• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design considerations and behavior of reinforced concrete core dams during construction and impounding

    2016-04-18 10:34:52*
    Water Science and Engineering 2016年3期

    *

    Institute of Hydraulic Engineering and Water Resources Management,Vienna University of Technology,Vienna 1040,Austria

    Design considerations and behavior of reinforced concrete core dams during construction and impounding

    Peter Tschernutter*,Adrian Kainrath

    Institute of Hydraulic Engineering and Water Resources Management,Vienna University of Technology,Vienna 1040,Austria

    Available online 16 November 2016

    Reinforced concrete core dams can be an alternative solution to conventional dam designs either for permanent impounded reservoirs or f l ood protection and f l ood-retaining dams.Dams of this type have been constructed in Austria for various reasons and have shown good behavior during operation.For a better understanding of the load-deformation behavior of this type of dams during construction and impounding,numerical simulations were carried out.The interaction between the thin reinforced concrete core and the dam fill material as well as the inf l uence of fill material properties and other main parameters,such as the roughness of the concrete surface and bedding conditions of the concrete core, on the deformation behavior of dams were examined.The results show that high compressive stress is mainly induced by arching effects in the dam body during construction.During the reservoir impounding,the compressive stresses in the core are reduced signif i cantly while the bending moment in the core footing increases.The results also show that the maximum bending moments occur at the core footing and can be signif i cantly reduced by design improvements.The f i ndings in this study can provide general design recommendations for small dams with a central concrete core as a sealing blanket.

    Embankment dam;Concrete diaphragm sealing;Numerical analysis;Concrete core;Structural force

    1.Introduction

    Due to the mountainous topography of Austria and the climatic conditions,large destructive f l oods,mudflows,and avalanches can threaten settlements and infrastructure.In order to protect those areas,f l ood protection structures such as protection dams for retention basins play an important role. For this purpose,dams with a central impermeable concrete core are considered to be a cost-effective and safe solution for smaller embankment dams up to a limited height.The main advantage is a short and weather-independent construction period,which represents a decisive planning factor in alpine regions.It is highly important for designers to understand the behavior of the dam during construction and impounding.

    During recent decades,several studies and research projects have been carried out in Austria to analyze the forces from the damshellonthinmembranoussealingelementsinembankment dams.Most of the research work has been performed at the University of Innsbruck(Schober,1982,1984,2003;Schober et al.,1987;Schober and Henzinger,1984;Hupfauf,1991) and only some dams have been constructed in Austria based on the results of those studies.For intensive research in this field, one dam was equipped with instruments for monitoring the behavior of the dam and the structural forces in the concrete core.Lackinger(1980)and Rammer(1986)performed several basicstudiesonsmall-scalemodeldamsinthe1980s.Theinitial research on this topic was mainly focused on laboratory and basic field measurements.Yagin et al.(1998)collected the data from existing dams worldwide with a concrete core as an inner sealing element and performed some basic analyses regarding the height,construction method,and long-term behavior of those dams.However,research activities on this topic werelimited.Within the last few years,a concrete core as an inner sealing element,especially for small dams,has become more and more popular,leading to open questions regarding the technical design of the concrete core.

    Recent studies based on numerical back-calculations of existing dams have been performed by the authors(Kainrath, 2009,2010;Tschernutter and Nackler,1991;Tschernutter, 2001;Tschernutter et al.,2011),in order to investigate the rheologicalbehaviorofthistypeofdams.Thesestudiesshowed a general lack of knowledge regarding the interaction between the dam body and the concrete core,leading to uncertainties in determining the structural forces in the core wall.One of the critical issues in the design is the way in which the construction material of the dam,the concrete roughness,and the foundation designoftheconcretecore,inf l uencesthestructuralforces.Due to the limited deformation capability of the concrete core without cracking,the question raised are substantial and will be discussed in this paper.The results presented in this paper are basedonanintensivenumericalstudyofanembankmentdamin Austria.The analysis ascertained the factors governing the structural forces in the concrete core in order to provide general design recommendations.

    2.Models and parameters

    2.1.Dam characteristics

    The main aim of constructing a f l ood retention reservoir on the Griffenbach River with a central concrete core embankment dam was to protect villages from f l oods.The dam,with a maximum height of about 24 m and a reservoir retention capacity of 207000 m3,should resist a 100-year f l ood.The maximum height of the central reinforced concrete core reaches 26.3 m.The embankment volume is about 50000 m3, the upstream and downstream slope inclinations are both 1(vertical):2(horizontal),and the fill material is crushed soft rock from a quarry.The embankment material was placed in 60 cm-high layers and compacted with 12-ton static load vibratory rollers.The central reinforced concrete core has a thickness of 40 cm and the concrete quality is C25/30 with an exposure class of XC4(water pressure exceeds 100 kN/m2).

