• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design considerations and behavior of reinforced concrete core dams during construction and impounding

    2016-04-18 10:34:52*
    Water Science and Engineering 2016年3期

    *

    Institute of Hydraulic Engineering and Water Resources Management,Vienna University of Technology,Vienna 1040,Austria

    Design considerations and behavior of reinforced concrete core dams during construction and impounding

    Peter Tschernutter*,Adrian Kainrath

    Institute of Hydraulic Engineering and Water Resources Management,Vienna University of Technology,Vienna 1040,Austria

    Available online 16 November 2016

    Reinforced concrete core dams can be an alternative solution to conventional dam designs either for permanent impounded reservoirs or f l ood protection and f l ood-retaining dams.Dams of this type have been constructed in Austria for various reasons and have shown good behavior during operation.For a better understanding of the load-deformation behavior of this type of dams during construction and impounding,numerical simulations were carried out.The interaction between the thin reinforced concrete core and the dam fill material as well as the inf l uence of fill material properties and other main parameters,such as the roughness of the concrete surface and bedding conditions of the concrete core, on the deformation behavior of dams were examined.The results show that high compressive stress is mainly induced by arching effects in the dam body during construction.During the reservoir impounding,the compressive stresses in the core are reduced signif i cantly while the bending moment in the core footing increases.The results also show that the maximum bending moments occur at the core footing and can be signif i cantly reduced by design improvements.The f i ndings in this study can provide general design recommendations for small dams with a central concrete core as a sealing blanket.

    Embankment dam;Concrete diaphragm sealing;Numerical analysis;Concrete core;Structural force

    1.Introduction

    Due to the mountainous topography of Austria and the climatic conditions,large destructive f l oods,mudflows,and avalanches can threaten settlements and infrastructure.In order to protect those areas,f l ood protection structures such as protection dams for retention basins play an important role. For this purpose,dams with a central impermeable concrete core are considered to be a cost-effective and safe solution for smaller embankment dams up to a limited height.The main advantage is a short and weather-independent construction period,which represents a decisive planning factor in alpine regions.It is highly important for designers to understand the behavior of the dam during construction and impounding.

    During recent decades,several studies and research projects have been carried out in Austria to analyze the forces from the damshellonthinmembranoussealingelementsinembankment dams.Most of the research work has been performed at the University of Innsbruck(Schober,1982,1984,2003;Schober et al.,1987;Schober and Henzinger,1984;Hupfauf,1991) and only some dams have been constructed in Austria based on the results of those studies.For intensive research in this field, one dam was equipped with instruments for monitoring the behavior of the dam and the structural forces in the concrete core.Lackinger(1980)and Rammer(1986)performed several basicstudiesonsmall-scalemodeldamsinthe1980s.Theinitial research on this topic was mainly focused on laboratory and basic field measurements.Yagin et al.(1998)collected the data from existing dams worldwide with a concrete core as an inner sealing element and performed some basic analyses regarding the height,construction method,and long-term behavior of those dams.However,research activities on this topic werelimited.Within the last few years,a concrete core as an inner sealing element,especially for small dams,has become more and more popular,leading to open questions regarding the technical design of the concrete core.

    Recent studies based on numerical back-calculations of existing dams have been performed by the authors(Kainrath, 2009,2010;Tschernutter and Nackler,1991;Tschernutter, 2001;Tschernutter et al.,2011),in order to investigate the rheologicalbehaviorofthistypeofdams.Thesestudiesshowed a general lack of knowledge regarding the interaction between the dam body and the concrete core,leading to uncertainties in determining the structural forces in the core wall.One of the critical issues in the design is the way in which the construction material of the dam,the concrete roughness,and the foundation designoftheconcretecore,inf l uencesthestructuralforces.Due to the limited deformation capability of the concrete core without cracking,the question raised are substantial and will be discussed in this paper.The results presented in this paper are basedonanintensivenumericalstudyofanembankmentdamin Austria.The analysis ascertained the factors governing the structural forces in the concrete core in order to provide general design recommendations.

    2.Models and parameters

    2.1.Dam characteristics

    The main aim of constructing a f l ood retention reservoir on the Griffenbach River with a central concrete core embankment dam was to protect villages from f l oods.The dam,with a maximum height of about 24 m and a reservoir retention capacity of 207000 m3,should resist a 100-year f l ood.The maximum height of the central reinforced concrete core reaches 26.3 m.The embankment volume is about 50000 m3, the upstream and downstream slope inclinations are both 1(vertical):2(horizontal),and the fill material is crushed soft rock from a quarry.The embankment material was placed in 60 cm-high layers and compacted with 12-ton static load vibratory rollers.The central reinforced concrete core has a thickness of 40 cm and the concrete quality is C25/30 with an exposure class of XC4(water pressure exceeds 100 kN/m2).

