• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Note on the Equivalence of Post-Newtonian Lagrangian and Hamiltonian Formulations?

    2016-05-14 12:50:52RongChaoChen陳榮超andXinWu
    Communications in Theoretical Physics 2016年3期

    Rong-Chao Chen(陳榮超)and Xin Wu(伍)

    Department of Physics and Institute of Astronomy,Nanchang University,Nanchang 330031,China

    1 Introduction

    In classical mechanics,Lagrangian and Hamiltonian formulations are completely the same description of a dynamical system.Usually more attention to the Hamiltonian formulation is paid because it has properties of a canonical system.

    In post-Newtonian(PN)mechanics of general relativity,the two formulations are still adopted.Are they completely equivalent?Ten years ago two independent groups[1?2]answered this question. They proved the complete physical equivalence of the third-order post-Newtonian(3PN)Arnowitt–Deser–Misner(ADM)coordinate Hamiltonian approach to and the 3PN harmonic coordinate Lagrangian approach to the dynamics of spinless compact binaries.This result was recently extended to the inclusion of the next-to-next-to-leading order(4PN)spin-spin coupling.[3]

    However,there are two different claims on the chaotic behavior of compact binaries with one body spinning and spin effects restricted to the leading-order spin-orbit(1.5PN)coupling.That is to say,the 2PN harmonic coordinate Lagrangian dynamics allow the onset of chaos,[4]but the corresponding 2PN ADM Hamiltonian dynamics are integrable,regular and non-chaotic.[5?6]

    An explanation to the opposite results was given in Ref.[7].In fact,the 2PN Hamiltonian and Lagrangian formulations are not exactly equal but are only approximately related.The equations of motion from the Lagrangian formulation use lower-order terms as approximations to higher-order acceleration terms in the Euler-Lagrange equations,while these approximations do not occur in the equations of motion from the Hamiltonian formulation.Naturally,the Lagrangian has approximate constants of motion but the Hamiltonian contains exact ones.These facts were regarded as the essential point for the two formulations having different dynamics.In this sense,the two claims that seem to be explicitly conflicting were thought to be correct.

    Recently,the authors of Ref.[8]revisited the equivalence between the Hamiltonian and Lagrangian formulations at PN approximations.They pointed out that the two formulations at the same PN order are nonequivalent in general and have differences.Three simple examples of PN Lagrangian formulations were used to show that the differences are not mainly due to the Lagrangian having the approximate Euler-Lagrange equations and the approximate constants of motion but come from truncation of higher-order PN terms between the two formulations transformed.These examples include a relativistic restricted three-body problem with the 1PN contribution from the circular motion of two primary objects,a spinning compact binary system with the Newtonian term and the leading-order spin-orbit coupling,[8]and a binary system of the Newtonian term and the leading-order spinorbit and spin-spin couplings.[9]As an important result of Ref.[8],an equivalent Hamiltonian of a lower-order Lagrangian is usually at an in finite order from a theoretical point of view or at a high enough order from numerical computations.In terms of this point,the integrability or non-integrability of the Lagrangian can be known with the help of that of the Hamiltonian.More recently,chaos in comparable mass compact binary systems with one body spinning was completely ruled out.[10]This is because a completely canonical higher-order Hamiltonian equivalent to a lower-order conservative Lagrangian holds four integrals of the total energy and the total angular momentum in an eight-dimensional phase space,and then is typically integrable.[11]This result is helpful to clarify the doubt on the absence of chaos in the 2PN ADM Hamiltonian approach[5?6]and the presence of chaos in the 2PN harmonic coordinate Lagrangian formulation for the case of one body spinning.[4]As a point to illustrate,two other doubts about different chaotic indicators resulting in different dynamical behaviours of spinning compact binaries among Refs.[12–15]and different descriptions of chaotic parameter spaces and chaotic regions between two articles[4,16]have been clarified in Refs.[17–19].

    It is worth noting that the result of Ref.[8]on the equivalence of the PN Hamiltonian and Lagrangian approaches at different orders is not easy to check in most cases because the exactly equivalent Hamiltonian of the Lagrangian is generally expressed as an in finite series whose convergence is unknown clearly.To provide enough evidence for supporting this result,we select a part of the 1PN Lagrangian formulation of relativistic circular restricted three-body problem,[20]in which the Euler-Lagrange equations can be described by a converged Taylor series and the equivalent Hamiltonian can also be written as another converged Taylor series.For our purpose,the Hamiltonian is derived from the Lagrangian in Sec.2.Then in Sec.3 numerical methods are used to evaluate whether various PN order Hamiltonians and the 1PN Lagrangian with various PN order Euler-Lagrange equations are equivalent.Finally,the main results are concluded in Sec.4.

    2 Post-Newtonian Approximations

    As in classical mechanics,a Lagrangian formulation L,r)and its Hamiltonian formulation H(p,r)satisfy the Legendre transformation in PN mechanics. This transformation is written as

    Here r andare coordinate and velocity,respectively.Canonical momentum is given by

    Taking a special PN circular restricted three-body problem as an example,now we derive the Hamiltonian from the Lagrangian in detail.