    2.2.Constitutive model for FEM analysis

    The finite element program Plaxis 2D,which has been developed for the analysis of geotechnical structures,was used throughout this analysis.The simulations were carried out with atwo-dimensional(2D)-planestrainmodelofthehighestcrosssection of the dam.The model itself consists of 19671 15-node triangularelements,whichhave12interiorstresspointssituated at different positions.The average element size was 0.8 m.The fi nite element mesh is shown in Fig.1.The model's horizontal expansion amounts to 200 m,which is three times the model's vertical expansion of 70 m.The hardening soil model(Schanz et al.,1999)implemented in PLAXIS was employed for the numerical analysis.It is a modi fi ed version of the hyperbolic model(Duncan and Chang,1970;Duncan et al.,1980).The hardening soil model supersedes the hyperbolic model by far, using the theory of plasticity rather than the theory of elasticity, including soil dilatancy,and introducing a yield cap.The hardeningsoilmodelaccountsinarealisticmannerforthestress dependence of the soil stiffness for oedometric and deviatoric loading as well as for primary loading and reloading.The stress dependency is modeled with three different stiffness moduli:for primary loading,for oedometric loading,andforunloadingandreloading,andtheparametermfortheamount of the stress dependency.The stress dependency of the stiffness E50is nonlinear and given by the following equation:

    Fig.1.Finite element mesh of analyzed cross-section.

    where c is the cohesion;φ is the friction angle;prefis the reference stress;σ3is the minor principal stress,which is the effective conf i ning pressure applied in a triaxial test;andis the reference stiffness modulus corresponding to the reference stresspref,whichdependsontheminorprincipal stressσ3andis determined from a triaxial stress-strain curve for a mobilization of 50%of the maximum shear strength qf.qfis evaluated with the Mohr-Coulomb failure criterion.The unloading/reloading path is modeled as purely(linear)elastic with the reference Young'smodulusforunloading/reloading.Thederivationof the parameters is depicted in Schanz et al.(1999).

    In the hardening soil model,two different hardening mechanisms(i.e.,isotropic and deviatoric)account for the history of stress paths.Therefore,a shear hardening yield surface(cone)as indicated in Fig.2 isintroduced.Forcompressive (isotropic)stress paths,a cap-type yield surface is used to close the elastic region.Due to shear hardening,the shear yield locus can expand to the Mohr-Coulomb failure surface while the cap expands due to volumetric hardening as a function of the preconsolidation stress.A detailed description of the hardening soil model can be found in Schanz et al.(1999).

    2.3.Applied finite element model and parameters

    Fig.2.Yield contour of hardening soil model in total stress space (Plaxis,2015;Schanz et al.,1999).

    Fig.3.Material zoning for numerical simulation.

    Fig.3 depicts the zoning of the dam body,which was taken into account with six different zones(zones 1 through 6)using the hardening soil model.The bedrock(zone 8)was assumed to be nearly rigid and therefore modeled as linear elastic.For the alluvial subsoil(zone 7),the hardening soil model was chosen.The concrete core with a thickness of 0.4 m was modeled in a linear elastic manner as a plate.For the soilstructure interaction(skin friction),interface elements were placed on both sides of the core.The interaction between soil and structure is controlled by the interface with the reduction factor for skin friction Rinter(Potyondy,1967).The parameter relates the interface strength to the soil strength.Since no triaxial tests have been available,material parameters from literature(Lofquist,1951;Leps,1970;Marachi et al.,1972; Marsal,1967;Saboya and Byrne,1993;Douglas,2002; Xiao et al.,2016)and from back-calculations of similar dams were used to obtain a range of characteristic parameters for different zones.Based on the experience of previous studies(Tschernutter and Nackler,1991;Kainrath,2009, 2010;Tschernutter et al.,2011),upper and lower bounds of characteristic parameters were chosen for the main inf l uencing zones to identify their inf l uence on the rheological behavior of the dam.For this study,the focus was steered to the resulting structural forces in the concrete core.Therefore,the inf l uences of the material parameters of the rockfill shells(zone 1)and the backfilled trench for the core footing(zone 5)as well as the roughness of the concrete core on the rheological behavior of the dam were studied through variation of their values. Furthermore,the bedding condition of the core footing was examined.The general variations of the parameters used in this study are summarized in Table 1.The parameters with upper and lower bounds according to Table 1 are given in Table 2.A more detailed description of the parameters for the hardening soil model is given in Schanz et al.(1999).The values of stiffness E of the bedrock(zone 8)and the reinforced concrete core used forthe linearelastic modelwere 3×106kN/m and 3×107kN/m,respectively.The values of Poisson's ratio ν of the bedrock(zone 8)and the reinforced concrete core were 0.20 and 0.15,respectively.

    The numerical analysis of the construction process was carried out in 19 phases in total,which can be summarized in four main phases:calculation of the initial stress state under gravity loading and reset of the initial deformation to zero,soil excavation of the upper parts of the alluvial layer and the trench for the concrete core footing,simultaneous construction of the concrete core,and upstream and downstream dam zones with a layer thickness of about 2 m,impounding to the maximum water level.

    Table 1Overview of models and parameter variations used in current study.

    Table 2Parameters for hardening soil model used in this study and their bounds.

    3.Results and discussion

    3.1.Stress and deformation analysis

    Fig.4 depicts the distribution of effective horizontal stress of the dam at the end of construction(EOC)and at the maximum water level(MWL).As can be seen in the f i gures, the effective horizontal stress in the downstream dam body signif i cantly increases in the zones adjacent to the concrete core due to the impounding,which is representative for dams with a central core and is caused by a rotation of the principal stress in the lowest third of the downstream dam body. High horizontal stresses and the low height above the base inhibit the mobilization of signif i cant resistance in this area. This leads to horizontal deformations and a structural loading of the concrete core.For this reason,it is of interest how the material of the shell(zone 1)and the backfilled trench(zone 5)inf l uences the horizontal deformation.The horizontal deformation of the concrete core is depicted in Fig.5,with positive values representing the deformation towards downstream and negative values representing the deformation towards upstream.The results show that the absolute horizontal deformation of the concrete core due to impounding is mainly governed by the stiffness of the rockfill shells.A stiff shell zone as specified in model D-2-2 leads to a signif i cantly less horizontal deformation of the core.Fig.5 shows that the absolute horizontal deformation of the core is not affected by the skin friction.The different angles of internal friction for the f i lter and transition zone cause the differences in the horizontal deformation at the end of construction.

