• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams

    2016-04-18 10:34:50*
    Water Science and Engineering 2016年3期

    *

    aCollege of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China

    bKey Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,Nanjing 210024,China

    cChangjiang Institute of Survey,Planning,Design,and Research,Wuhan 430010,China

    Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams

    Wei-jun Cena,b,*,Lang-sheng Wena,Zi-qi Zhanga,Kun Xiongc

    aCollege of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China

    bKey Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,Nanjing 210024,China

    cChangjiang Institute of Survey,Planning,Design,and Research,Wuhan 430010,China

    Available online 20 September 2016

    Based on the damage constitutive model for concrete,the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by f i nely subdividing concrete slab elements,and a concrete random mesoscopic damage model was established.The seismic response of a 100-m high concrete face rockfill dam(CFRD),subjected to ground motion with different intensities,was simulated with the three-dimensional finite element method(FEM),with emphasis on exploration of damage and the cracking process of concrete slabs during earthquakes as well as analysis of dynamic damage and cracking characteristics during strong earthquakes.The calculated results show that the number of damaged and cracking elements on concrete slabs grows with the duration of earthquakes.With increasing earthquake intensity,the damaged zone and cracking zone on concrete slabs grow wider.During a 7.0-magnitude earthquake,the stress level of concrete slabs is low for the CFRD,and there is almost no damage or slight damage to the slabs.While during a 9.0-magnitude strong earthquake,the percentages of damaged elements and macrocracking elements continuously ascend with the duration of the earthquake,peaking at approximately 26%and 5%at the end of the earthquake,respectively.The concrete random mesoscopic damage model can depict the entire process of sprouting,growing,connecting,and expanding of cracks on a concrete slab during earthquakes.

    Concrete face rockfill dam;Random mesoscopic damage model;Seismic response;Dynamic damage to concrete slab;Macrocracking;Numerical simulation

    1.Introduction

    Due to adoption of layered filling and thin layer vibration compaction technology,modern concrete face rockfill dams (CFRDs),which are very safe and adaptable to topographical and geological conditions,have become one of the main candidate types for high dams.In the last three decades, CFRDs have been rapidly developed in China,with more than 270 dams constructed or under construction,72 of which are over 100 m in height.

    China is located between the circum-Pacif i c seismic belt and the Mediterranean-Himalayan seismic belt,and is an earthquake-prone country.Many CFRDs are located in regions of high earthquake intensity(Chen et al.,2011,2013).On May 12,2008,the 156-m high Zipingpu CFRD,in southwestern China,suffered a strong earthquake with a Richter magnitude scale of 8.0.The main dam body remained safe on the whole, but extrusion and uplift failures of various degrees along the upper horizontal construction joints and crushing damagenear the middle vertical joints in the concrete slabs occurred (Kong et al.,2011;Wieland,2009;Xu et al.,2015;Zhang et al., 2015a).The structural integrity of concrete slabs under various loads is the key to ensuring the safety of seepage control of CFRDs.In conventional structural analysis of CFRDs,linear or nonlinear elastic models are often used to analyze the stress and deformation of concrete slabs.The possible cracking zone on slabs is determined according to the calculated principal tensile stress,which cannot ref l ect the entire evolution process of sprouting,growing,expanding,and the f i nal state of slab cracks (Arici,2011;Wang et al.,2014).Classical fracture mechanics mainly focuses on the strength problem of structures with cracks and the patterns of crack development.However,the process of damage and cracking of concrete slabs,including mesocrack initiation and the formation and evolution of macrocracks,is complex,and classical fracture mechanics cannot describe the generation of initial mesocracks before the formation of macrocracks.Damage theory,meanwhile,can be employed to study the entire evolution process of the mechanical properties of concrete slabs from mesocrack initiation to fi nal failure under the effect of external loads(Xiong et al., 2013,2014).Over the last decade,a series of concrete mesomechanical damage models have been put forward in China and abroad,including the lattice model(Schlangen and Garboczi,1997),random particle model(Bazant and Tabbara, 1990),micromechanicalmodel(MohamedandHansen, 1999),and random mechanical characteristic model(Tang and Zhu,2003).Owing to the limitation of computational capacity,most of the meso-mechanical damage models have only been used in numerical simulation of a single concrete member or a simple structure,and cannot be used to analyze the mesoscopic damage and macrocracking of entire concrete dams or other complex concrete structures.However,the random mechanical characteristic model has been employed frequently in static and dynamic simulation of failures of concrete or hardfill dams(Huangetal.,2008;Zhongetal.,2009;Xiongetal.,2013, 2014).Zhong et al.(2009)thought that it was impossible to analyze the damage and cracking of concrete dams in a strict mesoscale,while the random mechanical characteristic model, which considers the inf l uence of inhomogeneity in the mesoview based on the assumption of macroscopic homogeneity,is an effective way to simulate the seismic damage to a concrete arch dam.The ultimate failure patterns calculated with this method were consistent with those from laboratory tests in seismic damage analysis of a high arch dam(Zhong et al., 2009).

    In this study,the idea described above was adopted to analyze the cracking process of concrete slabs in a typical 100-m high CFRD.A f i ne secondary subdivision of initial concrete slab elements was conducted first,and then the concrete random mechanical analysis method and damage constitutive model were combined to simulate the dynamic damage and cracking of concrete slabs.Seismic response analysis of the CFRD was carried out using the threedimensional finite element method,focusing on predicting the damage and cracking characteristics of concrete slabs during earthquakes with different intensities.

