• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      重T2WI和增強T1WI MRI聯合評估淚囊鼻淚管的優(yōu)勢

      2016-04-28 03:23:50司建榮張雅麗金梅戴灼南杜潔嫦
      磁共振成像 2016年1期
      關鍵詞:磁共振成像圖像增強

      司建榮,張雅麗,金梅,戴灼南,杜潔嫦

      ?

      重T2WI和增強T1WI MRI聯合評估淚囊鼻淚管的優(yōu)勢

      司建榮1*,張雅麗1,金梅2,戴灼南1,杜潔嫦1

      [摘要]目的 探討MRI重T2WI (h-T2WI)和增強T1WI (Ce-T1WI)組合序列對正常和阻塞的淚囊鼻淚管的顯示能力。材料與方法 在脂肪抑制的基礎上,用h-T2WI和Ce-T1WI序列,薄層連續(xù)掃描正常和有阻塞的淚囊鼻淚管,掃描方位是軸面(AP)和冠狀面(CP),用靜態(tài)和動態(tài)兩種掃描方式。結果 靜態(tài)掃描正常淚囊鼻淚管23例46側,其中24側用h-T2WI+Ce-T1WI+AP+CP組合,6側用h-T2 WI+Ce-T1 WI+AP組合,8側用h-T2 WI+AP+CP組合,8側用Ce-T1WI+AP+CP組合。動態(tài)軸面掃描正常淚囊鼻淚管10例20側,均用h-T2WI+AP組合。靜態(tài)掃描阻塞的淚囊鼻淚管9例10側,均用h-T2WI+Ce-T1WI+AP+CP組合。正常和有阻塞的淚囊鼻淚管均能被良好顯示。(1)正常的淚囊鼻淚管:靜態(tài)掃描見淚囊鼻淚管的管腔狹小,鼻淚管更小,并且形態(tài)多樣;動態(tài)掃描見部分節(jié)段的管腔可自主性增大或變小。橫斷面上淚囊呈長橢圓形(16側)或裂隙狀(30側),移行部均呈半月形,鼻淚管呈短橢圓形(28側)或類圓形(18側)。用靜態(tài)h-T2WI序列,軸面圖像上94.7% (36/38 側)的淚囊鼻淚管呈現了3層信號結構,冠狀面圖上31.2% (10/32 側)呈現了3層信號結構;這3層信號結構分別代表了管腔內容物、管壁內1/4和管壁外3/4;管腔內的淚液、淚膜和空氣分別呈最高信號、高信號和最低信號;管壁內1/4呈低信號,管壁外3/4呈高信號。在Ce-T1WI序列上,管壁可以被明顯強化。(2)有阻塞的淚囊鼻淚管:梗阻部位和病變的范圍均被精確顯示,其中管腔狹窄1側,閉塞9側;梗阻點以上管腔積液(膿)擴張,管壁變?。还W椟c管腔消失或明顯狹小,在h-T2WI上喪失3層信號結構。結論 h-T2WI結合Ce-T1WI序列的MRI,可以清晰的顯示正常生理狀態(tài)下的淚囊鼻淚管的管腔、管壁的層次和行經;也能夠精確顯示有梗阻的淚囊鼻淚管的梗阻部位、病灶范圍,區(qū)分有血供和無血供的組織結構。動態(tài)h-T2WI發(fā)現正常管腔的大小有自主性變化。

      [關鍵詞]淚器;磁共振成像;圖像增強

      1.廣東省中西醫(yī)結合醫(yī)院放射科,佛山 528200

      2.廣東省中西醫(yī)結合醫(yī)院眼科,佛山528200

      司建榮, Email: sjr1963nian@sina.com

      接受日期:2015-11-27

      司建榮, 張雅麗, 金梅, 等.重T2WI和增強T1WI MRI聯合評估淚囊鼻淚管的優(yōu)勢.磁共振成像, 2016, 7(1): 20–27.

      Benefits of the combination of MRI heavily-T2WI and contrast-enhanced T1WI pulse sequences to examine human lacrimal sac and nasolacrimal duct

      SI Jian-rong1*, ZHANG Ya-li1, JIN Mei2, DAI Zhuo-nan1, DU Jie-chang1

      1Department of Radiology, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan 528200, China

      2Ophthalmology Department, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan 528200, China

