李 群,黃金玉,杜 宇,潘勤鶴
1)海南大學(xué)材料與化工學(xué)院,海南海口 570100;2)深圳大學(xué)物理與能源學(xué)院,廣東深圳 518060
?
微波水熱法構(gòu)筑高性能SnO2基乙醇傳感器
李群1,2,黃金玉2,杜宇2,潘勤鶴1
1)海南大學(xué)材料與化工學(xué)院,海南海口 570100;2)深圳大學(xué)物理與能源學(xué)院,廣東深圳 518060
摘要:以二水合二氯亞錫為原料,無任何添加劑,通過微波水熱法快速合成氧化錫(SnO2)納米棒.使用X射線衍射和掃描電子顯微鏡對(duì)樣品的結(jié)構(gòu)、形貌進(jìn)行表征.研究發(fā)現(xiàn),制備的SnO2納米棒顆粒尺寸均一,分散性較好,納米棒的表面布滿顆粒狀的突起.以制得的SnO2納米棒構(gòu)筑旁熱式氣敏元件,采用靜態(tài)配氣法測(cè)試了氣敏元件對(duì)乙醇、甲醇、丙酮和氨氣等氣體的敏感性能.結(jié)果表明,該氣敏元件對(duì)乙醇具有靈敏度高、檢測(cè)下限低、選擇性好、響應(yīng)和恢復(fù)迅速等優(yōu)點(diǎn).
關(guān)鍵詞:無機(jī)材料;環(huán)境監(jiān)測(cè);傳感器;氣敏;微波水熱法;氧化錫;乙醇
金屬氧化物氧化錫(SnO2)是一種重要的N型寬帶隙半導(dǎo)體功能材料,其禁帶寬度Eg= 3.6 eV (300 K)[1]. SnO2納米材料具有獨(dú)特的光學(xué)、催化以及電學(xué)性質(zhì),因此,被廣泛應(yīng)用在氣體傳感器[2]、透明導(dǎo)電薄膜[3]、鋰離子電池[4]、太陽(yáng)能電池[5]和催化劑等材料中[6]. 其中,SnO2納米材料作為氣敏材料一直是研究的熱點(diǎn). SnO2物理和化學(xué)性質(zhì)穩(wěn)定,用其制作的氣敏元件具有使用壽命長(zhǎng)、耐腐蝕、靈敏度高、對(duì)氣體的吸附過程可逆、元件阻值隨檢測(cè)氣體濃度呈指數(shù)變化關(guān)系等優(yōu)點(diǎn).但SnO2是一種廣譜的氣敏材料,同時(shí)對(duì)幾種氣體都比較靈敏.在定量檢測(cè)中受到限制,因而開發(fā)高靈敏、高選擇性的SnO2元件一直是學(xué)者們熱心追求的目標(biāo).
納米化的氣敏材料具有兩種氣敏機(jī)理:① 晶界勢(shì)壘控制機(jī)理;② 比表面積大小控制機(jī)理.材料的納米化導(dǎo)致比表面積增大,表面原子數(shù)量大大增加,表面原子配位的不飽和性產(chǎn)生了更多的位錯(cuò)和懸掛鍵,大大增強(qiáng)了表面吸附氣體的能力.同時(shí),顆粒粒徑的減小導(dǎo)致晶界的出現(xiàn)和晶界勢(shì)壘的增加,使得因氣體吸附引起的勢(shì)壘變化更顯著.因此,氣敏材料的納米化是提高敏感特性的有效途徑.常用制備納米材料的方法有水熱法[7]、磁控濺射法和化學(xué)沉積法(chemical vapor deposition, CVD)等.Xu等[8]通過水熱法制備了SnO2納米棒和中空球,并檢測(cè)其對(duì)乙醇?xì)怏w和硫化氫氣體的敏感特性,當(dāng)工作溫度為350 ℃時(shí),SnO2納米棒和中空球?qū)w積分?jǐn)?shù)為1.3×10-7乙醇?xì)怏w的靈敏度均為28,對(duì)硫化氫氣體的靈敏度分別為123和30. Hu等[9]采用水熱法制備的橄欖狀SnO2,在最佳工作溫度240 ℃下,其對(duì)體積分?jǐn)?shù)為1.0×10-5的硫化氫氣體的靈敏度為117. 