    Fig.4.Distribution of effective horizontal stress at end of construction and at maximum water level.

    Fig.5.Horizontal deformation of concrete core at end of construction (EOC)and at maximum water level(MWL).

    Fig.6 depicts the differential rotation of the concrete core due to impounding,with negative values representing the differential rotation in the clockwise direction.It can be observed that the model D-2-1a with low stiffness of the material in zone 5(backfilled trench)obtains signif i cantly higher differential rotations in the lower third of the core.This causes a higher curvature accompanied by higher bending moments in the concrete core.Fig.6 shows that a lower skin friction(model D-2-1b)results in higher curvatures of the core.A lower skin friction(model D-2-1b)does not affect the horizontal deformation of the core.Furthermore,differences in the angle of internal friction on both sides of the core lead to deformations during the construction process.It can be concluded that the material and the design of the zones adjacent to the core have a signif i cant inf l uence on the horizontal deformation behavior of the core.As a consequence,a low material stiffness for the downstream shell as well as for the trench backfilling leads to more horizontal deformation during impounding.

    Fig.6.Differential rotation of concrete core during period from end of construction to moment with maximum water level.

    Fig.7.Distribution of effective vertical stress at end of construction and at maximum water level.

    It is common knowledge that the stress distribution within structures depends on the stiffness of different zones,and higher stress always occurs in zones with a higher stiffness. With regard to dams with a concrete core,the stiffness of the core is around 1000 times larger than the stiffness of the adjacent zones.As a consequence,arching effects occur on both sides of the core.The vertical stress distribution at the end of construction and at the maximum water level is depicted in Fig.7.This indicates arching effects on both dam shoulders.The decrease of the vertical stress on both sides of the core is an indication of the redistribution of stress between the soft shells and the stiff concrete core.Consequently,the concrete core is receiving additional vertical loads from the dam body during the construction process.For this reason,the way in which the roughness of the concrete core in fl uences the stress distribution adjacent to the core is of interest.For model D-2-1,a typical rough concrete surface was assumed.For model D-2-1b,a smooth surface(with a slip layer,sliding zone)was assumed.Fig.8 shows the infl uence of the concrete surface roughness on the effective vertical stress.

    The model with the smoother core surface(D-2-1b)leads to higher vertical stresses in the dam body at the end of construction,accompanied by signif i cantly lower compressive stress in the core(Fig.8(a)).It can be seen from the vertical stress distribution in Fig.8(a)that the vertical stress in the zones next to the core obtained from the model with the smooth concrete surface(D-2-1b)is much higher than that obtained from the model with the rough concrete surface (D-2-1).The vertical stress obtained from the model with the smooth surface(D-2-1b)at the maximum water level is much lower than that at the end of construction.This is in accordance with the results for the compressive stress in the core shown in Fig.9.Arching effects in the dam control the stress distribution between the(soft)dam and the(stiff)core. The compressive stress in the concrete core obtained from the model with a smooth concrete surface(D-2-1b)is signif icantly lower than that obtained from the model with the rough surface(D-2-1).On the basis of these results,it can be concluded that a smooth core surface reduces the susceptibility to arching effects in the dam.The arching effects disappear due to impounding,leading to a lower compressive stress in the core.

    3.2.Structural forces in concrete core

    The structural forces in the core depend on the deformation behavior of the dam.The relation between the mass of the concrete core and the mass of the dam body provides information about the inf l uence of the core stiffness on the load distribution in the dam.Since the mass of the concrete core is less than 1%of the mass of the shells,the core does not create any additional horizontal resistance.The structural forces in the core depend on the deformation state of the core,which is governed by the dam behavior.The maximum structural forces occur in the lowest part of the core at the maximum water level.Their magnitude dependson the bedding conditions of the core footing in the bedrock.

    Fig.8.Distribution of effective vertical stress adjacent to core for two different concrete surface roughnesses at the end of construction and for the first impounding to maximum water level.

    Fig.9.Compressive stress distribution in concrete core at the end of construction and at the maximum water level.

    Fig.10 depicts the bending moment distribution of the concrete core for two cases.For the first case(model D-2-1),a rigid connection between the core footing and the bedrock was assumed.For the second case(model D-2-1c),a contact area meeting a Mohr-Coulomb failure criteria was introduced.The model with the rigid connection leads to unrealistic high bending moments in the core,while the second model provides more realistic results,since local failure due to a slightly opening gap occurs in the joint between the bedrock and the concrete core,resulting in a lower bending moment.Lesser restraining of the core footing reduces the bending moment signif i cantly.

    Fig.10.Inf l uence of core base bedding conditions on bending moment in concrete core.

    Fig.11.Interaction between bending moment and axial compressive force for a reinforced cross-section.

    The bearing capacity of the core depends on the interaction between the compressive stress and the bending moment.Fig.11 depicts the M-N interaction diagram for an exemplary cross-section with 15 cm2reinforced area on each side.The whole range of interaction from pure bending to axial load can be visualized with this diagram.For each section of the core in each state of loading,the interaction between the compressive stress and the bending moment must be within the red M-N interaction curve.A stress state exceeding the red M-N interaction curve leads to a yielding of the reinforcement and a failure of the concrete core.The values of the compressive stress and the bending moment for each step of model D-2-1c,including the start of construction,end of construction,maximum water level,and minimum water level,are depicted in the f i gure as a numbered blue line.It can be seen that,during construction,only compressive stress occurs in the concrete core,while,during the impounding,the bending moment increases,along with a reduction of the compressive stress,slightly reducing the bearing capacity.

