• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      有向圖字典式積的控制數(shù)

      2016-05-04 01:47:14馬紅霞
      關(guān)鍵詞:有向圖

      馬紅霞, 劉 娟

      (新疆師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,新疆 烏魯木齊 830017)

      ?

      有向圖字典式積的控制數(shù)

      馬紅霞,劉娟*

      (新疆師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,新疆 烏魯木齊 830017)

      摘 要:令γ(D)表示有向圖D的控制數(shù)并且令Dm[Dn] 表示Dm和Dn的字典式積, 其中有向圖的點數(shù)為m,n≥2。 文章首先給出任意兩個有向圖字典式積Dm[Dn]的控制數(shù)的下界, 并且決定了有向圖Km[Dn]; Cm[Dn];Pm[Dn]的控制數(shù)。

      關(guān)鍵詞:控制數(shù);字典式積; 有向圖.

      Let D=(V(D),A(D)) be a finite digraph without loops and multiple arcs where V(D) is the vertex set and A(D) is the arc set. For a vertex v∈V(D), ND+(v) and ND-(v)denote the sets of out-neighbors and in-neighbors, respectively, of v, dD+(v)=|ND+(v)|and dD-(v)=|ND-(v)| denote the out-degree and in-degree of v in D, respectively. A digraph D is r-regular if dD+(v)=dD-(v)=r for any vertex v in D. Given two vertices u and v in D, we say that u out-dominates v if u=v or uv∈A(D), and v in-dominates u if u=v or uv∈A(D). Let ND+[v]=ND+(v)∪{v} . A vertex v out-dominates all vertices in ND+[v]. A set S∈V(D) is an dominating set of D if S out-dominates all vertices in V(D). The domination number of D, denoted by γ(D), is the minimum cardinality of an dominating set of D.

      Let Dm=(V(Dm),A(Dm)) and Dn=(V(Dn),A(Dn)) be two digraphs which have disjoint vertex sets V(Dm)={x0,x1,…,xm-1} and V(Dn)={x0,x1,…,xn-1}and disjoint arc sets A(Dm)and A(Dn), respectively. The lexicographic product Dm[Dn] of Dmand Dnhas vertex set V(Dm)×V(Dn)={(xi,yj)|xi∈V(Dm),yj∈V(Dn)} and (xi,yj)(xi′,yj′)∈A(Dm[Dn]) if one of the following holds:

      (a).xixi′∈A(Dm)

      (b).xi=xi′and yjyj′∈A(Dn).

      In recent years, the domination number of the Cartesian product and strong product of directed cycles and paths has been discussed in [4, 5, 6, 7, 8, 10]. And some results of twin domination in digraphs have been studied in [1, 2, 3, 9]. However, to date no research about domination number has been done for lexicographic product of digraphs. In this paper, we study the domination number of Dm[Dn]. First we give the lower bound of the domination number of Dm[Dn], and then determine the exact values of the domination number of digraphs: Km[Dn];Cm[Dn] ;Pm[Dn].

      1Main results

      First, we prove that the lower bound of the domination number of Dm[Dn].

      Lemma 1.1 For any m,n≥2 , then γ(Dm[Dn])≥γ(Dm).

      Let Kmbe complete digraph with every pair of distinct vertices in Kmare adjacent. Clearly, γ(Km)=1. The following theorem is easy to obtain.

      Theorem 1.2γ(Km[Dn])=1.

      We emphasize that vertices of a directed cycle Cmare always denoted by the integers {0,1,…,m-1}, considered modulo m, throughout this paper. There is an arc xy from x to y in Cmif and only if y≡x+1(modm).

      Theorem 1.3For m,n≥2, we have

      Proof. Now we consider two cases.

      Case 1: γ(Dn)=1.

      Case 2: γ(Dn)≥2.

      We find that S2={(j,y0)|j∈{0,1,…,m-1}}is a dominating set of Cm[Dn], and |S2|=m, where y0is a dominating set of Dn. Therefore, γ(Cm[Dn])=m.The proof is completed.

      Let Pmbe a directed path with vertex set {0,1,…,m-1} throughout this paper. This notation make it convenient to the proof of the following results.

      Theorem 1.4Let m,n≥2, then

      Case 1: γ(Dn)=1.

      Case 2: γ(Dn)≥2.

      Subcase 2.1: bm-1=0.

      Subcase 2.2: bm-1≠0.

      The proof is completed.