    2.2.Constitutive model for FEM analysis

    The finite element program Plaxis 2D,which has been developed for the analysis of geotechnical structures,was used throughout this analysis.The simulations were carried out with atwo-dimensional(2D)-planestrainmodelofthehighestcrosssection of the dam.The model itself consists of 19671 15-node triangularelements,whichhave12interiorstresspointssituated at different positions.The average element size was 0.8 m.The fi nite element mesh is shown in Fig.1.The model's horizontal expansion amounts to 200 m,which is three times the model's vertical expansion of 70 m.The hardening soil model(Schanz et al.,1999)implemented in PLAXIS was employed for the numerical analysis.It is a modi fi ed version of the hyperbolic model(Duncan and Chang,1970;Duncan et al.,1980).The hardening soil model supersedes the hyperbolic model by far, using the theory of plasticity rather than the theory of elasticity, including soil dilatancy,and introducing a yield cap.The hardeningsoilmodelaccountsinarealisticmannerforthestress dependence of the soil stiffness for oedometric and deviatoric loading as well as for primary loading and reloading.The stress dependency is modeled with three different stiffness moduli:for primary loading,for oedometric loading,andforunloadingandreloading,andtheparametermfortheamount of the stress dependency.The stress dependency of the stiffness E50is nonlinear and given by the following equation:

    Fig.1.Finite element mesh of analyzed cross-section.

    where c is the cohesion;φ is the friction angle;prefis the reference stress;σ3is the minor principal stress,which is the effective conf i ning pressure applied in a triaxial test;andis the reference stiffness modulus corresponding to the reference stresspref,whichdependsontheminorprincipal stressσ3andis determined from a triaxial stress-strain curve for a mobilization of 50%of the maximum shear strength qf.qfis evaluated with the Mohr-Coulomb failure criterion.The unloading/reloading path is modeled as purely(linear)elastic with the reference Young'smodulusforunloading/reloading.Thederivationof the parameters is depicted in Schanz et al.(1999).

    In the hardening soil model,two different hardening mechanisms(i.e.,isotropic and deviatoric)account for the history of stress paths.Therefore,a shear hardening yield surface(cone)as indicated in Fig.2 isintroduced.Forcompressive (isotropic)stress paths,a cap-type yield surface is used to close the elastic region.Due to shear hardening,the shear yield locus can expand to the Mohr-Coulomb failure surface while the cap expands due to volumetric hardening as a function of the preconsolidation stress.A detailed description of the hardening soil model can be found in Schanz et al.(1999).

    2.3.Applied finite element model and parameters

    Fig.2.Yield contour of hardening soil model in total stress space (Plaxis,2015;Schanz et al.,1999).

    Fig.3.Material zoning for numerical simulation.

    Fig.3 depicts the zoning of the dam body,which was taken into account with six different zones(zones 1 through 6)using the hardening soil model.The bedrock(zone 8)was assumed to be nearly rigid and therefore modeled as linear elastic.For the alluvial subsoil(zone 7),the hardening soil model was chosen.The concrete core with a thickness of 0.4 m was modeled in a linear elastic manner as a plate.For the soilstructure interaction(skin friction),interface elements were placed on both sides of the core.The interaction between soil and structure is controlled by the interface with the reduction factor for skin friction Rinter(Potyondy,1967).The parameter relates the interface strength to the soil strength.Since no triaxial tests have been available,material parameters from literature(Lofquist,1951;Leps,1970;Marachi et al.,1972; Marsal,1967;Saboya and Byrne,1993;Douglas,2002; Xiao et al.,2016)and from back-calculations of similar dams were used to obtain a range of characteristic parameters for different zones.Based on the experience of previous studies(Tschernutter and Nackler,1991;Kainrath,2009, 2010;Tschernutter et al.,2011),upper and lower bounds of characteristic parameters were chosen for the main inf l uencing zones to identify their inf l uence on the rheological behavior of the dam.For this study,the focus was steered to the resulting structural forces in the concrete core.Therefore,the inf l uences of the material parameters of the rockfill shells(zone 1)and the backfilled trench for the core footing(zone 5)as well as the roughness of the concrete core on the rheological behavior of the dam were studied through variation of their values. Furthermore,the bedding condition of the core footing was examined.The general variations of the parameters used in this study are summarized in Table 1.The parameters with upper and lower bounds according to Table 1 are given in Table 2.A more detailed description of the parameters for the hardening soil model is given in Schanz et al.(1999).The values of stiffness E of the bedrock(zone 8)and the reinforced concrete core used forthe linearelastic modelwere 3×106kN/m and 3×107kN/m,respectively.The values of Poisson's ratio ν of the bedrock(zone 8)and the reinforced concrete core were 0.20 and 0.15,respectively.

    The numerical analysis of the construction process was carried out in 19 phases in total,which can be summarized in four main phases:calculation of the initial stress state under gravity loading and reset of the initial deformation to zero,soil excavation of the upper parts of the alluvial layer and the trench for the concrete core footing,simultaneous construction of the concrete core,and upstream and downstream dam zones with a layer thickness of about 2 m,impounding to the maximum water level.

    Table 1Overview of models and parameter variations used in current study.

    Table 2Parameters for hardening soil model used in this study and their bounds.

    3.Results and discussion

    3.1.Stress and deformation analysis

    Fig.4 depicts the distribution of effective horizontal stress of the dam at the end of construction(EOC)and at the maximum water level(MWL).As can be seen in the f i gures, the effective horizontal stress in the downstream dam body signif i cantly increases in the zones adjacent to the concrete core due to the impounding,which is representative for dams with a central core and is caused by a rotation of the principal stress in the lowest third of the downstream dam body. High horizontal stresses and the low height above the base inhibit the mobilization of signif i cant resistance in this area. This leads to horizontal deformations and a structural loading of the concrete core.For this reason,it is of interest how the material of the shell(zone 1)and the backfilled trench(zone 5)inf l uences the horizontal deformation.The horizontal deformation of the concrete core is depicted in Fig.5,with positive values representing the deformation towards downstream and negative values representing the deformation towards upstream.The results show that the absolute horizontal deformation of the concrete core due to impounding is mainly governed by the stiffness of the rockfill shells.A stiff shell zone as specified in model D-2-2 leads to a signif i cantly less horizontal deformation of the core.Fig.5 shows that the absolute horizontal deformation of the core is not affected by the skin friction.The different angles of internal friction for the f i lter and transition zone cause the differences in the horizontal deformation at the end of construction.