    4.Conclusions

    This paper contributes to the numerical analysis of the behavior of dams with a reinforced concrete core as a sealing element.Based on the results of this study,the following conclusions can be drawn for the load and deformation behavior of the dam:

    (1)The absolute horizontal deformation of the reinforced concrete core due to impounding is mainly governed by the stiffness of the rockfill shells.A stiffer material leads to lower horizontal displacements.

    (2)A bad compaction or soft material for backfilling of the downstream core footing trench creates higher horizontal deformations in the lowest part of the core,accompanied by high structural forces.

    (3)Arching effects in the dam body arise due to rough surface conditions on the core.Those effects induce high compressive stresses in the core during construction,which dissipate during impounding.

    (4)The structural forces in the reinforced concrete core depend on the restraining of the footing.A more f l exible footing leads to lower bending moments and allows higher dam heights.

    (5)The bearing capacity of the reinforced core depends on the interaction between thebending momentand the compressive stress.Both values change due to construction and impounding of the dam.Both values must be checked for each cross-section of the concrete core.

    (6)Up to a limited dam height of about 30—40 m,the core can be designed and constructed without sliding foil between the embankment and the concrete core.For higher dams the application of sliding foil on both sides of the core is necessary to obviate arching effects and reduce the compressive stress in the core.

    Douglas,K.J.,2002.The Shear Strength of Rock Masses.Ph.D.Dissertation. University of New South Wales,Sydney.

    Duncan,J.M.,Chang,C.Y.,1970.Non-linear analysis of stress and strain in soil.J.Soil Mech.Found.Div.96(5),1629—1653.http://dx.doi.org/ 10.1061/JSFEAQ.0001388.

    Duncan,J.M.,Byrne,P.,Wong,K.S.,Mabry,P.,1980.Strength,Stress-stain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses.University of California,Berkeley.

    Hupfauf,B.,1991.Das Tragverhalten von Staud¨ammen in Abh¨angigkeit von der Dichtungsart.Ph.D.Dissertation.University of Innsbruck,Innsbruck (in German).

    Kainrath,A.,2009.Ein Beitrag zur Untersuchung von Verformungsproblemen an Steinschu¨ttd¨ammen Mittels Elasto-plastischer Stoffgesetze.Vienna University of Technology,Vienna(in German).

    Kainrath,A.,2010.Numerical Back-calculation of Bockhartsee Dam Heightening.Vienna University of Technology,Vienna(in German).

    Lackinger,B.,1980.Das Tragverhalten von Staud¨ammen Mit Membranartigen Dichtungen.University of Innsbruck,Innsbruck(in German).

    Leps,T.M.,1970.Reviewoftheshearingstrengthofrockfill.J.SoilMech.Found. Div.96(4),1159—1170.http://dx.doi.org/10.1061/JSFEAQ.0001365.

    Lofquist,B.,1951.Calculating a concrete-core wall.In:Proceedings of the IV International Congress on Large Dams.New Delhi,p.68.

    Marachi,N.D.,Chan,C.K.,Seed,B.H.,1972.Evaluation of properties of rockfi ll materials.J.Soil Mech.Found.Div.98(1),95—114.http://dx.doi.org/ 10.1061/JSFEAQ.0001658.

    Marsal,R.J.,1967.Large scale testing of rock- fi ll materials.J.Soil Mech. Found.Div.93(2),27—43.

    Plaxis,2015.Material Models Manual.Plaxis B.V.,Delft.

    Potyondy,J.G.,1967.Skin friction between various soils and construction materials.Geotechniquˊe 11(4),339—353.http://dx.doi.org/10.1680/ geot.1961.11.4.339.

    Rammer,L.,1986.Wirklichkeitsnahe Ermittlung der Spannungs-und Verformungszust¨ande von Staud¨ammen Mit Membranartigen Dichtungen Unter Beru¨cksichtigung der R¨aumlichen Tragwirkungen.University of Innsbruck,Innsbruck(in German).

    Saboya Jr.,F.,Byrne,P.M.,1993.Parameters for stress and deformation analysis of rockfill dams.Can.Geotech.J.30(4),690—701.http:// dx.doi.org/10.1139/t93-058.

    Schanz,T.,Vermeer,P.A.,Bonnier,P.G.,1999.The hardening soil model: Formulation and verif i cation.In:Beyond 2000 in Computational Geotechnics-10 Years of Plaxis.Balkema,Rotterdam,pp.1—16.

    Schober,W.,1982.Concrete core diaphragm walls for high embankment dams.In:Proceedings of the 14th ICOLD Congress,Rio de Janeiro.

    Schober,W.,1984.Membranartige Betonkerndichtungen Fu¨r Hohe Staud¨amme.University of Innsbruck,Innsbruck(in German).

    Schober,W.,Henzinger,J.,1984.Membranartige Betonkerndichtungen fu¨r hohe Staud¨amme.University of Innsbruck,Innsbruck(in German).

    Schober,W.,Hupfauf,B.,Lercher,H.,Rammer,L.,1987.Der Staudamm Bockhartsee-Bauerfahrung und Auswertung der Kontrollmessungen.University of Innsbruck,Innsbruck(in German).

    Schober,W.,2003.Embankmentdams:Researchanddevelopment,construction and operation.In:Austrian National Committee on Large Dams,Vienna.