這些方法不但耗時(shí),且要引入添加劑,增加了制備成本,也加重了對(duì)環(huán)境的污染.與此對(duì)比,微波加熱技術(shù)具有節(jié)能、快速、高效、加熱均勻和環(huán)保等優(yōu)點(diǎn),是目前開發(fā)氣敏材料的新途徑. SnO2納米材料的制備方法和形貌控制是合成的兩個(gè)主要內(nèi)容. 不同制備方法得到的SnO2納米材料的形貌和氣敏性能迥異. 制備方法的改進(jìn)和創(chuàng)新,實(shí)現(xiàn)SnO2納米材料形貌可控,進(jìn)而實(shí)現(xiàn)性質(zhì)可控是氣敏材料領(lǐng)域追求的目標(biāo). 目前,利用微波水熱法制備多種具有不同形貌的SnO2作為氣敏材料,可分為等級(jí)結(jié)構(gòu)、納米顆粒、納米片狀和核殼結(jié)構(gòu)等[10-13].但是,利用這種方法制備SnO2納米棒的研究還很少,SnO2納米材料形貌和尺寸影響其氣敏性能,因此,利用微波水熱法合成SnO2納米棒、研究其氣敏性能并挖掘其新的物理化學(xué)特性具有深遠(yuǎn)意義.
本研究不加任何添加劑,采用微波水熱法制備了SnO2納米棒. 掃描電鏡照片顯示納米棒的尺寸均一,長(zhǎng)度約為4 μm,直徑約為500 nm.以SnO2納米棒構(gòu)筑了氣敏傳感器,敏感元件對(duì)乙醇?xì)怏w具有高靈敏度、高選擇性、低工作溫度以及低檢測(cè)下限的特性.
1實(shí)驗(yàn)
1.1材料和方法
制備原料:二水合二氯亞錫(SnCl2·2H2O,分析純,西隴化工股份有限公司生產(chǎn));實(shí)驗(yàn)用水均為蒸餾水.
制備方法:稱取0.024 g SnCl2·2H2O溶解于20 mL蒸餾水中,攪拌20 min,將上述溶液轉(zhuǎn)入到100 mL以聚四氟乙烯為內(nèi)襯的水熱反應(yīng)釜中,在180 ℃、300 W下進(jìn)行水熱反應(yīng)30 min,待產(chǎn)物冷卻后用蒸餾水過濾并洗滌,將所得淡黃色粉體沉淀置于鼓風(fēng)干燥箱中60 ℃烘干4 h,所得干燥粉體即為SnO2納米棒.
1.2SnO2納米棒的性能表征
1.2.1X射線衍射(X-ray diffraction, XRD)
采用日本理學(xué)公司生產(chǎn)X射線衍射儀(Cu-Kα,λ= 0.154 18 nm)對(duì)所獲取樣品進(jìn)行XRD分析,加速電壓為40 kV,電源電流為40 mA. 掃描角度為20°~80°,掃描步長(zhǎng)為0.02 (°)/s.
1.2.2掃描電子顯微鏡(scanning electron microscopy, SEM)
采用FEI Nova Nano SEM 450型電子顯微鏡觀察SnO2納米棒的表面形貌,該電子顯微鏡鎢燈絲,高靈敏度半導(dǎo)體背散射二次電子檢測(cè)器,工作電壓為15 kV.
1.3氣敏性能測(cè)試
采用北京艾利特科技有限公司生產(chǎn)的CGS-8型氣敏元件特性測(cè)試儀對(duì)材料的氣敏特性進(jìn)行測(cè)試. 取少量已制備的SnO2納米材料,加入蒸餾水研磨至漿糊狀,然后將其均勻涂在Al2O3陶瓷管上,陶瓷管兩端有1對(duì)與Pt導(dǎo)線相連接的Au電極. Al2O3陶瓷管中間插入1根鎳鉻合金線圈,提供測(cè)試元件的工作溫度,將器件及加熱絲焊接到六腳底座上,紅外燈下干燥10 min,然后100 ℃老化12 h.
