• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams

    2016-04-18 10:34:50*
    Water Science and Engineering 2016年3期

    *

    aCollege of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China

    bKey Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,Nanjing 210024,China

    cChangjiang Institute of Survey,Planning,Design,and Research,Wuhan 430010,China

    Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams

    Wei-jun Cena,b,*,Lang-sheng Wena,Zi-qi Zhanga,Kun Xiongc

    aCollege of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China

    bKey Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,Nanjing 210024,China

    cChangjiang Institute of Survey,Planning,Design,and Research,Wuhan 430010,China

    Available online 20 September 2016

    Based on the damage constitutive model for concrete,the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by f i nely subdividing concrete slab elements,and a concrete random mesoscopic damage model was established.The seismic response of a 100-m high concrete face rockfill dam(CFRD),subjected to ground motion with different intensities,was simulated with the three-dimensional finite element method(FEM),with emphasis on exploration of damage and the cracking process of concrete slabs during earthquakes as well as analysis of dynamic damage and cracking characteristics during strong earthquakes.The calculated results show that the number of damaged and cracking elements on concrete slabs grows with the duration of earthquakes.With increasing earthquake intensity,the damaged zone and cracking zone on concrete slabs grow wider.During a 7.0-magnitude earthquake,the stress level of concrete slabs is low for the CFRD,and there is almost no damage or slight damage to the slabs.While during a 9.0-magnitude strong earthquake,the percentages of damaged elements and macrocracking elements continuously ascend with the duration of the earthquake,peaking at approximately 26%and 5%at the end of the earthquake,respectively.The concrete random mesoscopic damage model can depict the entire process of sprouting,growing,connecting,and expanding of cracks on a concrete slab during earthquakes.

    Concrete face rockfill dam;Random mesoscopic damage model;Seismic response;Dynamic damage to concrete slab;Macrocracking;Numerical simulation

    1.Introduction

    Due to adoption of layered filling and thin layer vibration compaction technology,modern concrete face rockfill dams (CFRDs),which are very safe and adaptable to topographical and geological conditions,have become one of the main candidate types for high dams.In the last three decades, CFRDs have been rapidly developed in China,with more than 270 dams constructed or under construction,72 of which are over 100 m in height.

    China is located between the circum-Pacif i c seismic belt and the Mediterranean-Himalayan seismic belt,and is an earthquake-prone country.Many CFRDs are located in regions of high earthquake intensity(Chen et al.,2011,2013).On May 12,2008,the 156-m high Zipingpu CFRD,in southwestern China,suffered a strong earthquake with a Richter magnitude scale of 8.0.The main dam body remained safe on the whole, but extrusion and uplift failures of various degrees along the upper horizontal construction joints and crushing damagenear the middle vertical joints in the concrete slabs occurred (Kong et al.,2011;Wieland,2009;Xu et al.,2015;Zhang et al., 2015a).The structural integrity of concrete slabs under various loads is the key to ensuring the safety of seepage control of CFRDs.In conventional structural analysis of CFRDs,linear or nonlinear elastic models are often used to analyze the stress and deformation of concrete slabs.The possible cracking zone on slabs is determined according to the calculated principal tensile stress,which cannot ref l ect the entire evolution process of sprouting,growing,expanding,and the f i nal state of slab cracks (Arici,2011;Wang et al.,2014).Classical fracture mechanics mainly focuses on the strength problem of structures with cracks and the patterns of crack development.However,the process of damage and cracking of concrete slabs,including mesocrack initiation and the formation and evolution of macrocracks,is complex,and classical fracture mechanics cannot describe the generation of initial mesocracks before the formation of macrocracks.Damage theory,meanwhile,can be employed to study the entire evolution process of the mechanical properties of concrete slabs from mesocrack initiation to fi nal failure under the effect of external loads(Xiong et al., 2013,2014).Over the last decade,a series of concrete mesomechanical damage models have been put forward in China and abroad,including the lattice model(Schlangen and Garboczi,1997),random particle model(Bazant and Tabbara, 1990),micromechanicalmodel(MohamedandHansen, 1999),and random mechanical characteristic model(Tang and Zhu,2003).Owing to the limitation of computational capacity,most of the meso-mechanical damage models have only been used in numerical simulation of a single concrete member or a simple structure,and cannot be used to analyze the mesoscopic damage and macrocracking of entire concrete dams or other complex concrete structures.However,the random mechanical characteristic model has been employed frequently in static and dynamic simulation of failures of concrete or hardfill dams(Huangetal.,2008;Zhongetal.,2009;Xiongetal.,2013, 2014).Zhong et al.(2009)thought that it was impossible to analyze the damage and cracking of concrete dams in a strict mesoscale,while the random mechanical characteristic model, which considers the inf l uence of inhomogeneity in the mesoview based on the assumption of macroscopic homogeneity,is an effective way to simulate the seismic damage to a concrete arch dam.The ultimate failure patterns calculated with this method were consistent with those from laboratory tests in seismic damage analysis of a high arch dam(Zhong et al., 2009).