    Tschernutter,P.,Nackler,K.,1991.Construction of Feistritzbach dam with central asphaltic concrete membrane and the inf l uence of poor quality rock on fill behaviour.In:Proceedings of the XVII ICOLD Congress.Vienna, pp.435—442.

    Tschernutter,P.,2001.Inf l uence of soft rock-fill material as dam embankment with central bituminous concrete membrane.Front.Archit.Civ.Eng. China 5(1),435—442.http://dx.doi.org/10.1007/s11709-010-0016-3.

    Tschernutter,P.,Seiwald,S.,Kainrath,A.,2011.Rheological behavior of an embankment dam after heightening.In:Proceedings of the 6th International Conference on Dam Engineering.LNEC,Lisboa,pp.1193—1219.

    Xiao,Y.,Liu,H.,Zhang,W.G.,Liu,H.L.,Yin,F.,Wang,Y.Y.,2016.Testing and modeling of rockfill materials:A review.J.Rock Mech.Geotech.Eng. 8(3),415—422.http://dx.doi.org/10.1016/j.jrmge.2015.09.009.

    Yagin,V.P.,Davydov,I.A.,Mik,V.V.,Leimann,T.V.,1998.Earth dams with concrete and reinforced-concrete core walls.Hydrotech.Constr.32(2), 70—75.http://dx.doi.org/10.1007/BF02905861.

    Received 26 October 2015;accepted 12 February 2016

    *Corresponding author.

    E-mail address:peter.tschernutter@kw.tuwien.ac.at(Peter Tschernutter).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2016.11.006