元件的氣敏測(cè)試采用靜態(tài)配氣法測(cè)試,實(shí)驗(yàn)條件如下:室內(nèi)相對(duì)濕度為(25±5)%,室內(nèi)溫度為(24±1)℃. 氣敏元件的靈敏度S定義為:氧化性氣體S=Rg/Ra; 還原性氣體S=Ra/Rg, Rg和Ra分別為元件在待測(cè)氣體中和空氣中的電阻值.氣敏元件在吸附和脫附過程中達(dá)到總電阻變化的90%所需要的時(shí)間分別定義為響應(yīng)時(shí)間和恢復(fù)時(shí)間.
2結(jié)果與討論
2.1XRD衍射結(jié)果
圖1是SnO2納米棒的XRD圖譜,其衍射峰位分別出現(xiàn)在2θ為26.30°、 33.68°、 37.72°、 38.88°、 42.58°、 51.60°、 54.60°、 57.84°、 61.58°、 64.66°、 65.78°、 71.24°和78.68°處. 所有特征峰的位置均與國(guó)際XRD衍射數(shù)據(jù)標(biāo)準(zhǔn)卡片JCPDS file No.41-1445相符,表明所制備得SnO2納米棒為四方晶系金紅石結(jié)構(gòu)的SnO2[14],其晶格參數(shù)為a=b=0.473 8 nm和c=0.318 7 nm.XRD 圖譜中未發(fā)現(xiàn)其他衍射峰,說明所制備樣品為純相的SnO2. 但圖譜中某些衍射峰的相對(duì)強(qiáng)度與標(biāo)準(zhǔn)卡片中的有顯著不同,這是由于晶體的各向異性生長(zhǎng)所引起的[15].
圖1 SnO2納米棒的XRD圖譜Fig.1 (Color online) XRD pattern for the SnO2 nanorods
圖2 不同制備方法SnO2 的SEM照片F(xiàn)ig.2 SEM images of the SnO2 by different methods
2.2SEM掃描結(jié)果
圖2(a)和(b)是微波水熱法制備的SnO2納米棒的場(chǎng)發(fā)射掃描電子顯微鏡照片.低放大倍數(shù)照片中,所合成的SnO2呈棒狀,顆粒尺寸均一,分散性較好,如圖2(a). 從高放大倍數(shù)照片圖2(b)中可以清楚觀察到,每個(gè)顆粒長(zhǎng)度約為4 μm,直徑約為500 nm,納米棒的表面布滿顆粒狀的突起,這種不規(guī)則的突起增加了材料表面的缺陷. 圖2(c)是普通水熱條件下制備的SnO2,從SEM照片可以看出,樣品處于無定形狀態(tài),沒有任何SnO2納米棒的生成. 上述結(jié)果表明微波水熱法能在短時(shí)間內(nèi)制備出產(chǎn)量較多、尺寸均一的SnO2納米棒.
SnCl2·2H2O溶于水后水解成Sn(OH)2前驅(qū)體,由于反應(yīng)釜內(nèi)存在一定的空氣,在微波加熱條件下,前驅(qū)體氧化分解成SnO2晶核,通過溶解、結(jié)晶的反復(fù)過程,形成具有幾何形狀的晶體. 金紅石結(jié)構(gòu)SnO2的晶面能量由小到大依次為:(110)、(100)、(101)、(201)和(001), 晶體沿著能量高的晶面生長(zhǎng),來降低體系的能量,這種生長(zhǎng)在高溫高壓條件下極易生成納米棒狀結(jié)構(gòu)[16-17].