    2.1 Lagrangian Formulation

    The circular restricted three-body problem means the motion of a third body(i.e.a small particle of negligible mass)moving around two masses m1and m2(m1≥m2).The two masses move in circular,coplanar orbits about their common center of mass,and have a constant separation a and the same angular velocity.They exert a gravitational force on the particle but the third body does not affect the motion of the two massive bodies.Taking the unit of mass G(m1+m2)=1,we have the two massesμ1=m1/(m1+m2)and μ2=m2/(m1+m2).The unit of length requires that the constant separation of the two bodies should be unity.The common mean motion(i.e.the Newtonian angular velocity ω0)of the two primaries is also unity.In these unit systems,the two bodies are stationary at points O1(x1,0)and O2(x2,0)with x1= ?μ2and x2=μ1in the rotating reference frame.The state variables(,r)of the third body satisfy the following Lagrangian formulation

    In the above equations,the related notations are specified as follows.U is of the form

    where the distances from body 3 to bodies 1 and 2 are

    L0stands for the Newtonian circular restricted three-body problem.L1is an indirect 1PN contribution due to the relativistic effect to the circular motions of the two primaries,which results in the relativistic effect to the third body.L2is a direct 1PN contribution from the relativistic effect to the third body,and is only a part of that in Ref.[20]for our purpose.ω1is the 1PN effect with respect to the angular velocity ω0of the primaries and is expressed as

    In fact,the separation a plays an important role in a mark of the 1PN effects on L1and L2when the velocity of light,c,is taken as one geometric unit in later numerical computations.

    The Lagrangian(3)is a function of velocities and coordinates,therefore,its equations of motion are the ordinary Euler-Lagrange equations:

    Since the momenta px=?L/?and py=?L/?in Eq.(2)satisfying the relations

    are linear functions of velocitiesand,accelerations can be solved exactly from Eq.(9).Their detailed expressions are of the forms The Newtonian terms X0and Y0and the 1PN terms X1and Y1are

    where Ux= ?U/?x and Uy= ?U/?y.Considering that δ=3U/a is at the 1PN level,Eqs.(12)and(13)have the Taylor expansions

    They are the Euler-Lagrange equations with PN approximations to an order k≥1,labeled as ELk.Note that the case of k=0 with X1=Y1=0 corresponds to the Newtonian Euler-Lagrange equations,marked as EL0.From a theoretical viewpoint,as k→∞,ELkis strictly equivalent to EL given by Eqs.(12)and(13),namely,EL∞≡ EL.However,the momenta in the generic case of Ref.[8]are highly nonlinear functions of velocities,so no exact equations of motion similar to Eqs.(12)and(13)but approximate equations of motion can be obtained from the Euler-Lagrange equations(9).This shows that we do not know what the PN approximations like Eqs.(18)and(19)are converged as k→∞.

    2.2 Hamiltonian Formulations

    The velocities˙x and˙y obtained from Eqs.(10)and(11)are expressed as

    Of course,they can be expanded to the k-th order in the forms

    As mentioned above,Eqs.(22)and(23)are exactly identical to Eqs.(20)and(21)when k→∞.

    In light of Eqs.(1),(20),and(21),we have the following Hamiltonian

    Its Taylor series at the k-th order reads

    It is clear that H0with ω1=0 is the Newtonian Hamiltonian formulation,and can be expressed in terms of the Jacobian constant CJas H0≡ ?CJ/2.Additionally,Hkis closer and closer to H as k gets larger.Without doubt,the exact equivalence between H and Hkshould be H∞≡H.Of course,what Hkis converged as k→∞is still unknown for the general case in Ref.[8].

    It should be emphasized that ELkis the k-th order PN approximation to the Euler-Lagrange equations EL that is exactly derived from the 1PN Lagrangian L,and Hkis the k-th order PN approximation to the Hamiltonian H.Because of the exact equivalence between EL and H,ELkis the k-th order PN approximation to the Hamiltonian H,and Hkis the k-th order PN approximation to the Euler-Lagrange equations EL.Additionally,EL∞and H∞are exactly equivalent,i.e.,EL∞≡EL?H≡H∞.However,it would be up to a certain higher enough finite order k rather than up to the in finite order k that the equivalence ELk?Hkcan be checked by numerical methods.See the following numerical investigations for more details.

    3 Numerical Investigations

    Besides the above analytical method,a numerical method is used to estimate whether these PN approaches have constants of motion and what the accuracy of the constants is. Above all,we are interested in knowing whether these PN approaches are equivalent.

    3.1 Energy Errors

    An eighth-and ninth-order Runge–Kutta–Fehlberg algorithm of variable time-steps is used to solve each of the above Euler-Lagrange equations ELkand Hamiltonians Hk.Parameters and initial conditions are CJ=3.12,μ2=0.001,x=y=0.55 and˙x=0.Note that the initial positive value of˙y is given by the Jacobian constant.This orbit in the Newtonian problem L0is a Kolmogorov–Arnold–Moser(KAM)torus on the Poincar′e section y=0 with˙y>0 in Fig.1(a),therefore,it is regular and nonchaotic.This integrator can give errors of the energy H0for the Lagrangian system L0in the magnitude of about an order 10?13.The long-term accumulation of energy errors is explicitly present in Fig.1(b)because the integration scheme itself yields an artificial excitation or damping.If this accumulation is neglected,the energy should be constant.This shows that the energy H0is actually an integral of the Lagrangian L0.However,the existence of this excitation or damping does not make the numerical results unreliable during the integration time of 105due to such a high numerical accuracy.Thus the integrator does not necessarily use manifold correction methods,[21?24]and gives true qualitative results,as a symplectic integration algorithm[25?28]does.