      *Correspondence to: Si JR, E-mail: sjr1963nian@sina.com

      Received 28 Sep 2015, Accepted 27 Nov 2015

      Abstract Objective: To evaluate capability of the combination of magnetic resonance imaging (MRI) heavily-T2 weighted imaging (h-T2WI) and contrastenhanced T1 weighted imaging (Ce-T1WI) pulse sequences revealing the anatomic details of normal or obstructed human lacrimal sac (LS) -nasolacrimal duct (NLD).Materials and Methods: Using 1.5 T MRI system, the normal and obstructed human LS-NLDs were imaged by h-T2WI and Ce-T1WI pulse sequences both with the fatsaturation technique.LS-NLD was scanned on its axial plane (AP) and coronal plane (CP).The thinnist slice thickness, consecutive sections (no spacing), static and dynamic scanning procedures were adopted.Results: Forty-six sides of normal LS-NLD(23 subjects) were imaged with the static scanning.Of them 24 sides were scanned with a combination of h-T2WI+Ce-T1WI+AP+CP, 6 sides with a combination of h-T2WI+Ce-T1WI+AP, 8 sides with a combination of h-T2WI+AP+CP, 8 sides with a combination of Ce-T1WI+AP+CP.The static scanning of 10 sides of obstructed LS-NLD (9 patients) was performed with a combination of h-T2WI+Ce-T1WI+AP+CP.The dynamic scanning of 20 sides of normal LS-NLD (10 subjects) was done with a combination of h-T2WI+AP.The normal and obstructed LS-NLDs were revealed vividly.(1)The normal LS-NLD.On the static scanning, their lumens were narrow and small, the size and shape of their lumens varied at different levels of LS-NLD, and NLD lumen was narrower and smaller than LS.On the dynamic scanning, the autonomous lumen changes (getting small or large) had been noticed.On cross sectional view, LS was long-ellipse (16 sides) or slit-shaped (30 sides), the junction was crescent, and NLD was short-ellipse (28 sides) or circular (18 sides).By h-T2WI, three-layer different signal intensities were revealed on a lot of images of LS-NLD, and 94.7% (36/38 sides) and 31.2% (10/32 sides) of LS-NLDs showed this signal pattern on axial and coronal scanning respectively.The three layer signals represented respectively (a) contents (tear, tear film or air) in their lumens, (b) medial part of their wall that was smaller than a quarter of their wall thickness and (c) lateral part of their wall that was more than three-fourths of their wall thickness.The tear, the tear film and the air in their lemen gave the most hyper-intense signal, middle-intense signal and the most hypo-intense signal respectively.The medial part and lateral part wall gave a hypo- and middle-intense signals respectively.The medial part wall consists of the epithelium layer, blood capillary layer and postcapillary venule layer, and the latter both are embedded in the lamina propria.The lateral part wall is venous lacunae layer embedded in the lamina propria, too.Ce-T1WI was able to enhance obviously the signal intensity of LS-NLD wall, therefor to promote distinguishing their wall from lumen (or contents).(2) The obstructed LS-NLD.Location and extent of the obstructive lesions were revealed precisely in all of the obstructed LS-NLDs.One side was lumen stricture and 9 sides were lumen occlusion.A lot of liquid (or pus) had been accumulated in the proximal LS-NLD lumen of the obstruction site, the lumen was dilatated, its wall was thinned and only showed one signal intensity.The lumen stricture might be revealed like an “hourglass” pattern.The site of lumen occlusion lost the normal three-layer signal pattern.Conclusions: MRI h-T2WI combined with Ce-T1WI pulse sequences can vividly reveal the lumen (or natures of the contents), wall and route of the normal human LS-NLD in normal physiological condition, and even can reveal detailed layers of their wall.They also can reveal the precise location and extent of lesions in the obstructed LS-NLDs.The tissues with blood supply can be distinguished from one (or the contents) without blood supply by this way.The autonomous size change of the normal LS-NLD lumens is revealed by the dynamic h-T2WI.This combination of MR pulse sequences can achieve aims of other imaging methods which are used to reveal LS-NLD and their lesions, so it is likely to replace the other approaches of dacryocystography with the combination.

      Key words Lacrimal apparatus; Magnetic resonance imaging; Image enhancement

      淚囊鼻淚管MRI檢查,無放射線輻射,醫(yī)源性損傷風險低,并可做到非侵入性;目前常用的方法是MR淚囊造影術(MR dacryocystography,MR DCG),或MR淚道水成像(MR hydrography)[1-9],目標是顯示它們的管腔。本研究是在MR脂肪抑制技術基礎上,用重T2WI和增強T1WI序列,在軸面和冠狀面兩個方位上連續(xù)薄層掃描淚囊鼻淚管,目的是探求一種既能顯示管腔、又能顯示管壁的MRI序列組合;同時,觀察正常和有阻塞的淚囊鼻淚管的靜態(tài)MRI表現,觀察正常管腔形態(tài)和大小的動態(tài)變化。

      1  材料與方法

      1.1研究對象

      1.1.1靜態(tài)掃描正常的淚囊和鼻淚管

      共23例46側;男10例,女13例,年齡10~67 歲,平均(48.5±17.2)歲。受檢者在臨床上均無眼鼻部癥狀和體征,無眼鼻部手術和面部外傷病史,MRI檢查眼和淚囊鼻淚管無異常發(fā)現。其中正常人4例,臨床診斷需要頭顱部位MRI平掃和增強檢查的病人19例;首先滿足臨床診斷檢查的需要,然后再進行正常淚囊鼻淚管的掃描。