圖3 不同工作溫度下氣敏元件對(duì)體積分?jǐn)?shù)為2.6×10-7的乙醇?xì)怏w的靈敏度Fig.3 (Color online) Sensitivities of the gas sensor towards the volume fraction of 2.6×10-7 ethanol gas at different working temperatures
2.3氣敏元件的氣敏性能
利用所得的SnO2納米材料制備氣體傳感器,并對(duì)其氣敏性質(zhì)進(jìn)行表征. 為測(cè)試器件的最佳工作溫度,在不同溫度下測(cè)試器件對(duì)體積分?jǐn)?shù)為2.6×10-7的乙醇?xì)怏w靈敏度的響應(yīng).如圖3所示,隨著工作溫度的升高,器件靈敏度的響應(yīng)也不斷升高,并在120 ℃時(shí)達(dá)到峰值為87. 此后,隨著溫度的繼續(xù)升高,器件靈敏度的響應(yīng)開始下降. 因此,為繼續(xù)表征傳感器的其他參數(shù),選定120 ℃作為傳感器檢測(cè)乙醇?xì)怏w的最佳工作溫度. 傳感器隨工作溫度變化的現(xiàn)象可以解釋如下:當(dāng)器件的工作溫度從60 ℃上升到120 ℃時(shí),器件靈敏度的響應(yīng)會(huì)隨表面反應(yīng)(乙醇失去電子)效率的增加而提高.當(dāng)溫度繼續(xù)上升,器件響應(yīng)會(huì)因氣體擴(kuò)散深度的減小而降低,在最佳工作溫度下,乙醇分子在敏感材料表面的反應(yīng)效率與其向敏感體內(nèi)部擴(kuò)散的深度達(dá)到平衡,器件表現(xiàn)出最高響應(yīng)[18]. 值得注意的是,與文獻(xiàn)[19-25]報(bào)道的SnO2乙醇傳感器相比(表1),本研究所制器件擁有較低的工作溫度,較高的靈敏度,因此,器件在保持高靈敏性能的同時(shí),能耗大大降低,符合近年傳感器節(jié)能的設(shè)計(jì)理念.
表1 基于不同形貌SnO2傳感器對(duì)
在最佳工作溫度下測(cè)試器件對(duì)不同體積分?jǐn)?shù)乙醇?xì)怏w的響應(yīng),結(jié)果如圖4. 當(dāng)乙醇?xì)怏w體積分?jǐn)?shù)為2.6×10-7時(shí),器件響應(yīng)值約為87,普遍高于文獻(xiàn)[19-30]報(bào)道中不同形貌結(jié)構(gòu)的SnO2傳感器(表1). 隨著乙醇?xì)怏w體積分?jǐn)?shù)的升高,器件響應(yīng)值逐漸變大,當(dāng)體積分?jǐn)?shù)達(dá)到2.6×10-6時(shí),器件響應(yīng)達(dá)到216.24. 值得注意的是,當(dāng)體積分?jǐn)?shù)降至2.6×10-9時(shí)器件仍有響應(yīng),響應(yīng)值約為4.7,見圖4(b),證明其具有很低的檢測(cè)下限.器件對(duì)體積分?jǐn)?shù)為2.6×10-7的乙醇?xì)怏w的響應(yīng)恢復(fù)特性如圖5所示,顯示出較快的檢測(cè)速度,響應(yīng)和恢復(fù)時(shí)間分別為21 s和20 s. 此外,從圖中4個(gè)周期的響應(yīng)恢復(fù)過程可見氣敏元件具有很好的重復(fù)性.
圖4 元件在120 ℃下對(duì)不同氣體的靈敏度Fig.4 (Color online) Sensitivities of different gas sensor at 120 ℃
圖5 元件在120 ℃下對(duì)體積分?jǐn)?shù)為2.6×10-7的乙醇?xì)怏w體積動(dòng)態(tài)響應(yīng)恢復(fù)周期曲線Fig.5 (Color online) Dynamic response and recovery characteristic curve of the gas sensor to 2.6×10-7 ethanol at the operating temperature of 120 ℃
圖6 元件在120 ℃下對(duì)體積分?jǐn)?shù)為2.6×10-7的不同氣體的靈敏度Fig.6 (Color online) Selectivities of the gas sensor to 2.6×10-7 for various gases at 120 ℃
為測(cè)試器件的選擇性,在120 ℃條件下測(cè)試了器件對(duì)不同氣體的響應(yīng),如圖6. 被測(cè)氣體包括二氧化硫、氫氣、一氧化碳、二氧化氮、甲醇、氨氣、丙酮和乙醇. 由圖6可見,在所有氣體中,器件對(duì)乙醇?xì)怏w的響應(yīng)最大(S=87), 遠(yuǎn)遠(yuǎn)高于對(duì)其他氣體的響應(yīng).因此,推斷基于棒狀SnO2材料的傳感器對(duì)乙醇具有很好的選擇性.