    When the PN terms L1and L2are included,what about the accuracy of energy integrals given by the related PN approximations?Let us consider this question.Taking the separation between the primaries,a=31,we plot Fig.2(a)in which the errors of energies of the 1PN Euler-Lagrange equations EL1and Hamiltonian H1are shown.It is worth noting that the error of energy is estimated in terms of?=H1??H1,where H1denotes the energy of EL1at time t and?H1is the initial energy.Obviously,the energy error for EL1is larger in about 10 orders of magnitude than that for H1.This result should be very reasonable because the differences between EL1and H1exist explicitly,as shown in the above analytical discussions.The canonical equations are exactly derived from the 1PN Hamiltonian H1,therefore,the accuracy of H1is better than that of EL1.In other words,the difference between EL1and H1is at 2PN level.Of course,the higher the order k gets,the smaller the difference between ELkand Hkbecomes.This is why we can see from Figs.2(a)and 2(b)that the error of the 8PN Euler-Lagrange equations EL8and Hamiltonian H8is typically smaller than that of the 1PN Euler-Lagrange equations EL1and Hamiltonian H1.Without doubt,EL and H should be the same in the energy accuracy if no roundoff errors exist in Fig.2(c).

    Fig.1 (a)Poincar′e section y=0(˙y>0)of an orbit with parameters CJ=3.12 andμ2=0.001 and initial conditions x=y=0.55 and˙x=0 in the Newtonian problem L0.(b)Energy error?E=H0??H0,where H0and?H0are respectively energies at times t and 0.

    Fig.2 Energy errors?E for the related PN Lagrangian formulations with the separation a=31.Here are some examples to illustrate notations.In?E=H1??H1for EL1,?H1is the initial energy and the energy H1at time t is obtained from the solution of EL1.For H1,?E=H1??H1,where the energy H1at time t is directly given by the solution of H1.For EL,?E=H??H,where?H represents the initial energy and the energy H at time t is determined by the solution of EL.

    In addition to evaluating the accuracy of energy integrals of these PN approaches,evaluating the quality of these PN approaches to the Euler-Lagrange equations EL or the Hamiltonian H is also necessary from qualitative and quantitative numerical comparisons.See the following demonstrations for more information.

    3.2 Qualitative Comparisons

    Besides the method of Poincar′e sections,the method of Lyapunov exponents is often used to detect chaos from order.It relates to the description of average exponential deviation of two nearby orbits.Based on the two-particle method,[29]the largest Lyapunov exponent is calculated according to the expression

    where d(0)and d(t)are distances between the two nearby trajectories at times 0 and t,respectively.A globally stable orbit is said to be regular if λ =0 but chaotic if λ >0.Generally speaking,it costs a long enough time to obtain a stabilizing limit value of λ.Instead,a quicker method to find chaos is a fast Lyapunov indicator,[30?31]defined as

    The globally stable orbit is chaotic if this indicator increases exponentially with time log10t but ordered if this indicator grows polynomially.

    It can be seen clearly from the Poincar′e section of Fig.3(a)that the dynamics of EL or H in Fig.2(c)is chaotic.This result is supported by the Lyapunov exponents in Figs.3(b)and 3(c)and the FLIs in Figs.3(d)and 3(e).What about the dynamics of these various PN approximations?The key to this question can be found in Figs.3(b)–3(e).Here are the related details.As shown in Fig.3(b),lower order PN approximations to the Euler-Lagrange equations EL,such as the 1PN Euler-Lagrange equations EL1and the 4PN Euler-Lagrange equations EL4,are so poorer that their dynamics are regular,and are completely unlike the chaotic dynamics of EL.With increase of the PN order k,higher order PN approximations to the Euler-Lagrange equations EL become better and better.For example,the 8PN Euler-Lagrange equations EL8allows the onset of chaos,as EL does.Seen particularly from the evolution curve on the Lyapunov exponent and time,the 12PN Euler-Lagrange equations EL12seems to be very closer to EL.These results are also suitable for the PN Hamiltonian approximations to the Hamiltonian H in Fig.3(c).When the Lyapunov exponents in Figs.3(b)and 3(c)are replaced with the FLIs in Figs.3(d)and 3(e),similar results can be given.

    When the separation a=138 is taken instead of a=31 in Fig.3(a),an ordered KAM torus occurs.That means that the EL dynamics is regular and non-chaotic. In Figs.3(f)–3(i),lower order PN approximations such as EL8(or H8)have chaotic behaviors,but higher order PN approximations such as EL12(or H12)have regular behaviors.

    Fig.3 (a)Poincar′e section for the orbit of Fig.1 in the PN Euler-Lagrange equations EL with the separation a=31 or a=138.(b),(c),(f)and(g)relate to Lyapunov exponents λ.(d),(e),(h)and(i)deal with the fast Lyapunov indicators(FLIs).

    In short,the above numerical simulations seem to tell us that the Euler-Lagrange equations(or the Hamiltonian approaches)at higher enough PN orders have the same dynamics as the Euler-Lagrange equations EL(or the Hamiltonian H).There is a question of whether these results depend on the separation a.To answer it,we resemble the authors of Ref.[32]who used the FLIs to trace a dynamical sensitivity to the variation of the parameter a.We fix the above-mentioned orbit but let a begin at 10 and end at 250 in increments of 1.For each given value of a,the FLI is obtained after integration time t=3500.In this way,we have dependence of FLIs on the separations a in several PN Lagrangian and Hamiltonian approaches.

    Fig.4 Dependence of FLIs on the separation a.

    Table 1 Ordered and chaotic domains of the separation a∈[10,250]in Fig.4.