      1.1.2動態(tài)軸面掃描正常的淚囊和鼻淚管

      共10例20側,男8例,女2列,年齡20~40歲,平均(28.0±6.9)歲,受檢者全部為作者的同事。

      1.1.3 靜態(tài)掃描有阻塞的淚囊和鼻淚管

      共9例10側;男3例,女6例,年齡33~64歲,平均(42.3±14.1)歲。淚溢病史3個月至10年;其中雙側梗阻1例,單側梗阻8例。原發(fā)性獲得性梗阻8例8側,放射治療后梗阻1例2側。檢查當日,不進行淚道沖洗,以免注入空氣,產生偽影。通過淚道沖洗和MRI檢查確定的淚囊前梗阻,未納入本次研究。

      1.2檢查方法

      1.2.1一般方法

      與受檢者本人或監(jiān)護人簽署相關檢查知情同意書。用GE 1.5 T Signa Infinity 磁共振儀,標準正交頭部線圈。增強掃描對比劑用釓噴酸葡胺注射液,用量0.2 ml/Kg體重,前臂靜脈注射后1~10 min內掃描。在MRI機配套的工作站或GE AW4.5 工作站上進行圖像觀察和后處理。

      1.2.2靜態(tài)掃描

      掃描時被檢查者仰臥、閉眼,盡量減少眼球運動,保持平穩(wěn)呼吸,防止頭顱運動。用重T2WI和增強T1WI序列,序列轉換期間可以瞬目。

      1.2.3動態(tài)軸面掃描

      被檢查者仰臥,掃描期間嚴格要求閉眼;用軸面重T2WI脂肪抑制序列,不停歇連續(xù)掃描4遍,每遍掃描時間4 min 15 s,共17 min。

      1.2.4掃描范圍、掃描平面和掃描序列參數

      掃描范圍包括全部淚道系統(tǒng)。軸面掃描,掃描平面平行于眼眶下緣;冠狀面掃描,掃描平面是前鼻棘前緣與額結節(jié)連線夾角9°的平面,并參考軸面上顯示的淚囊和鼻淚管的位置定位。(1)軸面重T2WI脂肪抑制序列(FRFSE-XL):TR 5100.0 ms,TE 120.0 ms,層厚1.6 mm,層間隔0 mm,矩陣 288×224,FOV 180 mm×160 mm;掃描層數34 層,掃描時間4 min 15 s。(2)冠狀面重T2WI脂肪抑制序列(FSE-XL):TR 4200.0 ms,TE 150.0 ms,層厚1.6 mm,層間隔0 mm,矩陣320×256,FOV 180 mm×150 mm;掃描層數9層,掃描時間2 min 52 s。(3)增強T1WI脂肪抑制序列(FSE-XL ):TR 450.0 ms,TE 最小,軸面層厚1.8 mm,冠狀面層厚1.2 mm,層間隔0 mm;矩陣 288×224,FOV 180 mm×150 mm;掃描層數:軸面24 層,冠狀面12層,掃描時間:軸面5 min 46 s,冠狀面 2 min 53 s。

      1.2.5圖像質量評估標準

      分為優(yōu)秀、中等和差三個等級,由2名高年資MRI室醫(yī)師共同進行,達成一致意見。優(yōu)秀指圖像無明顯偽影,淚囊鼻淚管邊緣清晰銳利,管壁與管腔內容物(淚液、氣體、淚膜等)分界清晰明確;或在重T2WI上,淚囊鼻淚管的部分層面顯現3層信號結構(圖1~4)。中等指圖像有偽影,淚囊鼻淚管邊緣稍顯毛糙,淚囊鼻淚管的整體形態(tài)和管腔的觀察不受影響,管壁與管腔內液(氣)體分界清晰。差指圖像偽影多,不能分辨淚囊鼻淚管邊緣、以及管壁與管腔內容物,影響對淚囊鼻淚管整體形態(tài)觀察。

      表1 靜態(tài)掃描正常淚囊鼻淚管圖像質量統(tǒng)計Tab.1 Quality grades of static MRI of the normal lacrimal sac and nasolacrimal duct

      2  結果

      2.1正常淚囊鼻淚管

      2.1.1靜態(tài)掃描序列分布和圖像質量結果

      在23 例46側正常淚囊鼻淚管中,同時進行了重T2WI和增強T1WI兩個序列、軸面和冠狀面兩個方位的受檢者12例24側。同時進行了重T2WI和增強T1WI兩個序列、只有軸面一個方位的受檢者3例6側。單純進行了重T2WI軸面和冠狀面兩個方位的受檢者4例8側。單純進行了增強T1WI軸面和冠狀面兩個方位的受檢者4例8側。圖像質量統(tǒng)計結果見表1。