2.4氣敏元件的工作原理
SnO2傳感器的傳感機(jī)理是吸附氣體分子后對(duì)SnO2表面電子傳導(dǎo)性能的調(diào)控作用. 乙醇是一種典型的還原性氣體,當(dāng)乙醇分子吸附到SnO2納米顆粒表面時(shí),將會(huì)把電子給予SnO2導(dǎo)帶,從而變成吸附態(tài). 由于SnO2為N型半導(dǎo)體材料,因此,當(dāng)SnO2暴露在乙醇?xì)夥罩袝r(shí), SnO2將會(huì)得到電子,引發(fā)電阻的降低,從而傳感器對(duì)乙醇表現(xiàn)出響應(yīng)[31].
傳感器良好的敏感特性主要?dú)w因以下幾個(gè)方面:① 納米棒表面顆粒狀的突起增加了材料表面缺陷,進(jìn)而提高了乙醇分子的吸附;② SnO2納米棒敏感層較為疏松,乙醇分子從敏感層的表面向體內(nèi)部的擴(kuò)散較容易,增加了敏感體的利用率.
結(jié)語(yǔ)
本研究采用微波水熱法快速合成出四方晶系金紅石結(jié)構(gòu)SnO2納米棒,不需要添加劑,綠色環(huán)保,簡(jiǎn)易高產(chǎn). 測(cè)試了以納米棒構(gòu)筑的氣敏元件的敏感性能,結(jié)果顯示,SnO2納米棒對(duì)乙醇?xì)怏w的檢測(cè)溫度較低,且具有靈敏度高、檢測(cè)下限低、選擇性好、響應(yīng)和恢復(fù)迅速等優(yōu)點(diǎn),這些特點(diǎn)使它在檢測(cè)和監(jiān)測(cè)乙醇?xì)怏w方面具有廣闊應(yīng)用前景.
引文:李群,黃金玉,杜宇,等.微波水熱法構(gòu)筑高性能SnO2基乙醇傳感器[J]. 深圳大學(xué)學(xué)報(bào)理工版,2016,33(2):147-153.
參考文獻(xiàn)/ References:
[1] Lee J H, Katoch A, Choi S W, et al. Extraordinary improvement of gas-sensing performances in SnO2nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces, 2015, 7(5) : 3101-3109.
[2] Zhao Jing, Wang Weinan, Liu Yingping, et al. Ordered mesoporous Pd/SnO2synthesized by a nanocasting route for high hydrogen sensing performance[J]. Sensors and Actuators B: Chemical, 2011, 160(1):604-608.
[3] Yong J S, Chang H S, Anwar M S, et al. Structure and properties of transparent conductive Sb2O5-doped SnO2thin films fabricated by using pulsed laser deposition[J]. Journal of the Korean Physical Society, 2012, 60(10):1543-1547.
[4] Ding Shujiang, Chen Junsong, Wen Louxiong. One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties[J]. Advanced Functional Materials, 2011, 21(21):4120-4125.
[5] Jin Enmei, Park J Y, Gu Haibon, et al. Synthesis of SnO2hollow fiber using kapok biotemplate for application in dye-sensitized solar cells[J]. Materials Letters, 2015, 159:321-324.
[6] Liu Cheng, Xian Hui, Jiang Zheng, et al. Insight into the improvement effect of the Ce doping into the SnO2catalyst for the catalytic combustion of methane[J]. Applied Catalysis B: Environmental, 2015, 176/177:542-552.
[7] 曹慧群, 林碧玉, 張晟詰,等. 水熱法制備錳鋅鐵氧體/碳納米管磁性材料[J]. 深圳大學(xué)學(xué)報(bào)理工版, 2013, 30(1):12-16.