    Fig.4.Distribution of effective horizontal stress at end of construction and at maximum water level.

    Fig.5.Horizontal deformation of concrete core at end of construction (EOC)and at maximum water level(MWL).

    Fig.6 depicts the differential rotation of the concrete core due to impounding,with negative values representing the differential rotation in the clockwise direction.It can be observed that the model D-2-1a with low stiffness of the material in zone 5(backfilled trench)obtains signif i cantly higher differential rotations in the lower third of the core.This causes a higher curvature accompanied by higher bending moments in the concrete core.Fig.6 shows that a lower skin friction(model D-2-1b)results in higher curvatures of the core.A lower skin friction(model D-2-1b)does not affect the horizontal deformation of the core.Furthermore,differences in the angle of internal friction on both sides of the core lead to deformations during the construction process.It can be concluded that the material and the design of the zones adjacent to the core have a signif i cant inf l uence on the horizontal deformation behavior of the core.As a consequence,a low material stiffness for the downstream shell as well as for the trench backfilling leads to more horizontal deformation during impounding.

    Fig.6.Differential rotation of concrete core during period from end of construction to moment with maximum water level.

    Fig.7.Distribution of effective vertical stress at end of construction and at maximum water level.

    It is common knowledge that the stress distribution within structures depends on the stiffness of different zones,and higher stress always occurs in zones with a higher stiffness. With regard to dams with a concrete core,the stiffness of the core is around 1000 times larger than the stiffness of the adjacent zones.As a consequence,arching effects occur on both sides of the core.The vertical stress distribution at the end of construction and at the maximum water level is depicted in Fig.7.This indicates arching effects on both dam shoulders.The decrease of the vertical stress on both sides of the core is an indication of the redistribution of stress between the soft shells and the stiff concrete core.Consequently,the concrete core is receiving additional vertical loads from the dam body during the construction process.For this reason,the way in which the roughness of the concrete core in fl uences the stress distribution adjacent to the core is of interest.For model D-2-1,a typical rough concrete surface was assumed.For model D-2-1b,a smooth surface(with a slip layer,sliding zone)was assumed.Fig.8 shows the infl uence of the concrete surface roughness on the effective vertical stress.

    The model with the smoother core surface(D-2-1b)leads to higher vertical stresses in the dam body at the end of construction,accompanied by signif i cantly lower compressive stress in the core(Fig.8(a)).It can be seen from the vertical stress distribution in Fig.8(a)that the vertical stress in the zones next to the core obtained from the model with the smooth concrete surface(D-2-1b)is much higher than that obtained from the model with the rough concrete surface (D-2-1).The vertical stress obtained from the model with the smooth surface(D-2-1b)at the maximum water level is much lower than that at the end of construction.This is in accordance with the results for the compressive stress in the core shown in Fig.9.Arching effects in the dam control the stress distribution between the(soft)dam and the(stiff)core. The compressive stress in the concrete core obtained from the model with a smooth concrete surface(D-2-1b)is signif icantly lower than that obtained from the model with the rough surface(D-2-1).On the basis of these results,it can be concluded that a smooth core surface reduces the susceptibility to arching effects in the dam.The arching effects disappear due to impounding,leading to a lower compressive stress in the core.

    3.2.Structural forces in concrete core

    The structural forces in the core depend on the deformation behavior of the dam.The relation between the mass of the concrete core and the mass of the dam body provides information about the inf l uence of the core stiffness on the load distribution in the dam.Since the mass of the concrete core is less than 1%of the mass of the shells,the core does not create any additional horizontal resistance.The structural forces in the core depend on the deformation state of the core,which is governed by the dam behavior.The maximum structural forces occur in the lowest part of the core at the maximum water level.Their magnitude dependson the bedding conditions of the core footing in the bedrock.

    Fig.8.Distribution of effective vertical stress adjacent to core for two different concrete surface roughnesses at the end of construction and for the first impounding to maximum water level.

    Fig.9.Compressive stress distribution in concrete core at the end of construction and at the maximum water level.

    Fig.10 depicts the bending moment distribution of the concrete core for two cases.For the first case(model D-2-1),a rigid connection between the core footing and the bedrock was assumed.For the second case(model D-2-1c),a contact area meeting a Mohr-Coulomb failure criteria was introduced.The model with the rigid connection leads to unrealistic high bending moments in the core,while the second model provides more realistic results,since local failure due to a slightly opening gap occurs in the joint between the bedrock and the concrete core,resulting in a lower bending moment.Lesser restraining of the core footing reduces the bending moment signif i cantly.

    Fig.10.Inf l uence of core base bedding conditions on bending moment in concrete core.

    Fig.11.Interaction between bending moment and axial compressive force for a reinforced cross-section.

    The bearing capacity of the core depends on the interaction between the compressive stress and the bending moment.Fig.11 depicts the M-N interaction diagram for an exemplary cross-section with 15 cm2reinforced area on each side.The whole range of interaction from pure bending to axial load can be visualized with this diagram.For each section of the core in each state of loading,the interaction between the compressive stress and the bending moment must be within the red M-N interaction curve.A stress state exceeding the red M-N interaction curve leads to a yielding of the reinforcement and a failure of the concrete core.The values of the compressive stress and the bending moment for each step of model D-2-1c,including the start of construction,end of construction,maximum water level,and minimum water level,are depicted in the f i gure as a numbered blue line.It can be seen that,during construction,only compressive stress occurs in the concrete core,while,during the impounding,the bending moment increases,along with a reduction of the compressive stress,slightly reducing the bearing capacity.