      圖像質量優(yōu)秀比例:重T2WI軸面圖像94.7% (36/38側),重T2WI冠狀面圖像31.2% (10/32側),增強T1WI軸面圖像100% (38/38側),增強T1WI冠狀面圖像78.1% (25/32側);圖像質量不佳的主要原因是頭顱、眼球和鼻翼的運動,以及管腔內空氣造成的偽影。

      2.1.2靜態(tài)掃描時淚囊和鼻淚管的形態(tài)和管腔表現

      淚囊鼻淚管從前上內逐漸向后下外下走行,在冠狀面和矢狀面上二者不完全處在同一平面,管徑也不相同,因此只在少數冠狀層面能顯示淚囊鼻淚管全程。Hasner瓣下緣呈內高外低的弧形,但一部分人缺失(11側)。 橫斷面的形態(tài):淚囊呈長橢圓形(16側)或裂隙狀(30側),移行部全部呈半月形(后外側的壓跡所致),鼻淚管呈短橢圓形(28側)或類圓形(18側)。

      通過管腔內的淚膜、淚液和空氣,可判斷管腔的大小和形態(tài)、黏膜厚度、淚道海綿體的機能狀態(tài)(萎陷和充盈);如果管腔內沒有淚液和空氣,只有淚膜,管腔則處于閉合狀態(tài)。淚囊鼻淚管管腔狹小,形態(tài)和大小在不同的層面完全不同,管腔可呈偏心性或不規(guī)則花瓣形,表明黏膜的厚度在各個平面、在每個平面的不同方位有較大變化;淚囊黏膜厚度明顯小于鼻淚管;淚囊腔全程充盈淚液的情況常見(24側),而鼻淚管僅見斑點狀淚液分布,因此可以說淚囊的管腔相對大于鼻淚管;淚囊腔雖然可以全程充盈淚液,但不飽滿,甚至可以用“癟陷”來描述(圖3)。淚囊、移行部和鼻淚管可見全程充盈空氣的情形(10側)。

      圖1  女,58歲,正常的雙側鼻淚管下段橫斷面(箭),上圖和下圖是相同層面。上圖,重T2WI。 右側有3層信號,從內到外,高信號的是淚液,低信號的是管壁內側部分,稍高信號的是管壁外側部分。左側有2層信號,最低信號的是腔內空氣,稍高信號是管壁。下圖,增強T1WI。雙側均呈現2層信號,右側中心低信號是淚液,左側中心最低信號是空氣,雙側管壁呈高信號 圖2 男,19歲,正常的雙側淚囊下部橫斷面(箭),重T2WI,腔內有較多淚液。從內到外呈現典型的高信號-低信號-稍高信號3層信號分布。注意:淚液中心的稍低信號區(qū)域,是偽影 圖3 女,23歲,正常的雙側淚囊鼻淚管(箭)冠狀面,重T2WI。雙側淚囊和鼻淚管均可見不對稱、不規(guī)則分布的花紋狀3層信號:高信號的是淚液,低信號的是管壁內側部分,稍高信號的是管壁外側部分;呈現了典型的管腔形態(tài)多變和狹小的特點;淚囊腔內淚液相對多于鼻淚管。右側內眥靜脈顯示(箭頭) 圖4 女,40歲,正常的雙側鼻淚管下段(箭)軸面動態(tài)掃描,重T2WI。在正常生理狀態(tài)下的連續(xù)4期同層面掃描,每期耗時4 min 15 s。淚液呈高信號,淚膜呈中等信號。管壁內1/4呈低信號,管壁外3/4呈中等信號。右側管腔由大變小,左側管腔幾乎無變化Fig.1 A 58-year-old female normal subject.The axial plane sections of the lower parts of the nasolacrimal duct (NLD) (arrows).The upper figure is at the same level as the lower one.The upper figure, heavily-T2 weighted image (h-T2WI), reveals three layer signals on the right NLD and two layer signals on the left NLD respectively.On the right side, the hyper-intense signal represents the tear, the hypo-intense signal represents the medial part of its wall and the middle-intense signal represents the lateral part of its wall.On the left side, the hypo-intense signal represents air, and the middle-intense signal represents its wall.The lower figure, contrast-enhanced T1 weighted image (Ce-T1WI), reveals two layer signals on both sides.On the right side, the hypo-intense signal represents the tear, the hyper-intense signal represents its wall.On the left side, the hypo-intense signal represents air, and the hyper-intense signal represents its wall.Fig.2 A 19-year-old male normal subject.h-T2WI.The axial plane sections of the lower parts of the lacrimal sac (LS) (arrows).Typical three layer signals are exhibited on both sides.They are the hyper-intense signal (tear), hypo-intense signal (the medial wall) and middle-intense signal (the lateral wall) from center to outside.Notes: the hypo-intense signal in the center of the tear are the artifact.Fig.3 A 23-year-old female normal subject.The coronal plane sections of LS-NLD (arrows), h-T2WI, reveals three layer signals on both sides.But these signals are asymmetry, irregular and decorative patterns that indicate their lumen features shch as narrow, small and various shapes at different levels of LS-NLD.The hyper-intense signal represents the tear, the hypo-intense signal represents the medial part of their wall and the middle-intense signal represents the lateral part of their wall.There is relatively more tear in LS than in NLD.Right venae angularis is revealed (arrowhead).Fig.4 A 40-year-old female normal subject.Dynamic axial h-T2WI.Cross sections through the bilateral lower part of NLD (arrows).They are acquired at the same level in four phases (every phase taking 4 minutes 15 seconds) under normal physiological coditon.The tear gives the most hyper-intense signal, the tear film gives a middle-intense signal; the medial part of their wall gives a hypo-intense signal, the lateral part of their wall gives a middle-intense signal.Size of the right lumen shows a distinct change (getting smaller), but the left remains almost unchanged.