    2.Damage constitutive model for concrete

    The damage constitutive relationship for concrete under uniaxial stress can be expressed as

    where σ is the stress,ε is the strain,D is the damage variable, and E0is the initial elastic modulus of concrete without damage.

    The damage to each concrete slab element may be tensile or compressive damage according to the maximum tensile strain criterion or Mohr-Coulomb criterion,respectively.Fig.1 shows the tensile and compressive damage constitutive relationships for concrete adopted in this study.Each element on the concrete slab shows elastic properties in the initial stage, and its stress grows with the increasing load.When the stress or strain approaches a critical value determined by the damage criteria,damage to the element or even complete destruction of the element occurs.

    In Fig.1(a),σtis the tensile stress;εtis the tensile strain;ft0is the uniaxial tensile strength;εt0is the tensile strain corresponding to ft0;and εtuis the ultimate tensile strain,εtu=ξεt0, where ξ is the coeff i cient of ultimate tensile strain.In the uniaxial tensile state,the maximum tensile strain criterion is used to determine whether the tensile damage occurs.When the tensile strain reaches εt0,damage to the element occurs; when the elementtensile strain reachesεtu,complete destruction occurs,with the damage variable Dtin the uniaxial tensile state equal to 1,which means that macrocracks appear.

    Fig.1.Damage constitutive relationships for concrete.

    The damage variable Dtin the uniaxial tensile state is as follows:

    where ε1,ε2,and ε3are the first,second,and third principal strains,respectively,and each of them is taken as zero when the values are smaller than zero.

    When an element is in a compressive or shear state,the Mohr-Coulomb criterion isused to determinewhether the compressive(shear)damage occurs.In Fig.1(b),σcis the compressive stress,εcis the compressive strain,fc0is the uniaxial compressive strength,and εc0is the corresponding compressive strain.When the compressive strain reaches εc0, damage to the element occurs.fcris the residual compressive strength,fcr=λfc0,where λ is the coeff i cient of residual compressive strength;εcris the compressive strain corresponding to fcr,εcr=rεc0,where r is the coeff i cient of residual compressive strain;and εcuis the ultimate compressive strain, εcu=ζεc0,where ζ is the coeff i cient of ultimate compressive strain.When the element compressive strain reaches εcu, complete destruction occurs.

    The damage variable Dcin the uniaxial compressive state is as follows:

    In the calculation,the strain state of each element is judged by the maximum tensile strain criterion first,and then by the Mohr-Coulomb criterion.If one criterion is met,tensile or compressive(shear)damage will occur.Otherwise the element is intact.During an earthquake,the element stress of a concrete slab is in the multi-axial stress state.When the stress meets the Mohr-Coulomb criterion,the maximum principal compressive strain εcmaxis used to replace the uniaxial compressive strain for damage judgments,which can be expressed as

    where fcis the compressive strength,μ is Poisson's ratio,φ is the friction angle,and σ1and σ2are the first and second principal stresses,respectively.

    Existing research results indicate that the damage constitutive model for concrete,in which mesoscopic parameters are assigned to concrete elements according to certain rules,can simulate the failure process of concrete specimens under uniaxial tension,compression,and shear stress well(Zhong et al.,2009;Xiong et al.,2013).The macrocrack occurrence and expanding in the specimens are fairly displayed,and the failure pattern obtained with the model is in agreement with that of the experimental results.Different mesoscopic material structures show random failure patterns,but the failure mechanism remains the same.Moreover,this model can simulate the softening process of the stress-strain relationship under different conditions,which ref l ects the basic mechanical characteristics of concrete materials.

    3.Random damage model for concrete slab considering mesoscopic inhomogeneity

    Strictly speaking,in the concrete mesoscopic damagemodel, it is necessary to conduct element discretization for all of the aggregate,cement colloid,and interfaces,so as to take into account different mechanical behaviors of different parts and precisely simulate the damage process of concrete.Due to the limitation of computational capacity and complexity of the problem,it is impossible to implement this idea in large-scale concrete structures under the current conditions.Although a concrete slab is rather small,compared with the dam body in CFRDs,the volume of the concrete slab in a high CFRD is still relatively large.It is not realistic to conduct numerical calculation of concrete slabs in a strict mesoscale.Therefore,an imaginary concept of a so-called relative mesoscale is put forward in this paper,in which the inf l uence of mesoscopic inhomogeneity undertheassumptionofmacroscopichomogeneityofmaterialis considered,and the mesh of a concrete slab can be f i nely subdivided in the so-called relative mesoscale.

    After a f i ne secondary subdivision of the concrete slab mesh,each slab element can be considered a continuous medium,but the mechanical properties,such as Young's modulus, the strength,and Poisson's ratio,are different for each element, which suggests discreteness and inhomogeneity.If the f i nely subdivided concrete slab mesh is regarded as a sample space, each slab element can be considered a sample.When the sample space is large enough,mechanical properties of the concrete slab can be considered random variables,which follow certain random distributions.The mean value of samples stands for the general level of the material's properties, and the variance represents the discrete degree.Although the mesoscopic structure of each concrete slab element cannot be described accurately with this method,as the mechanical properties of the slab are inhomogeneously distributed,with different orders of damage for different elements in the calculation process,the complex nonlinearmechanical behavior of the concrete slab can be simulated as a whole.