    4.Conclusions

    This paper contributes to the numerical analysis of the behavior of dams with a reinforced concrete core as a sealing element.Based on the results of this study,the following conclusions can be drawn for the load and deformation behavior of the dam:

    (1)The absolute horizontal deformation of the reinforced concrete core due to impounding is mainly governed by the stiffness of the rockfill shells.A stiffer material leads to lower horizontal displacements.

    (2)A bad compaction or soft material for backfilling of the downstream core footing trench creates higher horizontal deformations in the lowest part of the core,accompanied by high structural forces.

    (3)Arching effects in the dam body arise due to rough surface conditions on the core.Those effects induce high compressive stresses in the core during construction,which dissipate during impounding.

    (4)The structural forces in the reinforced concrete core depend on the restraining of the footing.A more f l exible footing leads to lower bending moments and allows higher dam heights.

    (5)The bearing capacity of the reinforced core depends on the interaction between thebending momentand the compressive stress.Both values change due to construction and impounding of the dam.Both values must be checked for each cross-section of the concrete core.

    (6)Up to a limited dam height of about 30—40 m,the core can be designed and constructed without sliding foil between the embankment and the concrete core.For higher dams the application of sliding foil on both sides of the core is necessary to obviate arching effects and reduce the compressive stress in the core.

    Douglas,K.J.,2002.The Shear Strength of Rock Masses.Ph.D.Dissertation. University of New South Wales,Sydney.

    Duncan,J.M.,Chang,C.Y.,1970.Non-linear analysis of stress and strain in soil.J.Soil Mech.Found.Div.96(5),1629—1653.http://dx.doi.org/ 10.1061/JSFEAQ.0001388.

    Duncan,J.M.,Byrne,P.,Wong,K.S.,Mabry,P.,1980.Strength,Stress-stain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses.University of California,Berkeley.

    Hupfauf,B.,1991.Das Tragverhalten von Staud¨ammen in Abh¨angigkeit von der Dichtungsart.Ph.D.Dissertation.University of Innsbruck,Innsbruck (in German).

    Kainrath,A.,2009.Ein Beitrag zur Untersuchung von Verformungsproblemen an Steinschu¨ttd¨ammen Mittels Elasto-plastischer Stoffgesetze.Vienna University of Technology,Vienna(in German).

    Kainrath,A.,2010.Numerical Back-calculation of Bockhartsee Dam Heightening.Vienna University of Technology,Vienna(in German).

    Lackinger,B.,1980.Das Tragverhalten von Staud¨ammen Mit Membranartigen Dichtungen.University of Innsbruck,Innsbruck(in German).

    Leps,T.M.,1970.Reviewoftheshearingstrengthofrockfill.J.SoilMech.Found. Div.96(4),1159—1170.http://dx.doi.org/10.1061/JSFEAQ.0001365.

    Lofquist,B.,1951.Calculating a concrete-core wall.In:Proceedings of the IV International Congress on Large Dams.New Delhi,p.68.

    Marachi,N.D.,Chan,C.K.,Seed,B.H.,1972.Evaluation of properties of rockfi ll materials.J.Soil Mech.Found.Div.98(1),95—114.http://dx.doi.org/ 10.1061/JSFEAQ.0001658.

    Marsal,R.J.,1967.Large scale testing of rock- fi ll materials.J.Soil Mech. Found.Div.93(2),27—43.

    Plaxis,2015.Material Models Manual.Plaxis B.V.,Delft.

    Potyondy,J.G.,1967.Skin friction between various soils and construction materials.Geotechniquˊe 11(4),339—353.http://dx.doi.org/10.1680/ geot.1961.11.4.339.

    Rammer,L.,1986.Wirklichkeitsnahe Ermittlung der Spannungs-und Verformungszust¨ande von Staud¨ammen Mit Membranartigen Dichtungen Unter Beru¨cksichtigung der R¨aumlichen Tragwirkungen.University of Innsbruck,Innsbruck(in German).

    Saboya Jr.,F.,Byrne,P.M.,1993.Parameters for stress and deformation analysis of rockfill dams.Can.Geotech.J.30(4),690—701.http:// dx.doi.org/10.1139/t93-058.

    Schanz,T.,Vermeer,P.A.,Bonnier,P.G.,1999.The hardening soil model: Formulation and verif i cation.In:Beyond 2000 in Computational Geotechnics-10 Years of Plaxis.Balkema,Rotterdam,pp.1—16.

    Schober,W.,1982.Concrete core diaphragm walls for high embankment dams.In:Proceedings of the 14th ICOLD Congress,Rio de Janeiro.

    Schober,W.,1984.Membranartige Betonkerndichtungen Fu¨r Hohe Staud¨amme.University of Innsbruck,Innsbruck(in German).

    Schober,W.,Henzinger,J.,1984.Membranartige Betonkerndichtungen fu¨r hohe Staud¨amme.University of Innsbruck,Innsbruck(in German).

    Schober,W.,Hupfauf,B.,Lercher,H.,Rammer,L.,1987.Der Staudamm Bockhartsee-Bauerfahrung und Auswertung der Kontrollmessungen.University of Innsbruck,Innsbruck(in German).

    Schober,W.,2003.Embankmentdams:Researchanddevelopment,construction and operation.In:Austrian National Committee on Large Dams,Vienna.

    Tschernutter,P.,Nackler,K.,1991.Construction of Feistritzbach dam with central asphaltic concrete membrane and the inf l uence of poor quality rock on fill behaviour.In:Proceedings of the XVII ICOLD Congress.Vienna, pp.435—442.