Cao Huiqun, Lin Biyu, Zhang Shengjie, et al. Hydrothermal synthesis carbon nanotubes coating with Mn0.5Zn0.5Fe2O4magnetic materials[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(1):12-16.(in Chinese)
[8] Xu Jiaqiang, Wang Ding, Qin Lipeng, et al. SnO2nanorods and hollow spheres: Controlled synthesis and gas sensing properties[J]. Sensors & Actuators B: Chemical, 2009, 137(2):490-495.
[9] Hu Jun, Yin Guilin, Chen Junchen, et al. An olive-shaped SnO2nanocrystal-based low concentration H2S gas sensor with high sensitivity and selectivity[J]. Physical Chemistry Chemical Physics, 2015, 17(32): 20537-20542.
[10] Srivastava A, Lakshmikumar S T, Srivastava A K, et al. Gas sensing properties of nanocrystalline SnO2prepared in solvent media using a microwave assisted technique[J]. Sensors & Actuators B Chemical, 2007, 126(2):583-587.
[11] Krishnakumar T, Pinna N, Kumari K P, et al. Microwave-assisted synthesis and characterization of tin oxide nanoparticles[J]. Materials Letters, 2008, 62(19):3437-3440.
[12] Yanagimoto T, Yu Y T, Kaneko K. Microstructure and CO gas sensing property of Au/SnO2core-shell structure nanoparticles synthesized by precipitation method and microwave-assisted hydrothermal synthesis method[J]. Sensors and Actuators B: Chemical, 2012, 166/167(10):31-35.
[13] Krishnakumar T, Jayaprakash R, Parthibavarman M, et al. Microwave-assisted synthesis and investigation of SnO2nanoparticles[J]. Materials Letters, 2009, 63(11):896-898.
[14] Jia Yong, Chen Xing, Guo Zheng, et al. In situ growth of tin oxide nanowires, nanobelts, and nanodendrites on the surface of iron-doped tin oxide/multiwalled carbon nanotube nanocomposites[J]. Journal of Physical Chemistry C, 2009, 113(48):20583-20588.
[15] Zhang Dongfeng, Sun Lingdong, Yin Jialu, et al. Low-temperature fabrication of highly crystalline SnO2nanorods[J]. Advanced Materials, 2003, 15(12):1022-1025.
[16] Cheng Bin, Russell J M, Shi Wensheng, et al. Large-scale, solution-phase growth of single-crystalline SnO2nanorods[J]. Journal of the American Chemical Society, 2004, 126(19):5972-5973.
[17] Leite E R, Giraldi T R, Pontes F M, et al. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature[J]. Applied Physics Letters, 2003, 83(8):1566-1568.
[18] Oweis R J, Albiss B A, Al-Widyan M I, et al. Hybrid zinc oxide nanorods/carbon nanotubes composite for nitrogen dioxide gas sensing[J]. Journal of Electronic Materials, 2014, 43(9):3222-3228.
[19] Phadungdhitidhada S, Thanasanvorakun S, Mangkorntong P, et al. SnO2nanowires mixed nanodendrites for high ethanol sensor response[J]. Current Applied Physics, 2011, 11(6):1368-1373.
[20] Li Wenqi, Ma Shuyi, Li Yingfeng, et al. Enhanced ethanol sensing performance of hollow ZnO-SnO2core-shell nanofibers[J]. Sensors & Actuators B Chemical, 2015, 211:392-402.
[21] Li Kunmu, Li Yijing, Lu Mingyen, et al. Direct conversion of single-layer SnO nanoplates to multi-layer SnO2nanoplates with enhanced ethanol sensing properties[J]. Advanced Functional Materials, 2009, 19(15):2453-2456.
[22] Liu Qian, Zhang Zhengyu, Li Wenyao, et al. Ethanol gas sensor based on a self-supporting hierarchical SnO2nanorods array[J]. Crystengcomm, 2015, 17:1800-1804.
[23] Zhou Xiaoming, Fu Wuyou, Yang Haibin, et al. Synthesis and ethanol-sensing properties of flowerlike SnO2nanorods bundles by poly(ethylene glycol)-assisted hydrothermal process[J]. Materials Chemistry & Physics, 2010, 124(1):614-618.