    1674-2370/?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    中文亚洲av片在线观看爽| 久久精品熟女亚洲av麻豆精品 | 欧美精品国产亚洲| 日本五十路高清| 精品久久久久久久久亚洲| 亚洲精品,欧美精品| 亚洲欧美精品专区久久| 婷婷色综合大香蕉| 久久久久久久久久黄片| 丝袜美腿在线中文| 亚洲欧美精品综合久久99| 伦精品一区二区三区| 神马国产精品三级电影在线观看| 久久久精品94久久精品| 中文字幕精品亚洲无线码一区| 大又大粗又爽又黄少妇毛片口| 你懂的网址亚洲精品在线观看 | 欧美97在线视频| 欧美日韩综合久久久久久| 亚洲自拍偷在线| 国产伦精品一区二区三区视频9| 七月丁香在线播放| 一边亲一边摸免费视频| 精品久久国产蜜桃| 中国国产av一级| 青青草视频在线视频观看| 成人无遮挡网站| 99久久无色码亚洲精品果冻| 99久久无色码亚洲精品果冻| 免费搜索国产男女视频| 九九热线精品视视频播放| 亚洲自偷自拍三级| 久久婷婷人人爽人人干人人爱| 日韩大片免费观看网站 | 日日撸夜夜添| АⅤ资源中文在线天堂| 我要看日韩黄色一级片| 一个人观看的视频www高清免费观看| 男人和女人高潮做爰伦理| 国产精品久久久久久久久免| 麻豆一二三区av精品| 插逼视频在线观看| 少妇丰满av| 亚洲欧美日韩卡通动漫| 级片在线观看| 精品熟女少妇av免费看| 国产亚洲午夜精品一区二区久久 | 18禁在线无遮挡免费观看视频| 中文字幕免费在线视频6| 国产精品人妻久久久久久| 成人亚洲欧美一区二区av| 日韩av在线免费看完整版不卡| 久久亚洲精品不卡| 午夜福利在线观看吧| 在线播放国产精品三级| 国产午夜福利久久久久久| 在线免费观看的www视频| 男插女下体视频免费在线播放| 国产亚洲av片在线观看秒播厂 | 2021天堂中文幕一二区在线观| 淫秽高清视频在线观看| 欧美3d第一页| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 免费搜索国产男女视频| 久久久久久久久久久丰满| 国产精品1区2区在线观看.| 国内揄拍国产精品人妻在线| 国产精华一区二区三区| 欧美97在线视频| 欧美精品一区二区大全| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄片无遮挡物在线观看| 嫩草影院入口| 午夜精品一区二区三区免费看| 国产成人精品久久久久久| 精品午夜福利在线看| 精品欧美国产一区二区三| 欧美一级a爱片免费观看看| 精品一区二区三区人妻视频| 变态另类丝袜制服| 国产黄色视频一区二区在线观看 | 婷婷六月久久综合丁香| 国产一区亚洲一区在线观看| 97在线视频观看| av卡一久久| 麻豆av噜噜一区二区三区| 亚洲人成网站在线播| 国产69精品久久久久777片| 午夜久久久久精精品| 真实男女啪啪啪动态图| 超碰97精品在线观看| 亚洲不卡免费看| 精品无人区乱码1区二区| 免费黄网站久久成人精品| 99久久人妻综合| 成人午夜精彩视频在线观看| 成年版毛片免费区| 亚洲激情五月婷婷啪啪| 少妇人妻一区二区三区视频| 国产av不卡久久| 亚洲婷婷狠狠爱综合网| 久99久视频精品免费| 久久人人爽人人片av| 国产 一区 欧美 日韩| 国产午夜精品论理片| 成年女人看的毛片在线观看| 一级毛片电影观看 | 国内精品美女久久久久久| 变态另类丝袜制服| 干丝袜人妻中文字幕| 人妻制服诱惑在线中文字幕| 久久久久久久久久黄片| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 少妇被粗大猛烈的视频| 午夜老司机福利剧场| 一级爰片在线观看| 又粗又爽又猛毛片免费看| 最近视频中文字幕2019在线8| 免费看av在线观看网站| 精品不卡国产一区二区三区| 成年女人永久免费观看视频| 麻豆精品久久久久久蜜桃| 久久鲁丝午夜福利片| 亚洲美女视频黄频| 熟女人妻精品中文字幕| 黄色一级大片看看| 国产成人精品婷婷| 极品教师在线视频| 国产一级毛片七仙女欲春2| 久久久久久久午夜电影| 欧美成人午夜免费资源| 欧美一区二区精品小视频在线| 青春草亚洲视频在线观看| 国产精品久久久久久久久免| 我的老师免费观看完整版| 一级毛片电影观看 | 亚洲精品乱码久久久久久按摩| 偷拍熟女少妇极品色| 蜜桃久久精品国产亚洲av| 高清午夜精品一区二区三区| 激情 狠狠 欧美| 亚洲av不卡在线观看| 日本免费在线观看一区| av在线天堂中文字幕| 亚洲av不卡在线观看| 最近中文字幕2019免费版| 欧美精品国产亚洲| 成人亚洲精品av一区二区| 欧美日韩综合久久久久久| 床上黄色一级片| 青春草国产在线视频| 欧美激情久久久久久爽电影| 少妇的逼好多水| 又爽又黄无遮挡网站| 国产黄片美女视频| 九九热线精品视视频播放| 久久草成人影院| 在线a可以看的网站| 长腿黑丝高跟| 一级av片app| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| 欧美高清性xxxxhd video| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲午夜精品一区二区久久 | 一级黄片播放器| 亚洲欧美日韩东京热| 99热网站在线观看| 欧美xxxx性猛交bbbb| 亚洲欧美日韩东京热| 亚洲一级一片aⅴ在线观看| 热99re8久久精品国产| 久久久久国产网址| 成人特级av手机在线观看| 如何舔出高潮| 在线观看av片永久免费下载| 精品免费久久久久久久清纯| 免费观看精品视频网站| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲精品久久久com| 97超碰精品成人国产| 亚洲欧美成人综合另类久久久 | 国产精品无大码| 欧美xxxx黑人xx丫x性爽| 久久精品熟女亚洲av麻豆精品 | 爱豆传媒免费全集在线观看| 女的被弄到高潮叫床怎么办| 国内精品美女久久久久久| 在线观看美女被高潮喷水网站| 日韩欧美国产在线观看| 91av网一区二区| 亚洲综合精品二区| 国产伦理片在线播放av一区| 国产私拍福利视频在线观看| 免费看av在线观看网站| 