    As shown in Fig.4.Here 5.5 is referred as a threshold value of FLI for distinguishing between the regular and chaotic cases at this time.That is to say,an orbit is chaotic when its FLI is larger than threshold but ordered when its FLI is smaller than threshold.In light of this,we do not find that there are dramatic dynamical differences between the Euler-Lagrange equations EL(or the Hamiltonian H)and the various PN approximations(e.g.the 1PN Hamiltonian H1and the 1PN Euler-Lagrange equations EL1).However,it is clearly displayed in Table 1 that regular and chaotic domains of smaller separations a in the lowest PN approaches EL1and H1are explicitly different from those in EL or H.As claimed above,this result is of course expected.When the order k gets higher and higher,ELkand Hkhave smaller and smaller dynamical differences compared with EL or H.Two points are worth noting.First,the same order PN approaches like EL12and H12(but unlike EL and H)are incompletely equivalent in the dynamical behaviors for smaller values of a.Second,all the PN approaches EL1,H1,EL12,H12,...,EL and H can still have the same dynamics when a is larger enough.The two points are due to the differences among these approaches from the relativistic effects depending on a;smaller values of a result in larger relativistic effects but larger values of a lead to smaller relativistic effects.

    3.3 Quantitative Comparisons

    Now we are interested in quantitative studies on the various PN approximations ELkto the Hamiltonian H and the various PN approximations Hkto the Euler-Lagrange equations EL.In other words,we want to know how the deviation|?r|=|rk?rH|between the position coordinate rkfor ELkand the position coordinate rHfor H varies with time.We also pay attention to the variation of|?r|=|ˉrk?rEL|betweenˉrkfor Hkand rELfor EL.To provide some insight into the rule on the deviation with time,we should consider the regular dynamics in the PN approximations because the chaotic case gives rise to exponentially sensitive dependence on initial conditions.For the sake of this purpose,the parameters and initial conditions unlike the aforementioned ones are CJ=2.07,x=0.68 and y=0.When a=140 is given in Fig.5(a),the curve EL is used to estimate the accuracy of numerical solutions between H and EL,which begins in the magnitude of 10?14and is in the magnitude of 10?7at time t=10000.The difference between the numerical solutions of H and EL1is rather large.With the increase of k,ELkis soon closer to H.For instance,EL8is basically consistent with H after time t=3000,and EL12is almost the same as H.Similarly,this rule is suitable for the approximations Hkto the Euler-Lagrange equations EL in Fig.5(b).After the integration time reaches 10000 for each a∈[10,10000]in Figs.5(c)and 5(d),appropriately larger separation a and higher enough order k are present such that ELkand Hkare identical to H or EL.In a word,it can be seen clearly from Fig.5 that ELkand Hkare equivalent as k is sufficiently large.

    Fig.5 Deviation|?r|between position solutions of the related PN Lagrangian and Hamiltonian formulations.(a)and(c)are the deviations from H to EL,ELi(i=1,4,8,12).(b)and(d)relate to the deviations from EL to H,Hi.

    4 Summary

    In general,PN Lagrangian and Hamiltonian formulations at the same order are nonequivalent due to higher order terms truncated.A lower order Lagrangian is possibly identical to a higher enough order Hamiltonian.It is difficult to check this equivalence because the Euler-Lagrange equations are not exactly but approximately derived from the Lagrangian.To cope with this difficulty,we take a simple relativistic circular restricted three-body problem as an example and investigate the equivalence of PN La-grangian and Hamiltonian formulations.This dynamical problem is described by a 1PN Lagrangian formulation,in which the Euler-Lagrange equations are exactly given and can be expressed as a converged in finite PN order Taylor series.The Lagrangian has an exactly equivalent Hamiltonian,expanded to another converged in finite PN order Taylor series.Numerical results support the equivalence of the 1PN Lagrangian with the Euler-Lagrange equations at a certain specific higher order and the PN Hamiltonian approach to a higher enough order.In this way,we support indirectly the general result of Refs.[8,10]that a lower order Lagrangian approach with the Euler-Lagrange equations at some sufficiently higher order can be equivalent to a higher enough order Hamiltonian approach.

    References

    [1]T.Damour,P.Jaranowski,and G.Sch¨afer,Phys.Rev.D 63(2001)044021;66(2002)029901.

    [2]V.C.de Andrade,L.Blanchet,and G.Faye,Classical Quantum Gravity 18(2001)753.

    [3]M.Levi and J.Steinho ff,J.Cosmol.Astropart.Phys.12(2014)003.

    [4]J.Levin,Phys.Rev.D 67(2003)044013.

    [5]C.Knigsdr ff er and A.Gopakumar,Phys.Rev.D 71(2005)024039.

    [6]A.Gopakumar and C.K¨onigsd¨or ff er,Phys.Rev.D 72(2005)121501(R).

    [7]J.Levin,Phys.Rev.D 74(2006)124027.

    [8]X.Wu,L.Mei,G.Huang,and S.Liu,Phys.Rev.D 91(2015)024042.

    [9]H.Wang and G.Q.Huang,Commun.Theor.Phys.64(2015)159.

    [10]X.Wu and G.Huang,Mon.Not.R.Astron.Soc.452(2015)3167.

    [11]X.Wu and Y.Xie,Phys.Rev.D 81(2010)084045.

    [12]J.Levin,Phys.Rev.Lett.84(2000)3515.

    [13]J.D.Schnittman and F.A.Rasio,Phys.Rev.Lett.87(2001)121101.

    [14]N.J.Cornish and J.Levin,Phys.Rev.Lett.89(2002)179001.

    [15]N.J.Cornish and J.Levin,Phys.Rev.D 68(2003)024004.

    [16]M.D.Hartl and A.Buonanno,Phys.Rev.D 71(2005)024027.