      參考文獻(xiàn):

      [1] T.Araki. The k-tuple twin domination in de Bruijin and Kautz digraphs[J]. Discrete. Math, 2008,(308):6406-6413.

      [2] S.Arumugam, K.Ebadi, et al. Twin domination and twin irredundance in digraphs[J]. Discrete. Math, 2013,(7):275-284.

      [3] G. Chartrand, P. Dankelmann, M. Schultz, H.C.Swart. Twin domination in digraphs[J]. Ars Combinatoria. 2003,(67):105-114.

      [4] J. Liu, X.D. Zhang, X. Chen, J. Meng. The domination number of Cartesian products of directed cycles[J]. Inform. Process. Lett, 2010,110(5):171-173.

      [5] J. Liu, X.D. Zhang, J. Meng. On domination number of Cartesian product of directed path[J]. Comb. Optim. 2011,22(4):651-662.

      [6] M. Mollard. On the domination of Cartesian product of directed cycles: Results for certain equivalence classes of lengths[J]. Discuss. Math. Graph Theory, 2013,33(2):387-394.

      [7] M. Mollard. The domination number of Cartesian product of two directed paths[J]. Comb. Optim, 2014,(27):144-151.

      [8] R. S. Shaheen. Domination number of toroidal grid digraphs[J]. Utilitas Math, 2009,(78):175-184.

      [9] Y.L. Wang. Efficient twin domination in generalized de Bruijn digraphs[J]. Discrete Math, 2015,(338):36-40.

      [10] X.D. Zhang, J. Liu, X. Chen, J.Meng. On domination number of Cartesian product of directed cycles[J]. Inform. Process. Lett, 2010,111(1):36-39.

      The Domination Number of Lexicographic Product of Digraphs

      MA Hong-xia, LIU Juan*

      (CollegeofMathematicsSciences,XinjiangNormalUniversity,Urumqi,Xinjiang, 830017,China)

      Abstract:Let γ(D)denote the domination number of digraph D and let Dm[Dn] denote the lexicographic product of Dm and Dn, digraphs of order m,n≥2. In this paper, we first give the lower bound of the domination number of Dm[Dn], and then determine the exact values of the domination number of digraphs: Km[Dn] ;Cm[Dn] ;Pm[Dn].

      Key words:Domination number; Lexicographic product; Digraphs

      中圖分類號:O157.5

      文獻(xiàn)標(biāo)識碼:A

      文章編號:1008-9659(2016)01-049-04

      *[通訊作者]劉娟(1981-),女,安徽阜陽人,博士,教授,主要從事圖論及其應(yīng)用研究。

      [作者簡介]馬紅霞(1990-),女,新疆烏魯木齊人,碩士研究生,主要從事圖論及其應(yīng)用研究。

      [基金項目]國家自然科學(xué)基金項目(61363020);國家自然科學(xué)基金項目(11301450);中國國家留學(xué)基金資助;新疆維吾爾自治區(qū)青年科技創(chuàng)新人才培養(yǎng)工程(2013731011)。

      [收稿日期]2015-11-13

      猜你喜歡
      有向圖
      串并有向圖的判定算法及應(yīng)用實例
      科技資訊(2023年21期)2023-11-22 08:35:46
      廣義棱柱中的超歐拉有向圖
      極大限制弧連通有向圖的度條件
      有向圖的Roman k-控制
      依賴于團(tuán)數(shù)的有向圖弧連通度的下界
      超歐拉和雙有向跡的強(qiáng)積有向圖
      關(guān)于超歐拉的冪有向圖
      一個特殊本原有向圖的廣義competition及scrambling指數(shù)
      本原有向圖的scrambling指數(shù)和m-competition指數(shù)
      一類含三個圈的本原有向圖的m-competition指數(shù)
      墨竹工卡县| 时尚| 太仆寺旗| 曲阳县| 富源县| 建瓯市| 宁乡县| 启东市| 马山县| 霍林郭勒市| 阿瓦提县| 南昌县| 汉中市| 西畴县| 星子县| 梅河口市| 大名县| 房产| 建宁县| 石家庄市| 上杭县| 通化市| 桐柏县| 安顺市| 庆元县| 宣武区| 炎陵县| 余江县| 南平市| 东平县| 巴里| 河源市| 龙泉市| 阳西县| 彝良县| 南投市| 辽宁省| 洮南市| 遵义市| 德安县| 宜兰县|