[24] Liu Bin, Zhang Lihui, Zhao Hua, et al. Synthesis and sensing properties of spherical flowerlike architectures assembled with SnO2submicron rods[J]. Sensors & Actuators B: Chemical, 2012, 173:643-651.
[25] Lee Y C, Huang Hui, Tan O K, et al. Semiconductor gas sensor based on Pd-doped SnO2nanorod thin films[J]. Sensors & Actuators B: Chemical, 2008, 132(1):239-242.
[26] Guan Yue, Wang Dawei, Zhou Xin, et al. Hydrothermal preparation and gas sensing properties of Zn-doped SnO2hierarchical architectures[J]. Sensors & Actuators B: Chemical, 2014, 191(2):45-52.
[27] Wang Wenchuang, Tian Yongtao, Li Xinjian, et al. Enhanced ethanol sensing properties of Zn-doped SnO2porous hollow microspheres[J]. Applied Surface Science, 2012, 261(1):890-895.
[28] Hwang I S, Choi J K, Woo H S, et al. Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2nanowire networks[J]. ACS Applied Materials & Interfaces, 2011, 3(8):3140-3145.
[29] Li Hui, Xu Jiaqiang, Zhu Yongheng, et al. Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2nanowires[J]. Talanta, 2010, 82(2):458-463.
[30] Sun Peng, Yu Yingshuo, Xu Jing, et al. One-step synthesis and gas sensing characteristics of hierarchical SnO2nanorods modified by Pd loading[J]. Sensors & Actuators B: Chemical, 2011, 160(1):244-250.
[31] Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures: overview[J]. Sensors & Actuators B: Chemical, 2009, 140(1):319-336.
【中文責(zé)編:晨兮;英文責(zé)編:新谷】
Highly sensitive ethanol sensor based on SnO2nanorods synthesized by microwave-assisted hydrothermal method
Li Qun1,2, Huang Jinyu2, Du Yu2?, and Pan Qinhe1?
1)Materials and Chemical Engineering, Hainan University, Haikou 570100, Hainan Province, P.R.China2) College of Physics and Energy, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
Abstract:Tin dioxide nanorods were successfully synthesized by a microwave-assisted hydrothermal method with Tin(II) chloride dehydrate as the raw material without any additives. The structure and morphology of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The result indicates that the particle size of the SnO2 nanorod is uniform and relatively dispersive. It is found that the surface of nanorods is filled with irregular protuberances. The sensibilities of such a SnO2 sensor to ethanol, methanol, acetone, ammonia, and so on were measured by the static volumetric method. The sensor exhibits high sensitivity, low detection limit, excellent selectivity, fast response and recovery characteristics to ethanol.
Key words:inorganic materials; environmental monitoring; sensor; gas sensing; microwave-assisted hydrothermal method; SnO2; ethanol
作者簡(jiǎn)介:李群(1988—),女,海南大學(xué)碩士研究生.E-mail:liqun1g@gmail.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(21001051);海南省自然科學(xué)基金資助項(xiàng)目(20152030); 深圳市高端人才科研啟動(dòng)基金資助項(xiàng)目(82700002601)
中圖分類號(hào):O 69;X 831
文獻(xiàn)標(biāo)志碼:A
doi:10.3724/SP.J.1249.2016.02147
Received:2015-11-09;Accepted:2015-12-10
Foundation:National Natural Science Fundation of China (21001051); National Natural Science Fundation of Hainan Province (20152030); National Natural Science Foundation of Shenzhen University (82700002601)
? Corresponding author:Associate professor Du Yu. E-mail: duyu@szu.edu.cn; Associate professor Pan Qinhe. E-mail: panqinhe@163.com
Citation:Li Qun, Huang Jinyu, Du Yu, et al.Highly sensitive ethanol sensor based on SnO2nanorods synthesized by microwave-assisted hydrothermal method [J]. Journal of Shenzhen University Science and Engineering, 2016, 33(2): 147-153.(in Chinese)
【物理 / Physics】