡免费网站照片| ponron亚洲| 午夜精品国产一区二区电影 | 亚洲第一电影网av| 九九热线精品视视频播放| 国产白丝娇喘喷水9色精品| 亚洲欧美中文字幕日韩二区| 色噜噜av男人的天堂激情| 青春草视频在线免费观看| 天美传媒精品一区二区| 寂寞人妻少妇视频99o| 成人二区视频| 97超视频在线观看视频| 久久久久久久久久成人| 亚洲va在线va天堂va国产| 日产精品乱码卡一卡2卡三| 国产av一区在线观看免费| 淫秽高清视频在线观看| 成人亚洲欧美一区二区av| 一级黄片播放器| www.色视频.com| 免费av观看视频| 亚洲五月天丁香| 久久久久久九九精品二区国产| 精品99又大又爽又粗少妇毛片| 国产成人福利小说| 看十八女毛片水多多多| 简卡轻食公司| 色噜噜av男人的天堂激情| 成人欧美大片| 性插视频无遮挡在线免费观看| 日韩欧美 国产精品| 精品99又大又爽又粗少妇毛片| 国产一区二区在线av高清观看| 日韩,欧美,国产一区二区三区 | 成人综合一区亚洲| 女人十人毛片免费观看3o分钟| 亚洲一区二区三区色噜噜| 成人鲁丝片一二三区免费| 五月玫瑰六月丁香| 九草在线视频观看| 可以在线观看的亚洲视频| 26uuu在线亚洲综合色| 免费一级毛片在线播放高清视频| 亚洲五月天丁香| 99国产极品粉嫩在线观看| 国产亚洲av片在线观看秒播厂 | 美女大奶头视频| 精品国内亚洲2022精品成人| 99久久无色码亚洲精品果冻| 久久欧美精品欧美久久欧美| 最近最新中文字幕大全电影3| 欧美日韩乱码在线| 两个人的视频大全免费| 内地一区二区视频在线| a级毛片免费高清观看在线播放| av天堂中文字幕网| 麻豆av噜噜一区二区三区| 亚洲18禁久久av| 岛国毛片在线播放| 最近的中文字幕免费完整| 亚洲av.av天堂| 国产伦在线观看视频一区| 老司机影院成人| 五月伊人婷婷丁香| 美女被艹到高潮喷水动态| 18禁在线无遮挡免费观看视频| 只有这里有精品99| av在线老鸭窝| 日韩成人av中文字幕在线观看| 99久久久亚洲精品蜜臀av| 欧美另类亚洲清纯唯美| or卡值多少钱| 国产午夜福利久久久久久| 又爽又黄无遮挡网站| 九色成人免费人妻av| 变态另类成人亚洲欧美熟女| 干丝袜人妻中文字幕| 床上黄色一级片| 国产高清不卡午夜福利| 成人鲁丝片一二三区免费| 少妇的逼好多水| 亚洲成人av在线免费| 久久精品久久久久久久性| 99在线人妻在线中文字幕| 变态另类成人亚洲欧美熟女| 性欧美人与动物交配| 久久精品影院6| av天堂中文字幕网| 男人狂女人下面高潮的视频| 男女边吃奶边做爰视频| 网址你懂的国产日韩在线| 色视频www国产| 亚洲精品粉嫩美女一区| 小说图片视频综合网站| 极品教师在线视频| 97在线视频观看| 欧美不卡视频在线免费观看|