    Weibull(1939)put forward the idea of adopting the method of probability to describe heterogeneous materials.It is impossible to measure the material failure strength accurately, but the probability of material failure when damage occurs at a given stress level can be well def i ned.Tang and Zhu(2003) and Chen(2001)held the view that the Weibull distribution, compared with the normal distribution,was more suitable for simulating the strain softening of inhomogeneous brittle materials.Thus,the Weibull distribution was used to characterize mesoscopic inhomogeneity of material parameters of concrete in this study.The elastic modulus and strength parameters were considered random variables,and assumed to follow the Weibull distribution.In the calculation process,material parameters following the Weibull distribution were assigned to each slab element randomly,and,thus,the concrete slab mesh was considered inhomogeneous.The density function of the Weibull distribution is

    where x is a material parameter that follows the Weibull distribution,x0is a parameter related to the mean value of the material parameter x,and m is the shape parameter of the density function curve of the Weibull distribution.

    The shape parameter m ref l ects the discrete degree of material parameters.With the increase of m,the density function curve changes from a low and wide shape to a high and narrow one,indicating that the material parameter x is closer to x0. Hence,m can also be called a homogeneity coeff i cient in this study.The larger the value m is,the more homogeneous the material is,and the lower the variance of the density function is.In specif i c calculation,random numbers of the uniform distribution are assigned values from 0 to 1,and then,according to the inverse function method and the density function of the Weibull distribution,those random numbers are utilized to form the material parameters.

    4.Dynamic damage and cracking analysis of concrete slab for a high CFRD

    4.1.Finite element model and calculation condition

    A typical 100-m high CFRD was used in a case study.Both upstream and downstream slope ratios were 1:1.4.The finite element model of the dam with a f i nely subdivided mesh of the concrete slab is shown in Fig.2(a).Fig.2(b)shows the mesh of the maximum cross-section of the dam with f i ne slab elements.Figs.2(c)and(d)illustrate the details of original and fi nely subdivided slab elements,as well as cushion elements behind the slab in the transverse direction(zone A)and dam axial direction(zone B),respectively.Each nodal displacement at the dam bottom was f i xed in three directions.

    For concreteslab elements,theelasticmodulusE, compressive strength fc,density ρ,and Poisson's ratio μ are given in Table 1.E and fcare random variables.Some parameters of concrete material are as follows:ξ=8,λ=0.1, r=0.3,and ζ=10.The mesoscopic parameters were obtained from the relationship curve between the mesoscopic and macroscopic elastic moduli and strength ratios according to the simulated results of Xiong et al.(2013).The Duncan E-B model and equivalent linear viscoelastic model were employed for the static and dynamic calculation of rockfill material,andcorresponding material parameters were obtained from Zhang (2015).The peripheral joint was simulated with a thin-layer element.The interface behavior between the slab and cushion was simulated with a nonlinear interface model using the thin-layer element,which was developed in commercial FEM software ADINA by Zhang et al.(2015b).

    Table 1Macroscopic and mesoscopic parameters of concrete slab.

    Fig.2.Finite element model of a CFRD.

    The time histories of three acceleration components were introduced for dynamic analysis after static analysis.The total seismic duration was 20 s,and the time histories of acceleration of a 7.0-magnitude earthquake are shown in Fig.3,with peak values of 100,66.7,and 100 cm/s2in three directions. The time histories of acceleration of 8.0-and 9.0-magnitude earthquakes were obtained through proportional magnif i cation of that of the 7.0-magnitude earthquake.

    4.2.Dynamic damage and cracking analysis of concrete slab

    Fig.4 shows the distributions of dynamic damaged zones and macrocracks on the concrete slab during earthquakes with different seismic intensities.The distribution of dynamic damaged zones on the slab is mainly concentrated in the dam blocks on the riverbank within a range of 2/5 to 4/5 of the slab height.During a 7.0-magnitude earthquake,the damage to the slab shows local mesocracks or crack sprouting,without formation ofcontinuous macrocracking zones.With the increasing seismic intensity,more and more slab elements suffer damage,and the damaged zone gradually expands, mainly in the dam block on the riverbank.Some of the dynamic damaged elements then reach the damage threshold and macrocracks appear on the slab.Under low seismic intensity,there are few macrocracks on the concrete slab,and only a few completely destroyed elements connect,mainly in the range near the peripheral joint.With the increasing seismic intensity, more and more slab elements are completely destroyed and the zone on the slabs with destroyed elements,namely the macrocracking zone,grows wider.

    Fig.3.Time histories of acceleration of 7.0-magnitude earthquake.

    Fig.4.Distribution of dynamic damaged zone and macrocracking zone on concrete slab under earthquakes of different seismic intensities.

    A magnified schematic diagram of local mesocracks on the slab from Fig.4(c)is demonstrated in Fig.5.The string of small red circles at a Gauss point of each element means that when the principal stress of concrete in a certain direction reaches the tensile strength,mesocracks will occur in the plane normal to the principal stress where the red circles exist.On the whole,the direction of mesocracks on the slab is roughly parallel to the peripheral joint.

    Fig.5.Propagation direction of mesocracks on concrete slab in dam block on riverbank.

    During a strong earthquake,the slab suffers the interactive effect of multidirectional tensile and compressive stresses. Thus,stress conditions are relatively complex.Once damage to an individual slab element occurs,mesocracks will occur on the slab,dynamically opening or closing during the earthquake.As damage to the elements becomes severe,the stress surrounding elements will be redistributed in a more concentrated pattern,causing mesocracks to expand continuously and generating macrocracks eventually.Calculation indicates that the tensile damage to the slab element is the main reason for the slab's cracking and complete destruction under strong seismic excitation.Figs.6 and 7 illustrate the distributions of damaged elements and macrocracking zones on the concrete slab at different times during a 9.0-magnitude earthquake,respectively(Here only the left half of the slab is displayed).The f i gures reveal that,with the increasing seismic duration,the damaged elements on the slab grow gradually,and the number of mesocracks on the slab increases signif i cantly,f i nally leading to a large damaged zone.With continuous deepening ofdamage,some elements are completely destroyed,mesocracks pass through adjacent elements,and then the macrocracking or crushed zone on the slab appears.Therefore,throughout the process of the earthquake, we can see the sprouting,developing,and expanding of the slab cracks,namely the dynamic formation and development of damage and cracking.

