方 煒,高玉斌
(1.中北大學(xué) 儀器與電子學(xué)院,山西 太原030051;2.中北大學(xué) 理學(xué)院,山西 太原030051)
令D=(V,E)是一個(gè)有向圖,其點(diǎn)集V=V(D),邊集E=E(D).可以有環(huán)但是不能有重弧.用Cp來(lái)表示一個(gè)長(zhǎng)度為p的圈.一個(gè)有向圖D是本原的,當(dāng)且僅當(dāng)存在正整數(shù)k,使得D中的任意一點(diǎn)x到另外一點(diǎn)y(y可能等于x)都存在k長(zhǎng)途徑.這樣的最小的正整數(shù)k就是有向圖D的本原指數(shù),用exp(D)表示.
在2009年,Akelbek和Kirkland[1]共同提出了本原有向圖scrambling的指數(shù)這一概念.在本原有向圖D中,如果對(duì)于任意一對(duì)頂點(diǎn)u,v,都能在D中找到一個(gè)頂點(diǎn)w并且u,v經(jīng)過(guò)k長(zhǎng)途徑都能到達(dá)w,滿足這樣條件的最小的正整數(shù)k就稱(chēng)為本原有向圖D的scrambling指數(shù),用k(D)表示.
在2010年,Hwa Kyung Kim[2]提出了本原有向圖m-competition指數(shù)的概念,在本原有向圖D中,如果對(duì)于任意一對(duì)頂點(diǎn)u,v,都能在D中找到一個(gè)頂點(diǎn)集合V1=u1,v2,…,um-1,um,|V1|=m,并且u,v經(jīng)過(guò)k長(zhǎng)途徑都能到達(dá)頂點(diǎn)集合V1,滿足這樣條件的最小的正整數(shù)k就稱(chēng)為D的mcompetition指數(shù),用km(D)表示.其實(shí)m-competition指數(shù)是一種廣義的scrambling指數(shù).
對(duì)于n階本原有向圖D,通過(guò)本原指數(shù),scrambling指數(shù)和m-competition指數(shù)的概念,可以這樣的關(guān)系:k(D)=k1(D)≤k2(D)≤…≤kn(D)=exp(D).
近年來(lái),國(guó)內(nèi)外很多專(zhuān)家對(duì)本原有向圖的scrambling指數(shù)和m-competition指數(shù)進(jìn)行了研究,如文獻(xiàn)[3-15].在文獻(xiàn)[3]中,作者找到了本原有向圖scrambling指數(shù)的上界,并找了取得上界的極圖;在文獻(xiàn)[4]中,作者研究了對(duì)稱(chēng)本原有向圖的scrambling指數(shù);在文獻(xiàn)[5]中,作者研究了僅含兩個(gè)圈的本原有向圖scrambling指數(shù);在文獻(xiàn)[6]中,作者研究了本原對(duì)稱(chēng)含環(huán)有向圖的m-competition指數(shù).本文研究了一類(lèi)含三個(gè)圈的本原有向圖的srambling指數(shù)和一類(lèi)僅含兩個(gè)圈的本原有向圖的m-competition指數(shù).
為了表達(dá)方便,用|Rt{x}|表示頂點(diǎn)x在D中經(jīng)過(guò)t長(zhǎng)途徑所到達(dá)的頂點(diǎn)個(gè)數(shù).令點(diǎn)集V1?V,用RV1t{x}表示頂點(diǎn)x經(jīng)過(guò)t長(zhǎng)途徑到達(dá)V1中的點(diǎn)集,即RV1t{x}=Rt{x}∩V1.設(shè)D為n階本原有向圖,vi,vj∈V(D),如果在D中,vi經(jīng)過(guò)t(t為正整數(shù))長(zhǎng)途徑能到達(dá)vj,那么在有向圖Dt中,vi只需經(jīng)過(guò)1長(zhǎng)途徑就能到達(dá)vj.
定理1 設(shè)D1為如圖1所示的n階本原有向圖,
圖1 D1 Fig.1 D1
證明 令vi,vj∈V(D1),如果在本原有向圖D1中,vi經(jīng)過(guò)n-2長(zhǎng)途徑能到達(dá)vj,那么在本原有向圖Dn-21中,vi經(jīng)過(guò)1長(zhǎng)途徑能到達(dá)vj.由本原有向圖D1,可以得到Dn-21,如圖2所示:
圖2 Dn1-2 Fig.2 Dn1-2
1)當(dāng)n≡0(mod 4)時(shí),在Dn-21中
因此在Dn-21中同時(shí) 對(duì)于頂點(diǎn)有同時(shí)在本原有向圖D1中,對(duì)于任意的頂點(diǎn)vi,vj∈V(D1),vi,vj經(jīng)過(guò)1長(zhǎng)途徑都至少能到達(dá)頂點(diǎn)集合{v1,v2,…,vn-2}中 的 一 個(gè) 點(diǎn),所 以
情況1 1≤i,j≤n-1.因?yàn)閨V1|=n-2,所以對(duì)于任意的頂點(diǎn)
情況2 1≤i≤n-1,j=n.