    [17]X.Wu and Y.Xie,Phys.Rev.D 76(2007)124004.

    [18]X.Wu and Y.Xie,Phys.Rev.D 77(2008)103012.

    [19]G.Huang,X.Ni,and X.Wu,Eur.Phys.J.C 74(2014)3012.

    [20]G.Huang and X.Wu,Phys.Rev.D 89(2014)124034.

    [21]X.Wu,T.Y.Huang,X.S.Wan,and H.Zhang,Astron.J.313(2007)2643.

    [22]D.Z.Ma,X.Wu,and S.Y.Zhong,Astrophys.J.687(2008)1294.

    [23]S.Y.Zhong and X.Wu,Phys.Rev.D 81(2010)104037.[24]D.Z.Ma,Z.C.Long,and Y.Zhu,Celest.Mech.Dyn.Astron.123(2015)45.

    [25]S.Y.Zhong,X.Wu,S.Q.Liu,and X.F.Deng,Phys.Rev.D 82(2010)124040.

    [26]L.Mei,X.Wu,and F.Liu,Eur.Phys.J.C 73(2013)2413.

    [27]L.Mei,M.Ju,X.Wu,and S.Liu,Mon.Not.R.Astron.Soc.435(2013)2246.

    [28]X.Ni and X.Wu,Research in Astron.Astrophys.14(2014)1329.

    [29]X.Wu and T.Y.Huang,Phys.Lett.A 313(2003)77.

    [30]C.Froeschl′e,E.Lega,and R.Gonczi,Celest.Mech.Dyn.Astron.67(1997)41.

    [31]X.Wu,T.Y.Huang,and H.Zhang,Phys.Rev.D 74(2006)083001.

    [32]X.N.Su,X.Wu,and F.Y.Liu,Astrophys.Space Sci.361(2016)32.