    The percentages of damaged elements and macrocracking (completely destroyed)elements in the total slab element at different times during a 9.0-magnitude earthquake are shown in Fig.8.With the increasing seismic duration,the proportions of dynamically damaged and macrocracking elements do not increase linearly.Both increase signif i cantly in the first half of the earthquake,and later arrive at relatively stable values.At the end of the earthquake,the damaged and macrocracking slab elements account for around 26%and 5%of the total elements,respectively.

    Fig.6.Distribution of damaged elements on concrete slab at different times during 9.0-magnitude earthquake.

    Fig.7.Distribution of macrocracking zone on concrete slab at different times during 9.0-magnitude earthquake.

    Fig.8.Percentages of damaged elements and macrocracking elements on concrete slab at different times under 9.0-magnitude earthquake.

    There are many factors affecting the seismic response of a concrete slab under earthquake excitation.The dam prof i le has a large inf l uence on the dynamic cracking of the slab.Sensitivity analysis shows that,with the increase of the riverbank slope,the seismic effect on the dam gets stronger,the damaged zone on the slab gets wider,and corresponding macrocracks on the slab also increase.With the increasing seismic intensity, the inf l uence of the riverbank slope becomes more and more signif i cant.By contrast,the dam slope has little effect on the dynamic damage of the slab(Zhang,2015).The detailed calculation results will be illustrated in later research.

    5.Conclusions

    The concrete random mesoscopic damage model was extended to describe the dynamic damage behavior of concrete slabs in CFRDs.Compared with the conventional nonlinear viscoelastic or elastoplastic constitutive model,it can better describe the sprouting,growing,connecting,and expanding of slab cracks.Application of the model to a typical 100-m high CFRD shows that this model can well ref l ect the seismic response of a concrete slab during earthquakes.When the seismic intensity is low,the stress level of the slab is low, without damage or with slight damage to the slab;when the seismic intensity increases,the numbers of damaged and macrocracking elements on the slab ascend signif i cantly.After a 9.0-magnitude earthquake,the damaged and macrocracking elements account for about 26%and 5%of the total slab elements,respectively.The anti-seismic safety of the concrete slab is in a controllable state.

    Arici,Y.,2011.Investigation of the cracking of CFRD face plates.Comput. Geotech.38(7),905—916.http://dx.doi.org/10.1016/j.compgeo.2011.06.004.

    Bazant,Z.P.,Tabbara,M.R.,1990.Random particle models for fracture of aggregate or f i ber composites.J.Eng.Mech.116(8),1686—1705.http:// dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).

    Chen,S.S.,Fang,X.S.,Qian,Y.J.,2011.Thoughts on safety assessment and earthquake-resistance for high earth-rock dams.Hydro Sci.Eng.(1), 17—21(in Chinese).

    Chen,S.S.,Li,G.Y.,Fu,Z.Z.,2013.Safety criteria and limit resistance capacity of high earth-rock dams subjected to earthquakes.Chin.J.Geotech. Eng.35(1),59—65(in Chinese).

    Chen,Y.Q.,2001.Numerical Simulations of Effective Mechanical Properties and Failure Process of Heterogeneous Materials.Tsinghua University, Beijing(in Chinese).

    Huang,Z.Q.,Shen,X.P.,Tang,C.A.,2008.Numerical simulation of instability failure of high rolled compacted concrete gravity dam.J.Shenyang Univ. Technol.30(5),591—594(in Chinese).

    Kong,X.,Zhou,Y.,Zou,D.,Xu,B.,Yu,L.,2011.Numerical analysis of dislocations of the face slabs of the Zipingpu concrete faced rockfill dam during the Wenchuan earthquake.Earthq.Eng.Eng.Vib.10(4),581—589. http://dx.doi.org/10.1007/s11803-011-0091-z.

    Mazars,J.,1984.Application de la Mecanique de Lendnnag Emment an Comportememt non Lineaire de Structure.Ph.D.Dissertation.These de Doctorat Detat University,Paris(in French).

    Mohamed,A.R.,Hansen,W.,1999.Micromechanical modeling of concrete response under static loading,Part I:Model development and validation. ACI Mater.J.96(2),196—203.

    Schlangen,E.,Garboczi,E.J.,1997.Fracture simulations of concrete using lattice models:Computational aspects.Eng.Fract.Mech.57(2/3), 319—332.http://dx.doi.org/10.1016/S0013-7944(97)00010-6.

    Tang,C.A.,Zhu,W.C.,2003.Damage and Fracture of Concrete.Science Press,Beijing,pp.120—145(in Chinese).

    Wang,Z.J.,Liu,S.H.,Vallejo,L.,Wang,L.J.,2014.Numerical analysis of the causes of face slab cracks in Gongboxia Rockfill Dam.Eng.Geol.181, 224—232.http://dx.doi.org/10.1016/j.enggeo.2014.07.019.

    Weibull,W.,1939.A Statistical Theory of the Strength of Materials.Generalstabens Litograf i ska Anstalts F¨orlag,Stockholm.

    Wieland,M.,2009.The effects of the May 12,2008 Wenchuan Earthquake on large storage dams.Wasserwirtschaft 99(9),10—15.