4)當(dāng)n≡3(mod 4)時(shí),
在D1中,當(dāng)時(shí),且同 時(shí),其中有個(gè)點(diǎn)屬于V2.
定理2 設(shè)D2為n階有向圖,如圖3所示,D2含有1個(gè)n-3長(zhǎng)圈和1個(gè)n-4長(zhǎng)圈.
圖3 D2 Fig.3 D 2
證明 令vi,vj∈V(D2),如果在本原有向圖D2中,vi經(jīng)過(guò)n-4長(zhǎng)途徑能到達(dá)vj,那么在本原有向圖Dn-41中,vi經(jīng)過(guò)1長(zhǎng)途徑能到達(dá)vj.如果在本原有向圖D2中,vi經(jīng)過(guò)n-3長(zhǎng)途徑能到達(dá)vj,那么在本原有向圖Dn-31中,vi經(jīng)過(guò)1長(zhǎng)途徑能到達(dá)vj.
由本原有向圖D2,可以得到Dn-42,如圖4所示:
也可以得到Dn-32,如圖5所示:
圖4 Dn-42 Fig.4 Dn-42
圖5 Dn-32 Fig.5 Dn-32
1)當(dāng)n+m為奇數(shù)時(shí),在Dn-42中,令因?yàn)槭?環(huán) 點(diǎn),所 以其中在D2中,點(diǎn)集中的任意一個(gè)頂點(diǎn)經(jīng)過(guò)4長(zhǎng)途徑都能到達(dá)而且
在本原有向圖D2中,
[1]Akelbek M,Kirkland S.Coefficients of ergodicity and the scrambling index[J].Linear Algebra Appl.,2009,430(4):1111-1130.
[2]Kim H K.Generalized competition index of a primitive digraph[J].Linear Algebra and its Appl.,2010,433(1):72-79.
[3]Akelbek M,Kirkland S.Primitive digraphs with the largest scrambling index[J].Linear Algebra Appl.,2009,430(4):1099-1110.
[4]Chen Shexi,Liu Bolian.The scrambling index of symmetric primitive matrices[J].Linear Algebra and its Applications,2010,433(6):1110-1126.
[5]Shao Yanling,Gao Yubin.The scrambling indices of primitive digraphs with exactly two cycles[J].Ars Combination,2013,108:505-513.
[6]Shao Yanling,Gao Yubin.The m-competition indices of symmetric primitive digraphs with loop[J].Ars Combination,2013,108:217-223.
[7]Kim H K,Lee S H.Generalized competition indices of symmetric primitive digraphs[J].Discrete Applied Mathematics,2012,160(10-11):1583-1590.
[8]Liu Bolian,Huang Yufei.The scrambling index of primitive digraphs[J].Computers and Mathematics with Applications,2010,60(3):706-721.
[9]Cho H H,Kim S R,Nam Y S.The m-step competition graph of a digraph[J].Discrete Applied Mathematics,2010,105(1-3):115-127.
[10]Kim H K.A bound on the generalized competition index of a primitive matrix using boolean rank[J].Linear Algebra and Its Application,2011,435(9):2166-2174.
[11]Kim H K,Park S G.Generalized competition indices of symmetric primitive digraphs[J].Linear Algebra and Its Application,2012,436(1):86-98.
[12]Kim H K.Generalized competition index of an irreducible boolean matrix[J].Linear Algebra and Its Application,2013,438(6):2747-2756.
[13]Kim H K.Scrambling index set of primitive digraphs[J].Linear Algebra and Its Application,2013,439(7):1886-1893.
[14]Shao Yanling,Gao Yubin,Li Zhongshan.The mcompetition indices of symmetric primitive digraphs without loops[J].Electronic Journal of Linear Algebra,2012,23:457-472.
[15]Shao Yanling,Gao Yubin,Li Zhongshan.On the second largest scrambling index of primitive matrices[J].Ars Combination,2014,113:457-462.