亚洲成色77777| 亚洲欧美成人综合另类久久久 | 草草在线视频免费看| 亚洲欧美精品自产自拍| 91午夜精品亚洲一区二区三区| 特级一级黄色大片| 久久久久免费精品人妻一区二区| 边亲边吃奶的免费视频| 亚洲精品乱久久久久久| 日韩av在线大香蕉| 建设人人有责人人尽责人人享有的 | 观看美女的网站| 欧美丝袜亚洲另类| 亚洲成av人片在线播放无| 成人毛片a级毛片在线播放| 久久6这里有精品| 联通29元200g的流量卡| 国产精品久久久久久精品电影| 亚洲欧美一区二区三区国产| 你懂的网址亚洲精品在线观看 | 精品国产露脸久久av麻豆 | 丰满少妇做爰视频| 一级爰片在线观看| 插逼视频在线观看| 丝袜喷水一区| 天堂av国产一区二区熟女人妻| 久久鲁丝午夜福利片| 亚洲精品aⅴ在线观看| 国产精品国产三级国产av玫瑰| 91久久精品国产一区二区成人| 精品一区二区三区视频在线| 精品久久久久久成人av| 久久精品国产亚洲av涩爱| 成人三级黄色视频| 观看美女的网站| 极品教师在线视频| 九草在线视频观看| 九九久久精品国产亚洲av麻豆| 性色avwww在线观看| 国产 一区 欧美 日韩| av.在线天堂| 久久精品影院6| 最近2019中文字幕mv第一页| 小蜜桃在线观看免费完整版高清| 91午夜精品亚洲一区二区三区| 舔av片在线| 干丝袜人妻中文字幕| 人妻制服诱惑在线中文字幕| 最近视频中文字幕2019在线8| 特大巨黑吊av在线直播| 黄色一级大片看看| 男人舔奶头视频| 国产av不卡久久| 日日干狠狠操夜夜爽| 人妻系列 视频| 国产欧美日韩精品一区二区| 国产高潮美女av| 国产精品日韩av在线免费观看| 秋霞在线观看毛片| 91精品一卡2卡3卡4卡| 国产三级在线视频| 嫩草影院新地址| 精品久久久久久成人av| 在线a可以看的网站| 国产高清视频在线观看网站| 一级黄片播放器| 少妇熟女aⅴ在线视频| 少妇丰满av| 男人的好看免费观看在线视频| 日日摸夜夜添夜夜添av毛片| 国产精品一区二区三区四区久久| 中文字幕精品亚洲无线码一区| 国产一区二区亚洲精品在线观看| 亚洲精品影视一区二区三区av| 精品99又大又爽又粗少妇毛片| 国产免费男女视频| 成人国产麻豆网| 国产亚洲精品久久久com| 中文字幕久久专区| 久久久午夜欧美精品| 免费观看人在逋| 九九爱精品视频在线观看| 日本-黄色视频高清免费观看| 成人特级av手机在线观看| 又爽又黄无遮挡网站| 色网站视频免费| 国产av不卡久久| 美女高潮的动态| 国产精品.久久久| 美女黄网站色视频| 最近的中文字幕免费完整| 国产精品久久久久久久电影| 18禁裸乳无遮挡免费网站照片| 亚洲最大成人中文| av在线天堂中文字幕| 可以在线观看毛片的网站| 丰满人妻一区二区三区视频av| 老司机福利观看| 日本五十路高清| 国产成人aa在线观看| 美女脱内裤让男人舔精品视频| av视频在线观看入口| 中文资源天堂在线| 舔av片在线| 久久这里有精品视频免费| 在线免费观看的www视频| 欧美成人午夜免费资源| 成人国产麻豆网| 国产精品伦人一区二区| 精品人妻视频免费看| 麻豆乱淫一区二区| 免费看a级黄色片| 国产美女午夜福利| 久久热精品热| 午夜爱爱视频在线播放| ponron亚洲| 国产精品熟女久久久久浪| 精品不卡国产一区二区三区| 亚洲国产最新在线播放| 人人妻人人澡人人爽人人夜夜 | 淫秽高清视频在线观看| 18+在线观看网站| 九色成人免费人妻av| 国产成人精品一,二区| 七月丁香在线播放| 最近最新中文字幕大全电影3| 亚洲av成人精品一二三区| 99久国产av精品| 亚洲成人精品中文字幕电影| 男人狂女人下面高潮的视频| 欧美又色又爽又黄视频| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| 中文乱码字字幕精品一区二区三区 | 中文亚洲av片在线观看爽| 性插视频无遮挡在线免费观看| 人妻制服诱惑在线中文字幕| 丝袜美腿在线中文| 国产精品1区2区在线观看.| 亚洲aⅴ乱码一区二区在线播放| 在线播放无遮挡| 亚洲精品国产成人久久av| 亚洲第一区二区三区不卡| 欧美zozozo另类| 日韩,欧美,国产一区二区三区 | 黄色配什么色好看| 亚洲国产欧洲综合997久久,| 精品久久久久久久末码| 久久精品久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲成色77777| 亚洲av免费在线观看| 国产精品一二三区在线看| 精品国产露脸久久av麻豆 | 欧美日韩综合久久久久久| 国产精品爽爽va在线观看网站| 尾随美女入室| 亚洲精品色激情综合| 成人二区视频| www日本黄色视频网| 超碰97精品在线观看| 国产麻豆成人av免费视频| 永久免费av网站大全| 男人和女人高潮做爰伦理| 国产一级毛片七仙女欲春2| 亚洲最大成人手机在线| 中文天堂在线官网| 99热6这里只有精品| 亚洲精品亚洲一区二区| 色视频www国产| 亚洲欧美精品专区久久| 18禁动态无遮挡网站| 国产一区二区在线观看日韩| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄 | av国产免费在线观看| 又爽又黄无遮挡网站| 91av网一区二区| 晚上一个人看的免费电影| 3wmmmm亚洲av在线观看| 久久久久久久久久久丰满| 菩萨蛮人人尽说江南好唐韦庄 | 少妇被粗大猛烈的视频| 久久精品国产鲁丝片午夜精品| 成人国产麻豆网| 亚洲不卡免费看| 九九久久精品国产亚洲av麻豆| 日本三级黄在线观看| 在线观看一区二区三区| 色尼玛亚洲综合影院| 菩萨蛮人人尽说江南好唐韦庄 | 日韩中字成人| 亚洲精品乱码久久久v下载方式| 精品国产三级普通话版| 又爽又黄a免费视频| 亚洲综合色惰| 午夜精品一区二区三区免费看| 亚洲国产欧洲综合997久久,| a级一级毛片免费在线观看| 久久久久久久午夜电影| 久久久久免费精品人妻一区二区| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区 | 1000部很黄的大片| 国产黄色视频一区二区在线观看 | 99热这里只有精品一区| 亚洲成人中文字幕在线播放| 中文字幕亚洲精品专区| 国产精品久久久久久精品电影| 国产在视频线在精品| 99久久中文字幕三级久久日本| 久久人妻av系列| 国产高清视频在线观看网站| 免费一级毛片在线播放高清视频| 国产高清国产精品国产三级 | 日韩欧美精品免费久久| 国内精品美女久久久久久| 久久久国产成人免费| 在线观看av片永久免费下载| 色视频www国产| 免费观看a级毛片全部| 亚洲av电影不卡..