    Xiong,K.,Weng,Y.H.,He,Y.L.,2013.Seismic failure modes and seismic safety of hardfill dam.Water Sci.Eng.6(2),199—214.http://dx.doi.org/ 10.3882/j.issn.1674-2370.2013.02.008.

    Xiong,K.,Hua,J.J.,Li,R.,2014.Static and seismic failure modes and structural safety of Oyuk Dam considering material heterogeneity.J. Yangtze River Sci.Res.Inst.31(7),74—80,90(in Chinese).

    Xu,B.,Zou,D.G.,Kong,X.J.,Hu,Z.Q.,Zhou,Y.,2015.Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plasticdamage model.Comput.Geotech.65,258—265.http://dx.doi.org/10.1016/ j.compgeo.2015.01.003.

    Zhang,J.M.,Yang,Z.Y.,Gao,X.Z.,Zhang,J.H.,2015a.Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake.Soil Dyn.Earthq.Eng. 76(s1),145—156.http://dx.doi.org/10.1016/j.soildyn.2015.03.014.

    Zhang,Z.Q.,2015.Study on Mechanism of Crack Damage of Concrete Slabs of High Concrete Face Rockfill Dams under Strong Earthquake.M.E. Dissertation.Hohai University,Nanjing(in Chinese).

    Zhang,Z.Q.,Cen,W.J.,Yuan,L.N.,2015b.Application of interface element in dynamic analysis of CFRD.Appl.Mech.Mater.723,353—357.

    Zhong,H.,Lin,G.,Li,H.J.,2009.Numerical simulation of damage in high arch dam due to earthquake.Front.Archit.Civ.Eng.China 3(3),316—322. http://dx.doi.org/10.1007/s11709-009-0039-9.

    Received 23 August 2015;accepted 29 March 2016

    This work was supported by the Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dams of the Ministry of Water Resources(Grant No.YK914019),the CRSRI Open Research Program(Grant No.CKWV2016376/KY),and the National Natural Science Foundation of China(Grant No.51009055).

    *Corresponding author.

    E-mail address:hhucwj@163.com(Wei-jun Cen).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2016.09.001