      2.1.3動態(tài)掃描時淚囊鼻淚管的管腔變化

      在軸面動態(tài)重T2WI脂肪抑制序列圖上,比對層面相同、掃描時相不同的4幅圖像。如果淚液(或空氣)明顯增多或變少、出現或消失,就視為管腔有明顯變化,否則為管腔無變化(圖4)。總共掃描10例20側,圖像質量全部優(yōu)秀;其中5例8側淚囊鼻淚管完全充氣,管腔寬大直通。自下而上,將淚囊鼻淚管分為4個區(qū)段,Hasner瓣段、鼻淚管段、移行部段和淚囊段,分別統(tǒng)計每個區(qū)段內管腔變化的發(fā)生率(有變化的層面數量/總層面數量),結果依次為:11.9% (5/42層)、22.4% (28/125 層)、14.2% (6/42層)和12.0% (13/108層)。

      2.1.4淚囊和鼻淚管的信號表現(圖1~4)

      在重T2WI序列上,從淚囊鼻淚管斷面的中心向外,常常依次可見最高(最低,或稍高)信號-低信號-較高信號3層信號分布;中心信號代表管腔內容物(淚液,空氣,或淚膜),最外2層信號代表管壁。但在淚囊和含氣較多的鼻淚管斷面,從中心向外,常僅顯示2層信號,即最高(最低)信號-稍高信號,分別代表管腔內容物(淚液,或空氣)和管壁;在靜態(tài)重T2WI軸面和冠狀面圖像上,分別有94.7% (36/38側)和31.2% (10/32側)的淚囊鼻淚管的許多層面清晰顯示了3層信號結構。在脂肪抑制增強軸面T1WI序列上,絕大多數(43側)淚囊鼻淚管僅顯示2層信號,即低信號-高信號2層,分別代表管腔內容物和管壁;偶爾可見3層信號分布(3側)。

      2.2有阻塞的淚囊鼻淚管(圖5,6)

      全部進行了靜態(tài)重T2WI和增強T1WI兩個序列、軸面和冠狀面兩個方位的掃描;圖像質量全部優(yōu)秀。全部病例精確顯示了淚囊、鼻淚管及其阻塞部位、梗阻段長度和和其他細節(jié)。在9 例10側病變中,移行部梗阻7側,鼻淚管下端(Hasner瓣區(qū)域)梗阻3側;管腔狹窄1側,閉塞9側。

      梗阻點以上淚囊鼻淚管的表現:管腔積液(膿),管腔擴大,管壁變薄,管壁在重T2WI上只呈現單一信號;積液擴張的管腔內信號隨內容物性質變化,可以是水樣高信號(6側)、高-低混雜信號或與管壁一樣的稍高信號(4側);特別要注意的是,在積液較多時,液體中心會形成低信號偽影(圖2,6A)。在增強T1WI上,管腔內信號也隨內容物性質變化,(與同層面肌肉比)呈現不同形態(tài)的低、等、高信號;管壁可以明顯強化(8側)或強化不明顯(2側)。

      梗阻部位的表現:管腔消失或明顯狹小;在重T2WI序列上喪失3層信號結構;在重T2WI和增強T1WI上,局部信號與正常管壁相同或稍低。每個梗阻點各有其形態(tài)特點,總體上分為狹窄(1側)和閉塞(9側)二類;梗阻點以下管腔內有空氣時(1側),狹窄表現為局部管壁梭形增厚,呈“沙漏”樣(圖6B);閉塞的表現是管腔的中斷(圖5B)。如果梗阻點(非Hasner瓣區(qū)域)以下是正常的、不含氣體的淚囊或鼻淚管(6側),病變段局部與正常段的信號可能相同,此時,病變段特點是喪失3層信號結構,并且在連續(xù)的橫斷面上顯示更佳。