    Tschernutter,P.,2001.Inf l uence of soft rock-fill material as dam embankment with central bituminous concrete membrane.Front.Archit.Civ.Eng. China 5(1),435—442.http://dx.doi.org/10.1007/s11709-010-0016-3.

    Tschernutter,P.,Seiwald,S.,Kainrath,A.,2011.Rheological behavior of an embankment dam after heightening.In:Proceedings of the 6th International Conference on Dam Engineering.LNEC,Lisboa,pp.1193—1219.

    Xiao,Y.,Liu,H.,Zhang,W.G.,Liu,H.L.,Yin,F.,Wang,Y.Y.,2016.Testing and modeling of rockfill materials:A review.J.Rock Mech.Geotech.Eng. 8(3),415—422.http://dx.doi.org/10.1016/j.jrmge.2015.09.009.

    Yagin,V.P.,Davydov,I.A.,Mik,V.V.,Leimann,T.V.,1998.Earth dams with concrete and reinforced-concrete core walls.Hydrotech.Constr.32(2), 70—75.http://dx.doi.org/10.1007/BF02905861.

    Received 26 October 2015;accepted 12 February 2016

    *Corresponding author.

    E-mail address:peter.tschernutter@kw.tuwien.ac.at(Peter Tschernutter).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2016.11.006