    1674-2370/?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    真人一进一出gif抽搐免费| 亚洲专区中文字幕在线| 黄色视频不卡| 国产成人一区二区三区免费视频网站| 中文字幕久久专区| 亚洲欧美激情在线| 亚洲激情在线av| а√天堂www在线а√下载| 国产精品美女特级片免费视频播放器 | 久久久久久久精品吃奶| 午夜福利成人在线免费观看| 欧美 亚洲 国产 日韩一| 午夜福利高清视频| 亚洲精品粉嫩美女一区| 99香蕉大伊视频| 亚洲国产精品久久男人天堂| 麻豆成人av在线观看| 亚洲精品久久成人aⅴ小说| 成人免费观看视频高清| 国产熟女午夜一区二区三区| 黄色毛片三级朝国网站| 亚洲伊人色综图| 久久香蕉国产精品| 精品一区二区三区四区五区乱码| 成人欧美大片| 欧美一区二区精品小视频在线| 精品乱码久久久久久99久播| 国产精华一区二区三区| 看免费av毛片| 男人舔女人的私密视频| 国产亚洲欧美在线一区二区| 一进一出抽搐动态| 午夜福利影视在线免费观看| 国产三级在线视频| 亚洲七黄色美女视频| 十分钟在线观看高清视频www| 久久久久久久久中文| 国产欧美日韩一区二区三区在线| 国产精品爽爽va在线观看网站 | 成年女人毛片免费观看观看9| 国产成人精品久久二区二区免费| 亚洲自拍偷在线| 成在线人永久免费视频| av片东京热男人的天堂| 亚洲自偷自拍图片 自拍| 涩涩av久久男人的天堂| 两个人视频免费观看高清| 精品久久蜜臀av无| 在线十欧美十亚洲十日本专区| 波多野结衣av一区二区av| 国产av精品麻豆| 免费在线观看亚洲国产| 欧美性长视频在线观看| 国产蜜桃级精品一区二区三区| 色精品久久人妻99蜜桃| 久久久久久久久免费视频了| 身体一侧抽搐| 天天添夜夜摸| 99久久综合精品五月天人人| 欧美乱色亚洲激情| 女人高潮潮喷娇喘18禁视频| 满18在线观看网站| www.精华液| 精品福利观看| 国产91精品成人一区二区三区| 视频在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 麻豆久久精品国产亚洲av| 91精品三级在线观看| 别揉我奶头~嗯~啊~动态视频| 日韩大尺度精品在线看网址 | 亚洲成国产人片在线观看| 搡老熟女国产l中国老女人| av中文乱码字幕在线| 国产亚洲欧美在线一区二区| 可以免费在线观看a视频的电影网站| 99国产精品一区二区三区| 欧美在线黄色| 成人手机av| 欧美一级a爱片免费观看看 | 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| 日本vs欧美在线观看视频| 国产亚洲精品一区二区www| 精品久久久久久,| 满18在线观看网站| 久久人人爽av亚洲精品天堂| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 欧美大码av| 亚洲精品在线美女| 国产成人精品在线电影| 欧美另类亚洲清纯唯美| 国产99白浆流出| 亚洲精品美女久久av网站| 一进一出抽搐动态| 成人精品一区二区免费| 国产又色又爽无遮挡免费看| 久久久久国内视频| 国产1区2区3区精品| 久久久久亚洲av毛片大全| 极品教师在线免费播放| 一卡2卡三卡四卡精品乱码亚洲| 国产乱人伦免费视频| av视频免费观看在线观看| 午夜福利视频1000在线观看 | 久久中文字幕一级| 国产成人啪精品午夜网站| 侵犯人妻中文字幕一二三四区| 久久精品国产清高在天天线| 日本一区二区免费在线视频| 亚洲国产精品合色在线| 99国产精品免费福利视频| 别揉我奶头~嗯~啊~动态视频| 国产成人精品久久二区二区免费| 精品国产一区二区三区四区第35| 成年人黄色毛片网站| 看片在线看免费视频| 久久人人97超碰香蕉20202| 极品教师在线免费播放| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 亚洲aⅴ乱码一区二区在线播放 | 午夜成年电影在线免费观看| 亚洲成人免费电影在线观看| 天天添夜夜摸| 亚洲天堂国产精品一区在线| 午夜免费成人在线视频| 亚洲精品久久国产高清桃花| 亚洲精品av麻豆狂野| 亚洲伊人色综图| 欧美成人性av电影在线观看| 最近最新中文字幕大全电影3 | 免费少妇av软件| 亚洲国产欧美一区二区综合| 久久 成人 亚洲| 国产男靠女视频免费网站| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 日韩免费av在线播放| 91av网站免费观看| 黄片播放在线免费| 在线视频色国产色| 嫁个100分男人电影在线观看| 丁香六月欧美| 日韩精品免费视频一区二区三区| 免费在线观看黄色视频的| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区| 欧美成狂野欧美在线观看| 精品卡一卡二卡四卡免费| 午夜福利欧美成人| 免费在线观看黄色视频的| 一本大道久久a久久精品| 在线观看一区二区三区| 人人妻人人澡人人看| 国产精品亚洲美女久久久| 国产精品久久久人人做人人爽| 制服诱惑二区| 欧美 亚洲 国产 日韩一| 久久精品国产清高在天天线| 很黄的视频免费| 成年版毛片免费区| 成人免费观看视频高清| 天堂影院成人在线观看| 天天躁狠狠躁夜夜躁狠狠躁| www.www免费av| 成人精品一区二区免费| 国产精品久久久人人做人人爽| 69精品国产乱码久久久| 老熟妇乱子伦视频在线观看| 国产一区二区在线av高清观看| 十分钟在线观看高清视频www| 国产精品免费视频内射| 日韩视频一区二区在线观看| 亚洲精品国产一区二区精华液| 色哟哟哟哟哟哟| 99国产综合亚洲精品| 欧美国产日韩亚洲一区| 亚洲美女黄片视频| 久久性视频一级片| 久久久久国产精品人妻aⅴ院| 午夜福利,免费看| 免费在线观看亚洲国产| 国产一级毛片七仙女欲春2 | 亚洲精品国产色婷婷电影| 大型黄色视频在线免费观看| 在线观看午夜福利视频| 久久精品亚洲熟妇少妇任你| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久久中文| 日韩精品免费视频一区二区三区| 很黄的视频免费| 亚洲专区国产一区二区| 免费看美女性在线毛片视频| 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆 | 日本vs欧美在线观看视频| 国产精品免费视频内射| 免费观看人在逋| 欧美大码av| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区精品| 久久精品亚洲熟妇少妇任你| 日韩三级视频一区二区三区| 国产精品久久电影中文字幕| 亚洲 国产 在线| 夜夜爽天天搞| 一本大道久久a久久精品| 亚洲男人天堂网一区| 国产亚洲欧美98| 黑人巨大精品欧美一区二区mp4| 亚洲狠狠婷婷综合久久图片| 91老司机精品| 婷婷六月久久综合丁香| 日本撒尿小便嘘嘘汇集6| 一边摸一边做爽爽视频免费| 叶爱在线成人免费视频播放| 欧美久久黑人一区二区| 搡老岳熟女国产| 亚洲色图 男人天堂 中文字幕| 搞女人的毛片| 久久久久久国产a免费观看| 午夜成年电影在线免费观看| 亚洲国产精品sss在线观看| 欧美乱妇无乱码| 国产亚洲精品av在线| 欧美激情 高清一区二区三区| e午夜精品久久久久久久| 亚洲五月色婷婷综合| 成人亚洲精品一区在线观看| 欧美一级a爱片免费观看看 | av在线播放免费不卡| 精品熟女少妇八av免费久了| 久久国产精品影院| 欧美在线一区亚洲| 香蕉久久夜色| 女性生殖器流出的白浆| 夜夜躁狠狠躁天天躁| 日本欧美视频一区| 亚洲欧美激情综合另类| 精品国产超薄肉色丝袜足j| 日日干狠狠操夜夜爽| 日日摸夜夜添夜夜添小说| av视频免费观看在线观看| 欧美色欧美亚洲另类二区 | 欧美一级a爱片免费观看看 | 丁香欧美五月| 午夜精品在线福利| 在线十欧美十亚洲十日本专区| 国产一区二区三区综合在线观看| 久久久久精品国产欧美久久久| 亚洲美女黄片视频| x7x7x7水蜜桃| 99久久久亚洲精品蜜臀av| 国产精品久久久久久人妻精品电影| 国产99久久九九免费精品| 黄色女人牲交| 色av中文字幕| 美女免费视频网站| 日本一区二区免费在线视频| 免费在线观看影片大全网站| 久久天躁狠狠躁夜夜2o2o| 欧美乱色亚洲激情| 日韩视频一区二区在线观看| 看片在线看免费视频| 宅男免费午夜| 国产高清videossex| 丁香欧美五月| 久久久国产成人精品二区| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 国产精品99久久99久久久不卡| 亚洲九九香蕉| 男男h啪啪无遮挡| 99精品欧美一区二区三区四区| 亚洲av电影不卡..在线观看| 美女免费视频网站| 少妇的丰满在线观看| 大型黄色视频在线免费观看| 99精品久久久久人妻精品| 国产亚洲av高清不卡| 亚洲一码二码三码区别大吗| 精品久久久精品久久久| 亚洲无线在线观看| 看免费av毛片| 免费高清视频大片| 日韩大尺度精品在线看网址 | 麻豆一二三区av精品| 亚洲视频免费观看视频| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| 91麻豆av在线| 精品人妻1区二区| 欧美人与性动交α欧美精品济南到| 精品福利观看| 国产伦人伦偷精品视频| 女人爽到高潮嗷嗷叫在线视频| 老汉色av国产亚洲站长工具| 怎么达到女性高潮| 国产91精品成人一区二区三区| 亚洲av电影不卡..在线观看| 国产一区在线观看成人免费| 欧美一级毛片孕妇| 国产xxxxx性猛交| 国产区一区二久久| 欧美日本亚洲视频在线播放| 国产区一区二久久| 涩涩av久久男人的天堂| 国产亚洲欧美98| 亚洲 国产 在线| 久久久国产成人免费| 亚洲成人免费电影在线观看| 黄片大片在线免费观看| 欧美成人午夜精品| 一区二区三区精品91| 亚洲专区国产一区二区| 麻豆av在线久日| 欧美精品啪啪一区二区三区| 亚洲av熟女| 国产伦一二天堂av在线观看| 日本免费a在线| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频| 怎么达到女性高潮| 久久久水蜜桃国产精品网| 九色国产91popny在线| 国产主播在线观看一区二区| 成年女人毛片免费观看观看9| 国产av在哪里看| 国产极品粉嫩免费观看在线| 男人舔女人的私密视频| 久久久精品国产亚洲av高清涩受| 亚洲精品国产区一区二| 制服诱惑二区| 亚洲精品在线美女| 男人的好看免费观看在线视频 | 欧美日韩中文字幕国产精品一区二区三区 | 在线观看一区二区三区| 男人的好看免费观看在线视频 | 黄色丝袜av网址大全| 国产三级在线视频| 国产成人影院久久av| 精品久久久久久久人妻蜜臀av | 一级片免费观看大全| 男男h啪啪无遮挡| 天堂动漫精品| 在线播放国产精品三级| 国产在线观看jvid| 亚洲人成电影免费在线| 亚洲 欧美 日韩 在线 免费| 电影成人av| 国产免费男女视频| 亚洲精品国产精品久久久不卡| 欧美国产日韩亚洲一区| 国产三级在线视频| 青草久久国产| 色老头精品视频在线观看| 亚洲少妇的诱惑av| 母亲3免费完整高清在线观看| 色综合婷婷激情| 欧美老熟妇乱子伦牲交| 首页视频小说图片口味搜索| 欧美+亚洲+日韩+国产| 国产熟女午夜一区二区三区| 黄网站色视频无遮挡免费观看| 免费搜索国产男女视频| 国产亚洲精品一区二区www| 久久香蕉国产精品| 午夜免费鲁丝| 亚洲激情在线av| 亚洲avbb在线观看| 黑人巨大精品欧美一区二区蜜桃| 中国美女看黄片| 91在线观看av| 啦啦啦 在线观看视频| 成熟少妇高潮喷水视频| 每晚都被弄得嗷嗷叫到高潮| 高清黄色对白视频在线免费看| 中文字幕av电影在线播放| 国产亚洲精品第一综合不卡| 极品人妻少妇av视频| 国产av在哪里看| 久久久久久亚洲精品国产蜜桃av| 美女午夜性视频免费| 国产区一区二久久| 国产又色又爽无遮挡免费看| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 啦啦啦韩国在线观看视频| 亚洲精品国产精品久久久不卡| 黄色毛片三级朝国网站| 丝袜美腿诱惑在线| 岛国在线观看网站| 欧美成人一区二区免费高清观看 | 老司机午夜十八禁免费视频| 国产野战对白在线观看| 老司机午夜福利在线观看视频| 国产在线观看jvid| 成人18禁在线播放| 男女床上黄色一级片免费看| www.