      梗阻點(非Hasner瓣區(qū)域)以下的表現(6側):它屬于正常,在重T2WI序列上顯示3層信號結構;如果腔內沒有空氣或液體時,管腔內僅有高信號的淚膜。

      3  討論

      3.1淚囊鼻淚管的解剖組織學結構為MR成像提供了天然對比度

      正常生理狀態(tài)下,淚囊鼻淚管的解剖行經周圍有筋膜、眶脂體和骨質,管腔內有淚膜、淚液或空氣[10-11],這種管腔內、管壁和管壁周圍不同的組織成分,為淚囊鼻淚管管壁在MRI上的顯現提供了天然對比,而管腔內容物的多寡則代表了管腔的大小和形態(tài)及開放與關閉狀態(tài)。

      淚囊鼻淚管管壁是由上皮層和固有層構成的黏膜組織;上皮層有2層上皮細胞;在上皮之下,固有層內包埋著極端豐富的、被特異化的血管叢,即淚道海綿體[10,12-13]。淚道海綿體的基本血運有其自身特點:供血動脈發(fā)出的、垂直穿過固有層的分支,僅僅在上皮下面再分出表淺的連拱狀分支,以供應上皮下密集的毛細血管網;緊鄰毛細血管網的是收集它們血液的、短小的毛細血管后微靜脈(postcapillary venule),而毛細血管后微靜脈的血液又導入再靠外圍的、管腔寬大、走行盤曲的靜脈腔隙(venous lacunae);這些靜脈腔隙最終引流到骨內、或靠近骨的靜脈[10]。

      觀察光學顯微鏡下淚囊鼻淚管橫斷面的表現[10, 12-13],筆者發(fā)現小于管壁厚度1/4的內側部分,由上皮層和包埋有毛細血管層和毛細血管后微靜脈層的固有層構成,由于血管管腔所占面積相對小,所以顯得較為致密;大于管壁厚度3/4的外側部分,由包埋有靜脈腔隙層的固有層構成,由于血管管腔所占面積相對大,所以顯得較為疏松。這種結構,又奠定了MRI上管壁呈現不同信號層次的基礎。

      3.2重T2WI和增強T1WI

      靜態(tài)重T2WI和增強T1WI可顯示正常淚囊鼻淚管的管腔、管壁層次和周圍組織;動態(tài)軸面重T2WI可以顯示正常淚囊鼻淚管管腔的動態(tài)變化。

      MRI雖然具有良好的軟組織分辨能力,但在常規(guī)T2WI或常規(guī)T2WI脂肪抑制序列上,當淚囊鼻淚管管腔內淚液較少,或僅有淚膜時,管腔與管壁信號近似,管壁常常呈現同一種信號;在水成像序列上[1-2, 4-7, 9],管腔內的液體呈明顯高信號,而管壁呈現極低信號,管壁不能顯示。

      與常規(guī)T2WI相比,本研究中,T2WI序列應用了較長的TR和較長的TE,即TR和TE比常規(guī)T2WI序列長,比水成像序列短,因此也稱之為重T2WI;該重T2WI脂肪抑制序列,秉承了常規(guī)T2WI和水成像序列的優(yōu)點,即使非常少量的淚液也能在該序列上保持明顯的高信號,淚膜呈高信號,同時增加了管腔內的淚液(或淚膜)、管壁內側1/4、管壁外側3/4和周圍組織之間的對比,具體表現為:腔內容物、管壁內側1/4、管壁外側3/4和管壁周圍組織呈現不同的信號,即淚囊鼻淚管呈現3層信號(圖1~4)。

      通過比對淚囊鼻淚管在光鏡下的橫斷面組織結構[10, 12-13]與重T2WI的橫斷面信號表現,發(fā)現管壁的組織結構分層與MRI信號分層相吻合:管壁的內側1/4厚度,雖然由上皮層、毛細血管層和毛細血管后微靜脈層構成[10],但只呈現一種信號(即低信號),與此區(qū)域組織成分分布較密集有關;管壁外側3/4厚度的靜脈腔隙層,呈現另外一種信號(即較高信號),而與此處組織結構疏松含有大量血管有關。

      在脂肪抑制增強T1WI序列上,因為淚囊鼻淚管的管壁富有血管,可以明顯被強化,常常只呈現一種信號(即高信號);管腔內容物則保持平掃時原有的低信號。

      動態(tài)軸面重T2WI掃描,雖然可以顯示管腔的動態(tài)變化,但因為每個掃描期相的時間較長,不利于觀察管腔的快速變化。動態(tài)掃描中發(fā)現的管腔大小的自主性變化,從另一方面印證了靜態(tài)掃描發(fā)現的淚囊鼻淚管的管腔形態(tài)和大小在不同的平面的變化,就是黏膜厚度動態(tài)變化的結果。

      需要解釋的是:在重T2WI上,占管壁厚度約1/4的內側低信號層,它的厚度比例并非恒定,因為在正常生理狀態(tài)下,淚道海綿體靜脈腔隙(容受靜脈)的萎陷可致管壁變薄,反之,靜脈腔隙的充盈可致管壁增厚[10]。增強T1WI上,管壁強化常不均勻,可見小點狀明顯強化區(qū)域,其與重T2WI上的局限性高信號一致,應該是反映了局部有開放的較大血管腔隙,而信號相對低的區(qū)域血管腔隙可能呈萎陷狀態(tài)。