在线观看| 草草在线视频免费看| 亚洲美女搞黄在线观看| 国产真实伦视频高清在线观看| 麻豆成人午夜福利视频| 成人美女网站在线观看视频| 欧美日韩国产亚洲二区| 美女黄网站色视频| 亚洲av不卡在线观看| 在线天堂最新版资源| 视频中文字幕在线观看| 成人一区二区视频在线观看| 亚洲美女视频黄频| 国产精品伦人一区二区| 波多野结衣高清无吗| 麻豆成人午夜福利视频| 夫妻性生交免费视频一级片| 国产高清有码在线观看视频| 在线播放无遮挡| 99在线人妻在线中文字幕| 老女人水多毛片| 少妇丰满av| 久热久热在线精品观看| 波多野结衣高清无吗| 久久久色成人| 高清午夜精品一区二区三区| 亚洲av一区综合| 欧美变态另类bdsm刘玥| 亚洲av福利一区| 国产免费又黄又爽又色| 狂野欧美激情性xxxx在线观看| 丰满少妇做爰视频| 男女边吃奶边做爰视频| 久久精品国产亚洲av天美| 国产午夜精品久久久久久一区二区三区| 国产美女午夜福利| 永久免费av网站大全| 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 校园人妻丝袜中文字幕| 91精品一卡2卡3卡4卡| 国产精品日韩av在线免费观看| 久久精品熟女亚洲av麻豆精品 | 美女脱内裤让男人舔精品视频| 久久久久久伊人网av| 亚洲精品影视一区二区三区av| 一本久久精品| 亚洲中文字幕一区二区三区有码在线看| 午夜精品在线福利| 你懂的网址亚洲精品在线观看 | 天堂影院成人在线观看| 久久国产乱子免费精品| 国产精品熟女久久久久浪| 天堂中文最新版在线下载 | 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频| 亚洲高清免费不卡视频| 看十八女毛片水多多多| 久久韩国三级中文字幕| 人人妻人人澡人人爽人人夜夜 | 又粗又硬又长又爽又黄的视频| 久久人妻av系列| 最近最新中文字幕免费大全7| 99久久人妻综合| 亚洲av成人精品一二三区| 成年av动漫网址| 亚洲欧洲国产日韩| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 久久草成人影院| 成人三级黄色视频| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 成人鲁丝片一二三区免费| 欧美日本亚洲视频在线播放| 麻豆乱淫一区二区| 日本五十路高清| 99热这里只有是精品在线观看| 国产精品国产三级专区第一集| 51国产日韩欧美| 男人舔奶头视频| 免费在线观看成人毛片| 国产爱豆传媒在线观看| av女优亚洲男人天堂| 三级国产精品欧美在线观看| 国产精品嫩草影院av在线观看| 久久久久国产网址| 亚洲中文字幕日韩| 两个人视频免费观看高清| 国产午夜精品一二区理论片| 国产一区二区亚洲精品在线观看| 免费av观看视频| 中文字幕熟女人妻在线| 看黄色毛片网站| a级毛片免费高清观看在线播放| 国产在视频线在精品| 亚洲欧美日韩无卡精品| 亚洲欧美一区二区三区国产| 日本黄色视频三级网站网址| 日日摸夜夜添夜夜爱| 亚洲无线观看免费| 高清av免费在线| 天堂影院成人在线观看| 日本五十路高清| 乱系列少妇在线播放| 精品熟女少妇av免费看| 国产精品久久久久久av不卡| 色5月婷婷丁香| 麻豆国产97在线/欧美| 最近最新中文字幕大全电影3| 欧美bdsm另类| 亚洲一区高清亚洲精品| 在线观看av片永久免费下载| 2021少妇久久久久久久久久久| 人人妻人人澡人人爽人人夜夜 | 在线观看66精品国产| 免费观看性生交大片5| 久久久欧美国产精品| 国产成人福利小说| 国产成人精品一,二区| 美女国产视频在线观看| 中文字幕亚洲精品专区| 亚洲真实伦在线观看| 亚洲欧美日韩高清专用| 高清午夜精品一区二区三区| 性插视频无遮挡在线免费观看| 国产精品乱码一区二三区的特点| 男女国产视频网站| 成人欧美大片| 中文精品一卡2卡3卡4更新| 亚洲天堂国产精品一区在线| 亚洲欧洲国产日韩| 亚洲av不卡在线观看| 成人三级黄色视频| 国产亚洲一区二区精品| 久久久午夜欧美精品| 久久精品夜色国产| 欧美一区二区精品小视频在线| 99久国产av精品国产电影| h日本视频在线播放| 69av精品久久久久久| 少妇熟女aⅴ在线视频| 日韩成人av中文字幕在线观看| 国产亚洲精品av在线| 久久久精品94久久精品| 免费一级毛片在线播放高清视频| 国产高清视频在线观看网站| 十八禁国产超污无遮挡网站| 美女国产视频在线观看| 精品久久久久久久久久久久久| 精品久久久久久电影网 | 深夜a级毛片| 国产精品久久电影中文字幕| 国产精品国产三级国产av玫瑰| 尤物成人国产欧美一区二区三区| 国产精品,欧美在线| 夜夜爽夜夜爽视频| 国产成人福利小说| 亚洲无线观看免费| 免费看美女性在线毛片视频| 亚洲最大成人中文| 亚洲五月天丁香| 三级男女做爰猛烈吃奶摸视频| 一本久久精品| 午夜福利网站1000一区二区三区| 成年免费大片在线观看| 美女国产视频在线观看| 亚洲精华国产精华液的使用体验| 精品久久久久久久末码| 男人舔奶头视频| 亚洲精品一区蜜桃| av又黄又爽大尺度在线免费看 | 哪个播放器可以免费观看大片| 真实男女啪啪啪动态图| 国产精品精品国产色婷婷| 小说图片视频综合网站| 国产中年淑女户外野战色| 色噜噜av男人的天堂激情| 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| kizo精华| 91精品伊人久久大香线蕉| 国产成人精品久久久久久| 人妻系列 视频| 成人国产麻豆网| 天堂网av新在线| 我要看日韩黄色一级片| 国产黄片美女视频| 在线免费十八禁| 少妇人妻一区二区三区视频| 天堂影院成人在线观看| 91久久精品国产一区二区三区| 波野结衣二区三区在线| 欧美xxxx性猛交bbbb| 亚洲美女视频黄频| 国产精品电影一区二区三区|