    国产精品99久久99久久久不卡 | 国产69精品久久久久777片| 亚洲av福利一区| 久久久亚洲精品成人影院| 人体艺术视频欧美日本| 日本wwww免费看| 久久ye,这里只有精品| 日韩免费高清中文字幕av| 九九爱精品视频在线观看| 亚洲精华国产精华液的使用体验| 黄色一级大片看看| 国产淫语在线视频| 国产爽快片一区二区三区| 内地一区二区视频在线| 五月开心婷婷网| 国产熟女午夜一区二区三区| 一级a做视频免费观看| 欧美国产精品va在线观看不卡| 中文字幕免费在线视频6| 国产淫语在线视频| a 毛片基地| 青青草视频在线视频观看| 久久青草综合色| 国产老妇伦熟女老妇高清| 精品人妻一区二区三区麻豆| 你懂的网址亚洲精品在线观看| 精品久久久久久电影网| 99久久综合免费| 黄网站色视频无遮挡免费观看| 天堂俺去俺来也www色官网| 亚洲精品久久午夜乱码| 黑人高潮一二区| 国产国拍精品亚洲av在线观看| 美女福利国产在线| 老女人水多毛片| 亚洲成色77777| 免费在线观看黄色视频的| 久久精品久久精品一区二区三区| av女优亚洲男人天堂| 亚洲av电影在线观看一区二区三区| 99热网站在线观看| 日韩av免费高清视频| 一级毛片我不卡| 亚洲av在线观看美女高潮| 亚洲中文av在线| 欧美日韩精品成人综合77777| 国产综合精华液| 久久国内精品自在自线图片| 在现免费观看毛片| 国产精品久久久久久av不卡| 色婷婷av一区二区三区视频| 欧美精品一区二区大全| 欧美人与善性xxx| 亚洲欧美一区二区三区黑人 | 亚洲精品久久午夜乱码| 亚洲精品456在线播放app| 亚洲成av片中文字幕在线观看 | 巨乳人妻的诱惑在线观看| 国产一级毛片在线| 女的被弄到高潮叫床怎么办| 看十八女毛片水多多多| 一本色道久久久久久精品综合| 国产在视频线精品| 免费看av在线观看网站| 色视频在线一区二区三区| 少妇的逼好多水| 一级毛片电影观看| 青春草国产在线视频| 国产毛片在线视频| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| 丝袜喷水一区| a级毛片在线看网站| 国产男人的电影天堂91| 桃花免费在线播放| 日本av免费视频播放| 如日韩欧美国产精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 成年人午夜在线观看视频| 九九爱精品视频在线观看| 午夜精品国产一区二区电影| 欧美日韩av久久| 黄色视频在线播放观看不卡| 欧美激情 高清一区二区三区| 伊人亚洲综合成人网| www.熟女人妻精品国产 | 国产精品无大码| 黄色怎么调成土黄色| 天堂俺去俺来也www色官网| 免费黄网站久久成人精品| 欧美日韩亚洲高清精品| 超碰97精品在线观看| 久热这里只有精品99| 母亲3免费完整高清在线观看 | 校园人妻丝袜中文字幕| av在线app专区| 欧美日韩一区二区视频在线观看视频在线| 亚洲美女视频黄频| 日韩伦理黄色片| 如日韩欧美国产精品一区二区三区| 精品久久久久久电影网| 国产亚洲精品久久久com| 久久久久久久亚洲中文字幕| 这个男人来自地球电影免费观看 | 日韩中文字幕视频在线看片| av女优亚洲男人天堂| 熟妇人妻不卡中文字幕| 亚洲美女搞黄在线观看| 欧美成人午夜免费资源| 宅男免费午夜| 国产国语露脸激情在线看| 18禁在线无遮挡免费观看视频| 男女午夜视频在线观看 | 一边摸一边做爽爽视频免费| 看免费成人av毛片| 久久精品国产自在天天线| 欧美国产精品一级二级三级| 国产国拍精品亚洲av在线观看| 伦理电影免费视频| 欧美xxxx性猛交bbbb| 另类亚洲欧美激情| 国产一区二区三区av在线| 亚洲欧美日韩卡通动漫| 天天影视国产精品| 香蕉国产在线看| 久久 成人 亚洲| 人妻系列 视频| 欧美 亚洲 国产 日韩一| 在线 av 中文字幕| 免费黄色在线免费观看| 欧美人与善性xxx| 搡女人真爽免费视频火全软件| 日韩免费高清中文字幕av| 成年女人在线观看亚洲视频| 国产熟女午夜一区二区三区| 女性被躁到高潮视频| 男女无遮挡免费网站观看| 精品国产一区二区三区久久久樱花| 免费观看在线日韩| 天天躁夜夜躁狠狠久久av| 街头女战士在线观看网站| 一级片'在线观看视频| a级毛片黄视频| 宅男免费午夜| 最近最新中文字幕免费大全7| 亚洲精品日本国产第一区| 蜜桃在线观看..| 中文字幕人妻熟女乱码| 亚洲 欧美一区二区三区| 欧美日韩视频高清一区二区三区二| 各种免费的搞黄视频| 18禁裸乳无遮挡动漫免费视频| 大香蕉97超碰在线| 成人午夜精彩视频在线观看| 亚洲欧洲国产日韩| av女优亚洲男人天堂| 国产成人一区二区在线| 亚洲成国产人片在线观看| 亚洲av免费高清在线观看| a级毛色黄片| 久久久精品区二区三区| 女人被躁到高潮嗷嗷叫费观| 五月开心婷婷网| 五月玫瑰六月丁香| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 精品久久蜜臀av无| 韩国高清视频一区二区三区| 日本-黄色视频高清免费观看| 国产精品人妻久久久影院| 欧美日韩视频高清一区二区三区二| 欧美国产精品一级二级三级| 狂野欧美激情性xxxx在线观看| 欧美丝袜亚洲另类| 亚洲一码二码三码区别大吗| av国产精品久久久久影院| 在线观看人妻少妇| 免费观看a级毛片全部| 亚洲综合精品二区| 欧美+日韩+精品| 国产一区二区在线观看日韩| 极品人妻少妇av视频| 一本色道久久久久久精品综合| 成人国语在线视频| 国产精品免费大片| 国产69精品久久久久777片| 人人妻人人澡人人爽人人夜夜| 最近最新中文字幕免费大全7| 少妇猛男粗大的猛烈进出视频| 高清欧美精品videossex| 少妇 在线观看| 亚洲国产成人一精品久久久| 免费女性裸体啪啪无遮挡网站| 成人影院久久| 国产一区有黄有色的免费视频| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| 国产成人精品一,二区| 超色免费av| 亚洲精品国产色婷婷电影| 成人影院久久| 一区二区三区四区激情视频| 