      本研究中使用的方法,及其觀察到的正常淚囊鼻淚管的靜態(tài)和動態(tài)MRI表現,可能為某些疾病的早期診斷,如原發(fā)性獲得性淚囊鼻淚管梗阻的早期診斷,找到了有效的檢查方法和建立了參照基礎;也可能為淚囊鼻淚管的生理解剖學研究提供了新的手段,特別是在閉眼狀態(tài)下,動態(tài)掃描觀察到的管腔的自主性變化,可能有助于理解淚囊鼻淚管在傳輸淚液過程中的生理功能。

      3.3靜態(tài)重T2WI和增強T1WI序列組合可顯示阻塞淚囊鼻淚管的全程和病變的細節(jié)

      本組檢查有梗阻的淚囊鼻淚管數量不多,僅有10側,但均明確顯示了梗阻部位、病變累及的長度,還能區(qū)分管腔狹窄與閉塞。因為梗阻近段管腔內容物成分復雜,平掃時其信號與正?;虍惓5墓鼙诳赡芟嘟?,這兩種序列的聯合應用,可鑒別無血供、少血供、富血供的組織和成分;在兩種序列上,梗阻處病變段的信號與正常管壁信號可能相同,為了判斷梗阻段的長度,需要冠狀面與軸面結合,并借助如下征象:梗阻近段管腔擴張、管壁變薄;梗阻遠段尚屬于正常,在重T2WI上有3層信號分布,管腔內可能只有淚膜信號而無淚液信號;梗阻段管腔消失,在重T2WI上3層信號消失,只呈現一種信號。

      本組病例,根據其臨床病史,梗阻部位無疑是包括了肉芽組織和瘢痕組織的慢性炎性改變;如果是其他病因所致的梗阻,如腫瘤、外傷等,局部形態(tài)表現和信號改變有待于進一步觀察。淚道阻塞是常見病,治療方法很多,但遠期療效均不太理想,原因之一是對早期病灶和病灶的治療(手術)前評估達不到精準;用重T2WI結合增強T1WI的掃描,可以非常準確的顯示位于淚囊鼻淚管中的病灶部位和范圍,這是其他檢查無可比擬的,為選用損傷小、療效好而且持久的治療方法,提供了可靠的信息。

      3.4圖像偽影的抑制和MRI序列參數的優(yōu)化

      從本組的觀察結果來看,影響圖像質量的主要因素是運動偽影和管腔內、鼻腔內、鼻竇內的空氣造成的磁化率偽影,通過固定頭部、與被檢者良好的溝通、最大可能地消除對噪聲的恐懼和在磁體內的幽閉恐懼,可以基本消除運動偽影。本研究中所選用的掃描參數,兼顧了層厚、視野、信噪比、采集時間等;層厚越薄,部分容積效應越小,組織分辨率越高,掃描層數增加,掃描時間增加,信噪比降低;層厚越厚,則正好相反。不同的MRI設備,掃描參數應該還可以進一步優(yōu)化,采集時間應該可以進一步縮短[14]。但要注意識別MRI圖像上的各種偽影和其他正常結構,如內眥靜脈和鼻竇黏膜等(圖3)。

      3.5結論

      總之,在脂肪抑制技術基礎之上,重T2WI結合增強T1WI,軸面圖像結合冠狀面圖像,再結合動態(tài)重T2WI掃描,可以清晰的顯示正常生理狀態(tài)下的淚囊鼻淚管的管腔、管腔內容物性質、管壁結構層次和行經,及其管腔的動態(tài)變化;可以顯示有阻塞的淚囊鼻淚管的全程和病變部位的細節(jié);增強掃描有助于區(qū)別阻塞點無血液供應的管腔內沉積物與有血液供應的管壁、肉芽組織等。這種MRI序列組合,可實現各種淚囊鼻淚管影像學檢查的目標,因此有望替代它們,其中包括淚道逆行插管造影術[15];遺憾的是該檢查不能顯示正常的淚小管和淚總管。

      參考文獻[References]

      [1]Wang Y, Zhou J, Chen LL, et al.Clinical application value of MR dacryocystography using 3D FIESTA to analyze the cause of epiphora.J Chin Clin Med Imaging, 2015, 26(2): 77–80.

      王悅, 周軍,陳琳琳,等.磁共振成像技術3D FIESTA序列對溢淚病因分析的臨床應用價值.中國臨床醫(yī)學影像雜志, 2015, 26(2): 77–80.

      [2]Jing Z, Lang C, Qiu-Xia W, et al.High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution.Eur J Radiol, 2013, 82(9): 1546–1551.