    1674-2370/?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    亚洲欧美日韩无卡精品| 国产三级黄色录像| 天堂网av新在线| 国产私拍福利视频在线观看| 国产精品一区二区性色av| 赤兔流量卡办理| 别揉我奶头 嗯啊视频| 在线播放国产精品三级| 日韩欧美在线乱码| 亚洲色图av天堂| 老熟妇仑乱视频hdxx| 12—13女人毛片做爰片一| 欧美bdsm另类| 偷拍熟女少妇极品色| 少妇裸体淫交视频免费看高清| 好男人在线观看高清免费视频| 国产中年淑女户外野战色| 午夜激情福利司机影院| 无人区码免费观看不卡| 国内精品久久久久精免费| 小蜜桃在线观看免费完整版高清| 一区二区三区高清视频在线| www日本黄色视频网| avwww免费| 听说在线观看完整版免费高清| 69人妻影院| 日韩欧美精品免费久久 | 一本一本综合久久| 国产精品亚洲av一区麻豆| 午夜福利成人在线免费观看| 偷拍熟女少妇极品色| 国产精品爽爽va在线观看网站| 久久6这里有精品| 亚洲精品一区av在线观看| 国产成人a区在线观看| 国产色爽女视频免费观看| 99久久精品一区二区三区| 一本综合久久免费| 国产亚洲精品久久久久久毛片| 国产亚洲精品久久久久久毛片| 老熟妇仑乱视频hdxx| 亚洲国产精品sss在线观看| 欧美午夜高清在线| 国产一区二区在线观看日韩| 国产成人a区在线观看| 18禁裸乳无遮挡免费网站照片| 久久6这里有精品| 色综合站精品国产| 性色av乱码一区二区三区2| www.www免费av| 精品熟女少妇八av免费久了| 国产av一区在线观看免费| 欧美最黄视频在线播放免费| 白带黄色成豆腐渣| 国产免费一级a男人的天堂| 日韩欧美精品v在线| 男女做爰动态图高潮gif福利片| 免费高清视频大片| 亚洲七黄色美女视频| 久久性视频一级片| 一级av片app| 真实男女啪啪啪动态图| 真人做人爱边吃奶动态| 国产精品98久久久久久宅男小说| 在线天堂最新版资源| 国产黄片美女视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品成人久久久久久| 宅男免费午夜| 18禁黄网站禁片免费观看直播| 中文字幕av成人在线电影| 久9热在线精品视频| 九九在线视频观看精品| 久久久久久久亚洲中文字幕 | 女人十人毛片免费观看3o分钟| 午夜福利欧美成人| 亚洲成人免费电影在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 露出奶头的视频| 99久久精品热视频| av在线观看视频网站免费| av福利片在线观看| 国产av麻豆久久久久久久| 亚洲久久久久久中文字幕| bbb黄色大片| 在线观看美女被高潮喷水网站 | 欧美最黄视频在线播放免费| 亚洲自拍偷在线| 久久久久久久久中文| 亚洲国产色片| 日本免费a在线| 亚洲第一区二区三区不卡| 欧美高清成人免费视频www| 精品久久久久久久久久久久久| 亚洲人与动物交配视频| 久久久精品欧美日韩精品| 黄片小视频在线播放| 日韩成人在线观看一区二区三区| 国产精品综合久久久久久久免费| 又紧又爽又黄一区二区| 伦理电影大哥的女人| netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| av中文乱码字幕在线| 91字幕亚洲| 99久久精品热视频| 免费电影在线观看免费观看| 最近视频中文字幕2019在线8| 嫩草影院新地址| a级毛片a级免费在线| 亚洲成人久久爱视频| 精品熟女少妇八av免费久了| 国产精品日韩av在线免费观看| 搡老岳熟女国产| 国产高潮美女av| 国产精品乱码一区二三区的特点| 黄片小视频在线播放| 少妇高潮的动态图| www.熟女人妻精品国产| 在线免费观看不下载黄p国产 | 欧美日韩福利视频一区二区| 给我免费播放毛片高清在线观看| 精品免费久久久久久久清纯| 国产一区二区激情短视频| 亚洲成人中文字幕在线播放| 1000部很黄的大片| 在线天堂最新版资源| 伊人久久精品亚洲午夜| 12—13女人毛片做爰片一| 久久婷婷人人爽人人干人人爱| 色综合站精品国产| 99在线视频只有这里精品首页| 内地一区二区视频在线| 狂野欧美白嫩少妇大欣赏| 亚洲精品久久国产高清桃花| 午夜福利成人在线免费观看| 成人亚洲精品av一区二区| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 精品久久久久久久久久免费视频| 色尼玛亚洲综合影院| 黄色一级大片看看| 亚洲精品456在线播放app | 日本与韩国留学比较| 免费无遮挡裸体视频| 免费av观看视频| 啦啦啦韩国在线观看视频| 成人亚洲精品av一区二区| 国产单亲对白刺激| 美女 人体艺术 gogo| 给我免费播放毛片高清在线观看| 亚洲18禁久久av| 国产精品一及| 男人舔奶头视频| 婷婷丁香在线五月| 久久精品久久久久久噜噜老黄 | 亚洲成a人片在线一区二区| 久久天躁狠狠躁夜夜2o2o| 久久精品久久久久久噜噜老黄 | 欧美又色又爽又黄视频| 99久久精品热视频| 好男人在线观看高清免费视频| 国产aⅴ精品一区二区三区波| 日日摸夜夜添夜夜添小说| 国产精品亚洲一级av第二区| 热99在线观看视频| 欧美日韩乱码在线| 女人被狂操c到高潮| 国产在线精品亚洲第一网站| 国产精品亚洲一级av第二区| www日本黄色视频网| 日韩欧美精品免费久久 | 两个人的视频大全免费| 我的女老师完整版在线观看| 岛国在线免费视频观看| 国产精品一区二区三区四区久久| 免费搜索国产男女视频| 人妻久久中文字幕网| 国产熟女xx| 日韩免费av在线播放| 亚州av有码| 偷拍熟女少妇极品色| 亚洲18禁久久av| 亚洲内射少妇av| 国产乱人视频| 一卡2卡三卡四卡精品乱码亚洲| 欧美色视频一区免费| 最后的刺客免费高清国语| 床上黄色一级片| 男人舔奶头视频| 夜夜夜夜夜久久久久| 国产欧美日韩一区二区精品| 免费在线观看亚洲国产| 亚洲内射少妇av| 精品人妻一区二区三区麻豆 | 一区二区三区免费毛片| 少妇人妻一区二区三区视频| 长腿黑丝高跟| 黄片小视频在线播放| 欧美在线黄色| 美女免费视频网站| 