99久久精品国产国产毛片| 婷婷色av中文字幕| 狠狠婷婷综合久久久久久88av| 久久午夜综合久久蜜桃| 男人添女人高潮全过程视频| 亚洲天堂av无毛| 国产精品嫩草影院av在线观看| 亚洲在久久综合| xxx大片免费视频| 最近的中文字幕免费完整| 熟妇人妻不卡中文字幕| 亚洲三级黄色毛片| 欧美激情国产日韩精品一区| 国产成人免费观看mmmm| 欧美 日韩 精品 国产| 男女免费视频国产| 9191精品国产免费久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品人妻偷拍中文字幕| 久久青草综合色| 青春草国产在线视频| 亚洲国产欧美日韩在线播放| 乱人伦中国视频| 考比视频在线观看| 成人国产麻豆网| 一二三四在线观看免费中文在 | 国产日韩一区二区三区精品不卡| 欧美97在线视频| av免费观看日本| 国产精品久久久久久精品电影小说| 人妻 亚洲 视频| 国产男女超爽视频在线观看| 最近最新中文字幕大全免费视频 | 中文字幕免费在线视频6| 在线看a的网站| 国精品久久久久久国模美| 精品一品国产午夜福利视频| 黑人高潮一二区| 18禁动态无遮挡网站| 全区人妻精品视频| 最黄视频免费看| 五月玫瑰六月丁香| 亚洲,一卡二卡三卡| 久热久热在线精品观看| a级毛片在线看网站| 99九九在线精品视频| 国产毛片在线视频| av一本久久久久| 极品少妇高潮喷水抽搐| 国产极品粉嫩免费观看在线| 国产69精品久久久久777片| 在线看a的网站| 欧美国产精品一级二级三级| 在线免费观看不下载黄p国产| 国产精品嫩草影院av在线观看| 日本黄大片高清| 午夜日本视频在线| 国产亚洲精品久久久com| 成年人免费黄色播放视频| 国产男女内射视频| 国产一区有黄有色的免费视频| 成人黄色视频免费在线看| 人妻人人澡人人爽人人| 中文字幕制服av| 亚洲欧美色中文字幕在线| 国产男女超爽视频在线观看| 亚洲天堂av无毛| 人人澡人人妻人| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 飞空精品影院首页| 国产一区二区三区av在线| 水蜜桃什么品种好| 国产福利在线免费观看视频| 亚洲高清免费不卡视频| 精品酒店卫生间| 日日撸夜夜添| 日本vs欧美在线观看视频| 欧美bdsm另类| av在线播放精品| 丝袜喷水一区| 桃花免费在线播放| 高清在线视频一区二区三区| 一区二区av电影网| 久久人人97超碰香蕉20202| 国产黄频视频在线观看| 久久人人爽人人片av| 日本黄大片高清| 国精品久久久久久国模美| 美女视频免费永久观看网站| 新久久久久国产一级毛片| 精品人妻熟女毛片av久久网站| 亚洲av中文av极速乱| 国产免费一区二区三区四区乱码| 免费大片黄手机在线观看| 在线观看国产h片| 久久精品熟女亚洲av麻豆精品| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 亚洲综合色惰| 亚洲国产精品国产精品| 久久这里只有精品19| 大香蕉97超碰在线| 黑人巨大精品欧美一区二区蜜桃 | xxx大片免费视频| 女的被弄到高潮叫床怎么办| 国产精品成人在线| 在线观看美女被高潮喷水网站| 男人舔女人的私密视频| 久久久精品区二区三区| 日韩成人av中文字幕在线观看| 亚洲av综合色区一区| 亚洲精品日韩在线中文字幕| 宅男免费午夜| av有码第一页| 免费观看a级毛片全部| 欧美人与性动交α欧美软件 | 国产免费一级a男人的天堂| 久久鲁丝午夜福利片| 亚洲精品日韩在线中文字幕| 国产欧美日韩综合在线一区二区| 国产国语露脸激情在线看| 在线免费观看不下载黄p国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久精品精品| a级毛色黄片| 永久免费av网站大全| 最近手机中文字幕大全| 日本免费在线观看一区| 久久国内精品自在自线图片| 制服丝袜香蕉在线| 女性被躁到高潮视频| 全区人妻精品视频| 国产精品久久久久成人av| 国产午夜精品一二区理论片| 久久精品熟女亚洲av麻豆精品| 97超碰精品成人国产| 99国产综合亚洲精品| av一本久久久久| av片东京热男人的天堂| 欧美精品av麻豆av| 久久久久精品性色| kizo精华| 中文字幕最新亚洲高清| 尾随美女入室| 午夜免费鲁丝| 欧美日本中文国产一区发布| 久久综合国产亚洲精品| 精品人妻熟女毛片av久久网站| 黑人欧美特级aaaaaa片| 色5月婷婷丁香| 久久午夜综合久久蜜桃| 男女午夜视频在线观看 | 国产综合精华液| 少妇熟女欧美另类| 欧美人与善性xxx| 亚洲美女视频黄频| 亚洲五月色婷婷综合| 宅男免费午夜| 日日撸夜夜添| 蜜桃国产av成人99| 亚洲一码二码三码区别大吗| 大片免费播放器 马上看| 日韩一区二区视频免费看| 18在线观看网站| 男女边吃奶边做爰视频| 最近的中文字幕免费完整| 宅男免费午夜| av免费在线看不卡| 新久久久久国产一级毛片| 精品一区二区免费观看| av在线app专区| 七月丁香在线播放| 天天影视国产精品| 男女边吃奶边做爰视频| 国产精品不卡视频一区二区| 欧美日韩视频高清一区二区三区二| 午夜福利,免费看| 少妇的逼好多水| 老熟女久久久| 欧美激情国产日韩精品一区| 1024视频免费在线观看| 亚洲av电影在线观看一区二区三区| 国产在线一区二区三区精| www.色视频.com| 十八禁高潮呻吟视频| 精品久久久久久电影网| 又黄又爽又刺激的免费视频.