      [3]Coskun B, Ilgit E, Onal B, et al.MR dacryocystography in the evaluation of patients with obstructive epiphora treated by means of interventional radiologic procedures.Am J Neuroradiol, 2012, 33(1): 141–147.

      [4]Cubuk R, Tasali N, Aydin S, et al.Dynamic MR dacryocystography in patients with epiphora.Eur J Radiol, 2010, 73(2): 230–233.

      [5]Detorakis ET, Drakonaki E, Papadaki E, et al.Watery eye following patent external DCR: an MR dacryocystography study.Orbit, 2010, 29(5): 239–243.

      [6]Zhang J, Shu HG, Hu JW et al.Nasolacrimal duct imaging using MR hydrography and its clinical application.Chin J Radiol, 2008, 42(6): 614–617.

      張菁, 舒紅格, 胡軍武, 等.MR鼻淚管成像的臨床應用.中華放射學雜志, 2008, 42(6): 614–617.

      [7]Amrith S, Goh PS, Wang SC.Tear flow dynamics in the human nasolacrimal ducts: a pilot study using dynamic magnetic resonance imaging.Graefes Arch Clin Exp Ophthalmol, 2005, 243(2): 127–131.

      [8]Manfrè L, de Maria M, Todaro E, et al.MR dacryocystography: comparison with dacryocystography and CT dacryocystography.Am J Neuroradiol, 2000, 21(6): 1145–1150.

      [9]Takehara Y, Isoda H, Kurihashi K, et al.Dynamic MR dacryocystography: a new method for evaluating nasolacrimal duct obstructions.Am J Roentgenol, 2000, 175(2): 469–473.

      [10]Paulsen FP, Thale AB, Hallmann UJ, et al.The cavernous body of the human efferent tear ducts: function in tear outflow mechanism.Invest Ophthalmol Vis Sci, 2000, 41(5): 965–970.

      [11]Paulsen F.The human nasolacrimal ducts.Adv Anat Embryol Cell Biol, 2003,170(Ⅲ-Ⅺ): 1–106.

      [12]Ayub M, Thale AB, Hedderich J, et al.The cavernous body of the human efferent tear ducts contributes to regulation of tear outflow.Invest Ophthalmol Vis Sci, 2003, 44(11): 4900–4907.

      [13]Paulsen F, Hallmann U, Paulsen J, et al.Innervation of the cavernous body of the human efferent tear ducts and function in tear outflow mechanism.J Anat, 2000, 197(Pt 2): 177–187.

      [14]Xue ZH, Wang YF, Zhao YB.Magnetic resonance imaging quality control and parameter optimization.Chin J of Magn Reson Imaging, 2013, 4(6): 441–444.

      薛正和, 王永峰, 趙一冰.磁共振成像的質量控制及參數優(yōu)化.磁共振成像, 2013, 4(6): 441–444.

      [15]Wang TT, Tao H, Han C, et al.Preliminary study on CT retrograde intubation dacryocystography (CT-RIDC) and its impact factors.Chin J Ophthalmol, 2014, 10(50): 766–771.

      王婷婷, 陶海, 韓毳, 等.CT淚道逆行插管造影檢查及其影響因素的初步研究.中華眼科雜志, 2014, 10(50): 766–771.

      DOI:10.12015/issn.1674-8034.2016.01.005

      文獻標識碼:A

      中圖分類號:R445.2;R777.23

      收稿日期:2015-09-28

      通訊作者:

      作者單位:

      猜你喜歡
      磁共振成像圖像增強
      一種基于輕量級深度網絡的無參考光學遙感圖像增強算法
      圖像增強技術在超跨聲葉柵紋影試驗中的應用
      水下視覺SLAM圖像增強研究
      虛擬內窺鏡圖像增強膝關節(jié)鏡手術導航系統(tǒng)
      基于圖像增強的無人機偵察圖像去霧方法
      多序列聯合應用MRI檢查在早期強直性脊柱炎骶髂關節(jié)病變的診斷價值
      體素內不相干運動成像技術評估短暫性腦缺血發(fā)作的研究
      彌漫性軸索損傷CT、MR動態(tài)觀察
      椎動脈型頸椎病的磁共振成像分析
      磁敏感加權成像(SWI)在腦內海綿狀血管瘤診斷中的應用
      肥东县| 麻城市| 布拖县| 哈巴河县| 申扎县| 寿光市| 连平县| 临沧市| 两当县| 青龙| 西安市| 格尔木市| 通州区| 黑水县| 南华县| 江口县| 金阳县| 佛冈县| 徐闻县| 焦作市| 河南省| 镇江市| 大庆市| 吉木乃县| 鲁甸县| 安阳县| 象山县| 玛纳斯县| 二连浩特市| 麦盖提县| 昌宁县| 嫩江县| 嘉黎县| 永清县| 黄大仙区| 通城县| 陈巴尔虎旗| 台东市| 衡阳县| 景东| 邹平县|