精华液| 激情视频va一区二区三区| 亚洲成av片中文字幕在线观看| 欧美另类亚洲清纯唯美| 久久久久久免费高清国产稀缺| 18禁美女被吸乳视频| 91老司机精品| 久久天堂一区二区三区四区| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 免费不卡黄色视频| 波多野结衣av一区二区av| 欧美成人免费av一区二区三区| 乱人伦中国视频| 午夜老司机福利片| 色在线成人网| 欧美成人免费av一区二区三区| 欧美黑人精品巨大| 九色国产91popny在线| 长腿黑丝高跟| 波多野结衣巨乳人妻| 丝袜美腿诱惑在线| 国语自产精品视频在线第100页| 在线观看午夜福利视频| 一进一出抽搐gif免费好疼| 欧美日韩福利视频一区二区| 乱人伦中国视频| 久久精品国产99精品国产亚洲性色 | 99热只有精品国产| 看免费av毛片| 精品久久久久久久毛片微露脸| 国产熟女xx| 狠狠狠狠99中文字幕| 亚洲色图av天堂| 黄片大片在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 91麻豆av在线| 久热这里只有精品99| 黑人欧美特级aaaaaa片| 久久久久久国产a免费观看| 亚洲av成人一区二区三| 一级毛片高清免费大全| 国产精品久久久人人做人人爽| 9色porny在线观看| 91成年电影在线观看| 欧美性长视频在线观看| 18禁裸乳无遮挡免费网站照片 | 91成人精品电影| 欧美成人免费av一区二区三区| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 叶爱在线成人免费视频播放| 精品福利观看| 欧美人与性动交α欧美精品济南到| 久久久久亚洲av毛片大全| 精品午夜福利视频在线观看一区| 日韩欧美三级三区| 在线国产一区二区在线| 亚洲av熟女| 一区二区三区激情视频| 国产麻豆成人av免费视频| 午夜福利18| 法律面前人人平等表现在哪些方面| 美女高潮喷水抽搐中文字幕| 亚洲av成人一区二区三| av网站免费在线观看视频| 亚洲精品在线美女| 性少妇av在线| 国产av一区二区精品久久| 日韩大尺度精品在线看网址 | 亚洲欧美日韩另类电影网站| 精品熟女少妇八av免费久了| 丁香欧美五月| 精品第一国产精品| 一个人免费在线观看的高清视频| 老司机在亚洲福利影院| 久久久国产成人免费| 久久久国产欧美日韩av| 亚洲天堂国产精品一区在线| 90打野战视频偷拍视频| 午夜激情av网站| 久久午夜亚洲精品久久| 亚洲少妇的诱惑av| 黄色丝袜av网址大全| 亚洲成av片中文字幕在线观看| 精品一区二区三区av网在线观看| 久久精品国产清高在天天线| 十八禁网站免费在线| 欧美丝袜亚洲另类 | 欧美 亚洲 国产 日韩一| 免费看美女性在线毛片视频| 91在线观看av| 国产一区二区三区在线臀色熟女| 热re99久久国产66热| 国产三级黄色录像| 国产精品电影一区二区三区| 19禁男女啪啪无遮挡网站| 一级毛片女人18水好多| 91精品三级在线观看| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| av天堂久久9| 美女高潮喷水抽搐中文字幕| 黄色a级毛片大全视频| www.999成人在线观看| 久久青草综合色| 国产黄a三级三级三级人| 丁香六月欧美| 亚洲国产精品成人综合色| 悠悠久久av| 久久精品国产99精品国产亚洲性色 | 亚洲黑人精品在线| 一区二区三区高清视频在线| 午夜福利成人在线免费观看| 变态另类丝袜制服| 老熟妇乱子伦视频在线观看| 国产欧美日韩综合在线一区二区| 亚洲精品久久成人aⅴ小说| 窝窝影院91人妻| 高清黄色对白视频在线免费看| 色哟哟哟哟哟哟| 久久草成人影院| 中文字幕人妻丝袜一区二区| 欧美乱色亚洲激情| tocl精华| 国产又色又爽无遮挡免费看| 亚洲精品av麻豆狂野| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产高清在线一区二区三 | 最近最新中文字幕大全电影3 | 黄片大片在线免费观看| 亚洲自拍偷在线| 国产在线精品亚洲第一网站| 日韩欧美免费精品| 精品国产超薄肉色丝袜足j| 在线av久久热| 婷婷六月久久综合丁香| 欧美大码av| 国产精品,欧美在线| 久久热在线av| 亚洲熟妇熟女久久| 啦啦啦韩国在线观看视频| 精品久久久久久久毛片微露脸| 欧美性长视频在线观看| 久久久久国内视频| 丝袜在线中文字幕| x7x7x7水蜜桃| 久久国产乱子伦精品免费另类| 欧美另类亚洲清纯唯美| 岛国视频午夜一区免费看| 搞女人的毛片| 麻豆国产av国片精品| 国产又爽黄色视频| 国产精品野战在线观看| 母亲3免费完整高清在线观看| 97碰自拍视频| 91大片在线观看| 免费女性裸体啪啪无遮挡网站| 色哟哟哟哟哟哟| 欧美另类亚洲清纯唯美| 国产精品爽爽va在线观看网站 | 神马国产精品三级电影在线观看 | 免费女性裸体啪啪无遮挡网站| 久热爱精品视频在线9| 日韩一卡2卡3卡4卡2021年| 国产私拍福利视频在线观看| 老司机深夜福利视频在线观看| 久久久国产成人免费| 久热这里只有精品99| 欧美日本视频| 午夜精品在线福利| 在线观看一区二区三区| 色播在线永久视频| 亚洲五月婷婷丁香| 国产成人系列免费观看| 国产精品野战在线观看| 这个男人来自地球电影免费观看| 波多野结衣av一区二区av| 精品国内亚洲2022精品成人| av超薄肉色丝袜交足视频| 男女午夜视频在线观看| 久久久久久久久免费视频了| 99国产精品一区二区蜜桃av| 波多野结衣高清无吗| 亚洲欧洲精品一区二区精品久久久| 嫩草影院精品99| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成人久久性| 亚洲国产精品久久男人天堂| 国产精品av久久久久免费| 丝袜在线中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国内毛片毛片毛片毛片毛片| 少妇粗大呻吟视频| 正在播放国产对白刺激| 久久人妻熟女aⅴ| 国产欧美日韩一区二区三区在线| 伦理电影免费视频| 一夜夜www| 欧美+亚洲+日韩+国产| 两个人看的免费小视频| 欧美在线一区亚洲| 免费看a级黄色片| 夜夜躁狠狠躁天天躁| av超薄肉色丝袜交足视频| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av高清一级| 成人av一区二区三区在线看| 黄色丝袜av网址大全| 精品免费久久久久久久清纯| 91字幕亚洲| 久久人妻av系列| 啪啪无遮挡十八禁网站| 午夜影院日韩av|