成人国产一区最新在线观看| 又粗又爽又猛毛片免费看| 亚洲最大成人中文| 又紧又爽又黄一区二区| 色综合亚洲欧美另类图片| 丝袜美腿在线中文| 中出人妻视频一区二区| 国产精品98久久久久久宅男小说| 日韩欧美一区二区三区在线观看| 欧美黑人欧美精品刺激| 在线播放无遮挡| 美女cb高潮喷水在线观看| 欧美性感艳星| 成年女人看的毛片在线观看| 99久久99久久久精品蜜桃| 麻豆一二三区av精品| 成人美女网站在线观看视频| 啦啦啦观看免费观看视频高清| 一本精品99久久精品77| 级片在线观看| 一本精品99久久精品77| 欧美国产日韩亚洲一区| 精品99又大又爽又粗少妇毛片 | 日本 av在线| 我要搜黄色片| 色综合欧美亚洲国产小说| 看黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品sss在线观看| 嫩草影院新地址| 午夜老司机福利剧场| 国内精品久久久久精免费| 国产免费一级a男人的天堂| 亚洲av成人av| 欧美色欧美亚洲另类二区| 欧美日韩福利视频一区二区| 久久久久久久亚洲中文字幕 | 91久久精品电影网| 琪琪午夜伦伦电影理论片6080| 色综合亚洲欧美另类图片| 久久久久久久久大av| 欧美xxxx黑人xx丫x性爽| 黄色丝袜av网址大全| 成人高潮视频无遮挡免费网站| 亚洲自拍偷在线| 少妇裸体淫交视频免费看高清| 免费看日本二区| 免费av观看视频| 欧美又色又爽又黄视频| 超碰av人人做人人爽久久| 女人被狂操c到高潮| 精品午夜福利视频在线观看一区| 日韩精品中文字幕看吧| 亚洲激情在线av| 毛片女人毛片| 精品久久久久久久人妻蜜臀av| 国产亚洲精品av在线| 亚洲欧美日韩无卡精品| 一a级毛片在线观看| 婷婷精品国产亚洲av在线| 美女 人体艺术 gogo| 中文字幕精品亚洲无线码一区| 欧美成人免费av一区二区三区| 亚洲不卡免费看| 午夜亚洲福利在线播放| 国产精品日韩av在线免费观看| 99在线人妻在线中文字幕| 在线免费观看的www视频| 色在线成人网| 久久精品91蜜桃| 免费av不卡在线播放| 两个人的视频大全免费| 欧美+亚洲+日韩+国产| av在线蜜桃| 97碰自拍视频| 国内揄拍国产精品人妻在线| 一区福利在线观看| 热99在线观看视频| 欧美日本亚洲视频在线播放| 亚洲精品日韩av片在线观看| 我的老师免费观看完整版| 久久久久久久久中文| 国产一区二区在线av高清观看| 国产精品久久久久久亚洲av鲁大| 18+在线观看网站| 午夜福利成人在线免费观看| 91久久精品国产一区二区成人| 国内毛片毛片毛片毛片毛片| 欧美性猛交╳xxx乱大交人| or卡值多少钱| 免费人成视频x8x8入口观看| 一区二区三区免费毛片| 99久久无色码亚洲精品果冻| 色综合婷婷激情| 久久精品国产亚洲av涩爱 | 色综合欧美亚洲国产小说| 黄色配什么色好看| 亚洲激情在线av| 国产精华一区二区三区| 久久国产精品人妻蜜桃| av专区在线播放| 男人和女人高潮做爰伦理| 久久精品国产亚洲av涩爱 | 久久亚洲精品不卡| 成人国产一区最新在线观看| 婷婷精品国产亚洲av在线| 男女下面进入的视频免费午夜| 黄色女人牲交| 88av欧美| 亚洲av第一区精品v没综合| 琪琪午夜伦伦电影理论片6080| or卡值多少钱| 亚洲中文日韩欧美视频| 国产探花极品一区二区| 夜夜看夜夜爽夜夜摸| 久久这里只有精品中国| 国产精品av视频在线免费观看| 色哟哟哟哟哟哟| 91麻豆精品激情在线观看国产| 国产精品乱码一区二三区的特点| 欧美不卡视频在线免费观看| 老熟妇仑乱视频hdxx| 99久久精品热视频| 久久精品国产自在天天线| 丁香欧美五月| 90打野战视频偷拍视频| 99久久无色码亚洲精品果冻| 很黄的视频免费| 女人被狂操c到高潮| 99热这里只有精品一区| 少妇的逼水好多| 国产 一区 欧美 日韩| 十八禁人妻一区二区| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕精品亚洲无线码一区| 观看免费一级毛片| .国产精品久久| 国产精品影院久久| a级毛片免费高清观看在线播放| 亚洲国产欧洲综合997久久,| 宅男免费午夜| 亚洲五月天丁香| 中文字幕精品亚洲无线码一区| 精品久久久久久成人av| 99久久99久久久精品蜜桃| 国产一级毛片七仙女欲春2| 亚洲 国产 在线| 他把我摸到了高潮在线观看| 日韩欧美一区二区三区在线观看| 搡老妇女老女人老熟妇| 亚洲av熟女| 好男人在线观看高清免费视频| 久久精品国产99精品国产亚洲性色| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频| 淫妇啪啪啪对白视频| 日韩精品中文字幕看吧| 亚洲真实伦在线观看| 久久精品国产亚洲av香蕉五月| 午夜福利免费观看在线| 亚洲aⅴ乱码一区二区在线播放| 久久久色成人| 蜜桃久久精品国产亚洲av| 日本在线视频免费播放| av福利片在线观看| 国产精品三级大全| 国产精品久久久久久久久免 | 他把我摸到了高潮在线观看| 亚洲最大成人手机在线| 欧美精品啪啪一区二区三区| 日韩欧美三级三区| 两人在一起打扑克的视频| 午夜久久久久精精品| 欧美日韩黄片免| av在线天堂中文字幕| 精品久久久久久久久久久久久| 婷婷六月久久综合丁香| 夜夜夜夜夜久久久久| 熟女电影av网| 欧美+亚洲+日韩+国产| 精品久久久久久成人av| 又粗又爽又猛毛片免费看| 天天躁日日操中文字幕| 免费无遮挡裸体视频| 69人妻影院| 久久久久久久久久成人| а√天堂www在线а√下载| 99久久99久久久精品蜜桃| 成年女人永久免费观看视频| 看片在线看免费视频| 国产精品三级大全| 国产激情偷乱视频一区二区| 久久精品综合一区二区三区| 亚洲av中文字字幕乱码综合| 久久久久久大精品| 十八禁国产超污无遮挡网站| 久久人人爽人人爽人人片va | 一个人看视频在线观看www免费| 超碰av人人做人人爽久久| 精品一区二区三区av网在线观看| 无遮挡黄片免费观看| 一个人观看的视频www高清免费观看| 尤物成人国产欧美一区二区三区| 国产亚洲精品久久久久久毛片| 丰满乱子伦码专区| 老司机午夜福利在线观看视频| 午夜福利在线观看免费完整高清在 | 伦理电影大哥的女人| 国产黄色小视频在线观看| 国产亚洲精品综合一区在线观看| 淫秽高清视频在线观看| 亚洲成av人片在线播放无| 床上黄色一级片| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影| 日本三级黄在线观看| 九九久久精品国产亚洲av麻豆| 美女xxoo啪啪120秒动态图 | 97热精品久久久久久| 国产精品一区二区性色av| 我的女老师完整版在线观看| 女人十人毛片免费观看3o分钟| 欧美成人免费av一区二区三区| 免费观看精品视频网站| 国产综合懂色| 国产大屁股一区二区在线视频| av天堂中文字幕网| 日韩欧美三级三区| 亚洲人成网站在线播| 日本五十路高清| 91在线精品国自产拍蜜月| 国产伦精品一区二区三区四那| 九九久久精品国产亚洲av麻豆| 两人在一起打扑克的视频| 我的老师免费观看完整版| 精品免费久久久久久久清纯| 国产高清三级在线| 此物有八面人人有两片| 毛片女人毛片| 精品久久久久久久末码| 欧美日韩乱码在线| 午夜精品久久久久久毛片777| 亚洲av成人精品一区久久| 日本成人三级电影网站| 欧美在线黄色| 亚洲自拍偷在线| 两个人视频免费观看高清| 国产精品美女特级片免费视频播放器| 美女xxoo啪啪120秒动态图 | 精品久久久久久久末码| 日韩欧美在线二视频| 中文在线观看免费www的网站| 国产免费男女视频| 午夜福利高清视频| 国产精品乱码一区二三区的特点| 一级a爱片免费观看的视频| 国内毛片毛片毛片毛片毛片| 久久久久国内视频| 成人性生交大片免费视频hd| 久久精品国产亚洲av天美| 久久国产精品人妻蜜桃| 999久久久精品免费观看国产| 日日干狠狠操夜夜爽| 人人妻人人看人人澡| 亚洲激情在线av| 欧美一级a爱片免费观看看| 精品久久久久久久久av| 啦啦啦韩国在线观看视频| 色综合亚洲欧美另类图片| 一级黄片播放器| 亚洲va日本ⅴa欧美va伊人久久| 少妇被粗大猛烈的视频| 69人妻影院| 观看免费一级毛片| 少妇人妻一区二区三区视频| 夜夜夜夜夜久久久久| 国产三级中文精品| 午夜精品久久久久久毛片777| 在线观看66精品国产| 女人十人毛片免费观看3o分钟| 国产伦一二天堂av在线观看| 综合色av麻豆| 国产精品一区二区三区四区久久| 欧美黄色片欧美黄色片| 国产伦人伦偷精品视频| 日本一二三区视频观看| 亚洲人成伊人成综合网2020| 别揉我奶头 嗯啊视频| av女优亚洲男人天堂| 日韩高清综合在线| 欧美色欧美亚洲另类二区| 看片在线看免费视频| 国产精品美女特级片免费视频播放器| 亚洲精品乱码久久久v下载方式| 欧洲精品卡2卡3卡4卡5卡区| 国产av麻豆久久久久久久| 高清在线国产一区| 男女那种视频在线观看| 欧美高清成人免费视频www| 成人av一区二区三区在线看| 99在线人妻在线中文字幕| 18禁裸乳无遮挡免费网站照片| 两人在一起打扑克的视频| 亚洲欧美日韩高清专用| 国产成人av教育| 中文字幕人妻熟人妻熟丝袜美| 色尼玛亚洲综合影院| 又紧又爽又黄一区二区| 欧美bdsm另类| 国产精品自产拍在线观看55亚洲| 熟女人妻精品中文字幕| 亚洲人成网站高清观看| 国语自产精品视频在线第100页| 无遮挡黄片免费观看| 波多野结衣高清作品| 老鸭窝网址在线观看| 亚洲欧美精品综合久久99| 国产精品永久免费网站| 一本综合久久免费| 自拍偷自拍亚洲精品老妇| 变态另类丝袜制服| 欧美日韩福利视频一区二区| 国产激情偷乱视频一区二区| 悠悠久久av| 宅男免费午夜| 日韩成人在线观看一区二区三区| 我的女老师完整版在线观看| 亚洲国产精品成人综合色| 午夜福利成人在线免费观看| 又爽又黄a免费视频| bbb黄色大片| 欧美成人免费av一区二区三区| 能在线免费观看的黄片| 国产精品一区二区免费欧美| 12—13女人毛片做爰片一| 婷婷精品国产亚洲av在线| 热99在线观看视频| 麻豆国产97在线/欧美| 日韩欧美三级三区| 亚洲成a人片在线一区二区| 波野结衣二区三区在线| 国产精品久久久久久久电影| 国产黄片美女视频| 国产91精品成人一区二区三区| 久久婷婷人人爽人人干人人爱| 亚洲av日韩精品久久久久久密| 日韩欧美免费精品| 亚洲乱码一区二区免费版| 亚洲国产精品sss在线观看| 国产av不卡久久| 丰满乱子伦码专区| 欧美xxxx性猛交bbbb| 欧美日本视频| 在线观看一区二区三区| 亚洲精品粉嫩美女一区| 欧美日韩福利视频一区二区| 亚洲国产色片| 精品久久久久久久久久久久久| 精品一区二区三区人妻视频| 久久这里只有精品中国| 青草久久国产| 一级作爱视频免费观看| 久久久精品大字幕| 亚洲在线观看片| 国内精品久久久久精免费| 久久精品91蜜桃| 欧美性猛交黑人性爽| 成人无遮挡网站| 国产亚洲欧美98| 99热这里只有是精品50| 在线观看免费视频日本深夜| 波多野结衣高清无吗| 99国产综合亚洲精品| 日韩亚洲欧美综合| 欧美绝顶高潮抽搐喷水| 一二三四社区在线视频社区8| 久久性视频一级片| 午夜久久久久精精品| 此物有八面人人有两片| 国产黄色小视频在线观看| 亚洲av一区综合| 美女高潮的动态| 99国产精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 99国产极品粉嫩在线观看| 91久久精品国产一区二区成人| 在线播放国产精品三级| 午夜视频国产福利| 久久久久久久午夜电影| 99久久99久久久精品蜜桃| 深爱激情五月婷婷| 亚洲va日本ⅴa欧美va伊人久久| 亚洲乱码一区二区免费版| 一边摸一边抽搐一进一小说| 好男人电影高清在线观看| 日韩中字成人| 一级作爱视频免费观看| 国产色婷婷99| 日本五十路高清| 别揉我奶头~嗯~啊~动态视频| 一个人看的www免费观看视频| 男人的好看免费观看在线视频| 国产免费一级a男人的天堂| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 成年人黄色毛片网站| 亚洲精品在线观看二区| 欧美极品一区二区三区四区| 黄片小视频在线播放| 午夜视频国产福利| 一区二区三区四区激情视频 | 特级一级黄色大片| 精品乱码久久久久久99久播| 欧美绝顶高潮抽搐喷水|