| 少妇的丰满在线观看| 免费少妇av软件| 少妇的逼好多水| 两个人免费观看高清视频| 日韩三级伦理在线观看| 麻豆精品久久久久久蜜桃| 亚洲国产成人一精品久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 熟女电影av网| 黄色毛片三级朝国网站| 人人妻人人爽人人添夜夜欢视频| 欧美bdsm另类| 亚洲av欧美aⅴ国产| 国产国语露脸激情在线看| 九色亚洲精品在线播放| 中文欧美无线码| 女人被躁到高潮嗷嗷叫费观| 少妇人妻久久综合中文| 国产xxxxx性猛交| 一级片'在线观看视频| 午夜免费观看性视频| 一级毛片电影观看| 久久狼人影院| 色婷婷av一区二区三区视频| 黄网站色视频无遮挡免费观看| 亚洲欧美一区二区三区黑人 | 精品一区在线观看国产| 黄色视频在线播放观看不卡| 伦理电影大哥的女人| 免费av中文字幕在线| 亚洲精品第二区| 全区人妻精品视频| 国产综合精华液| 国产在线一区二区三区精| 色吧在线观看| 秋霞伦理黄片| 色视频在线一区二区三区| 国产在线免费精品| 一区二区三区乱码不卡18| 欧美xxⅹ黑人| 亚洲欧美日韩卡通动漫| 久久精品aⅴ一区二区三区四区 | 精品一区二区三卡| 亚洲色图 男人天堂 中文字幕 | 汤姆久久久久久久影院中文字幕| 亚洲国产欧美日韩在线播放| av片东京热男人的天堂| 成年动漫av网址| 制服人妻中文乱码| 十八禁网站网址无遮挡| 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 亚洲欧美中文字幕日韩二区| 九九在线视频观看精品| 久久综合国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 天天操日日干夜夜撸| 国产av国产精品国产| 国产精品人妻久久久久久| 青青草视频在线视频观看| 少妇高潮的动态图| 2021少妇久久久久久久久久久| 国产有黄有色有爽视频| 亚洲欧美一区二区三区国产| 五月伊人婷婷丁香| 久久久a久久爽久久v久久| videosex国产| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 亚洲国产最新在线播放| 日韩熟女老妇一区二区性免费视频| 免费大片18禁| 精品亚洲成国产av| 久久精品国产自在天天线| 性色av一级| 99香蕉大伊视频| av在线app专区| 亚洲内射少妇av| 亚洲国产精品999| 男男h啪啪无遮挡| 免费观看av网站的网址| 99久国产av精品国产电影| 国产av精品麻豆| 免费观看无遮挡的男女| 18禁国产床啪视频网站| 亚洲精品色激情综合| 老熟女久久久| 我的女老师完整版在线观看| 亚洲人成网站在线观看播放| 国产成人免费无遮挡视频| 成年美女黄网站色视频大全免费| 日韩一区二区三区影片| 国产一区二区在线观看av| 精品视频人人做人人爽| 最近中文字幕高清免费大全6| 美女脱内裤让男人舔精品视频| 熟女人妻精品中文字幕| 26uuu在线亚洲综合色| 又黄又爽又刺激的免费视频.| 国产成人精品婷婷| 国产xxxxx性猛交| 爱豆传媒免费全集在线观看| 成年av动漫网址| 亚洲美女黄色视频免费看| 99热全是精品| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡 | 久热久热在线精品观看| 国产极品天堂在线| 三级国产精品片| 大香蕉久久成人网| 十八禁高潮呻吟视频| 夫妻午夜视频| 国产不卡av网站在线观看| 国产高清国产精品国产三级| 18+在线观看网站| 日本猛色少妇xxxxx猛交久久| 国产精品久久久av美女十八| 精品国产一区二区久久| 韩国精品一区二区三区 | 国产又爽黄色视频| 国产精品女同一区二区软件| 国产av码专区亚洲av| 少妇熟女欧美另类| 日本vs欧美在线观看视频| av视频免费观看在线观看| 久久 成人 亚洲| 纵有疾风起免费观看全集完整版| 晚上一个人看的免费电影| 各种免费的搞黄视频| 色5月婷婷丁香| 亚洲色图综合在线观看| 女人久久www免费人成看片| 亚洲欧美日韩卡通动漫| 欧美+日韩+精品| 久久影院123| 欧美激情 高清一区二区三区| 久久久久人妻精品一区果冻| 久久女婷五月综合色啪小说| 侵犯人妻中文字幕一二三四区| 草草在线视频免费看| 久久久精品免费免费高清| 91精品伊人久久大香线蕉| 22中文网久久字幕| 中文字幕制服av| 日本猛色少妇xxxxx猛交久久| 欧美激情极品国产一区二区三区 | 国产精品一国产av| 免费少妇av软件| 青青草视频在线视频观看| 欧美激情极品国产一区二区三区 | 日本黄色日本黄色录像| 9色porny在线观看| 国产又色又爽无遮挡免| 国产日韩一区二区三区精品不卡| 看免费成人av毛片| av女优亚洲男人天堂| 免费在线观看黄色视频的| 亚洲性久久影院| 91精品国产国语对白视频| 亚洲精品aⅴ在线观看| 纯流量卡能插随身wifi吗| 有码 亚洲区| 国产白丝娇喘喷水9色精品| 狂野欧美激情性bbbbbb| 少妇人妻久久综合中文| 夜夜爽夜夜爽视频| 男女国产视频网站| 国产成人一区二区在线| 欧美性感艳星| 免费在线观看完整版高清| 制服人妻中文乱码| 精品少妇黑人巨大在线播放| 亚洲成人手机| 日韩一本色道免费dvd| 亚洲av在线观看美女高潮| 制服人妻中文乱码| 免费女性裸体啪啪无遮挡网站| 国产精品久久久久久精品古装| 自拍欧美九色日韩亚洲蝌蚪91| www.av在线官网国产| 日韩 亚洲 欧美在线| 亚洲综合色惰| 99国产精品免费福利视频| 男人爽女人下面视频在线观看| 久久久久精品久久久久真实原创| 国产精品国产av在线观看| 免费观看性生交大片5| 欧美最新免费一区二区三区| 国产精品熟女久久久久浪| 国产女主播在线喷水免费视频网站| 国产片特级美女逼逼视频| 亚洲av欧美aⅴ国产| 久久精品夜色国产| 蜜臀久久99精品久久宅男| 中文字幕制服av| 中国三级夫妇交换| 日韩,欧美,国产一区二区三区| 2021少妇久久久久久久久久久| 日韩中字成人| 两个人免费观看高清视频| 国语对白做爰xxxⅹ性视频网站| 亚洲色图 男人天堂 中文字幕 | 国产精品秋霞免费鲁丝片| 中国美白少妇内射xxxbb| 国产精品久久久久成人av| 少妇被粗大猛烈的视频| 国产不卡av网站在线观看| av卡一久久| 午夜福利在线观看免费完整高清在| 国产精品一区www在线观看| 亚洲av国产av综合av卡| 婷婷色av中文字幕| 最新中文字幕久久久久| 精品亚洲成国产av| 国产亚洲最大av| 看免费成人av毛片| 亚洲精品第二区| 大码成人一级视频| 久久精品人人爽人人爽视色| 久久久精品区二区三区| 最后的刺客免费高清国语| 亚洲一区二区三区欧美精品| 久久久久久久亚洲中文字幕| 在线观看免费高清a一片|