    In this study,the idea described above was adopted to analyze the cracking process of concrete slabs in a typical 100-m high CFRD.A f i ne secondary subdivision of initial concrete slab elements was conducted first,and then the concrete random mechanical analysis method and damage constitutive model were combined to simulate the dynamic damage and cracking of concrete slabs.Seismic response analysis of the CFRD was carried out using the threedimensional finite element method,focusing on predicting the damage and cracking characteristics of concrete slabs during earthquakes with different intensities.

    2.Damage constitutive model for concrete

    The damage constitutive relationship for concrete under uniaxial stress can be expressed as

    where σ is the stress,ε is the strain,D is the damage variable, and E0is the initial elastic modulus of concrete without damage.

    The damage to each concrete slab element may be tensile or compressive damage according to the maximum tensile strain criterion or Mohr-Coulomb criterion,respectively.Fig.1 shows the tensile and compressive damage constitutive relationships for concrete adopted in this study.Each element on the concrete slab shows elastic properties in the initial stage, and its stress grows with the increasing load.When the stress or strain approaches a critical value determined by the damage criteria,damage to the element or even complete destruction of the element occurs.

    In Fig.1(a),σtis the tensile stress;εtis the tensile strain;ft0is the uniaxial tensile strength;εt0is the tensile strain corresponding to ft0;and εtuis the ultimate tensile strain,εtu=ξεt0, where ξ is the coeff i cient of ultimate tensile strain.In the uniaxial tensile state,the maximum tensile strain criterion is used to determine whether the tensile damage occurs.When the tensile strain reaches εt0,damage to the element occurs; when the elementtensile strain reachesεtu,complete destruction occurs,with the damage variable Dtin the uniaxial tensile state equal to 1,which means that macrocracks appear.

    Fig.1.Damage constitutive relationships for concrete.

    The damage variable Dtin the uniaxial tensile state is as follows:

    where ε1,ε2,and ε3are the first,second,and third principal strains,respectively,and each of them is taken as zero when the values are smaller than zero.

    When an element is in a compressive or shear state,the Mohr-Coulomb criterion isused to determinewhether the compressive(shear)damage occurs.In Fig.1(b),σcis the compressive stress,εcis the compressive strain,fc0is the uniaxial compressive strength,and εc0is the corresponding compressive strain.When the compressive strain reaches εc0, damage to the element occurs.fcris the residual compressive strength,fcr=λfc0,where λ is the coeff i cient of residual compressive strength;εcris the compressive strain corresponding to fcr,εcr=rεc0,where r is the coeff i cient of residual compressive strain;and εcuis the ultimate compressive strain, εcu=ζεc0,where ζ is the coeff i cient of ultimate compressive strain.When the element compressive strain reaches εcu, complete destruction occurs.

    The damage variable Dcin the uniaxial compressive state is as follows:

    In the calculation,the strain state of each element is judged by the maximum tensile strain criterion first,and then by the Mohr-Coulomb criterion.If one criterion is met,tensile or compressive(shear)damage will occur.Otherwise the element is intact.During an earthquake,the element stress of a concrete slab is in the multi-axial stress state.When the stress meets the Mohr-Coulomb criterion,the maximum principal compressive strain εcmaxis used to replace the uniaxial compressive strain for damage judgments,which can be expressed as

    where fcis the compressive strength,μ is Poisson's ratio,φ is the friction angle,and σ1and σ2are the first and second principal stresses,respectively.

    Existing research results indicate that the damage constitutive model for concrete,in which mesoscopic parameters are assigned to concrete elements according to certain rules,can simulate the failure process of concrete specimens under uniaxial tension,compression,and shear stress well(Zhong et al.,2009;Xiong et al.,2013).The macrocrack occurrence and expanding in the specimens are fairly displayed,and the failure pattern obtained with the model is in agreement with that of the experimental results.Different mesoscopic material structures show random failure patterns,but the failure mechanism remains the same.Moreover,this model can simulate the softening process of the stress-strain relationship under different conditions,which ref l ects the basic mechanical characteristics of concrete materials.

    3.Random damage model for concrete slab considering mesoscopic inhomogeneity

    Strictly speaking,in the concrete mesoscopic damagemodel, it is necessary to conduct element discretization for all of the aggregate,cement colloid,and interfaces,so as to take into account different mechanical behaviors of different parts and precisely simulate the damage process of concrete.Due to the limitation of computational capacity and complexity of the problem,it is impossible to implement this idea in large-scale concrete structures under the current conditions.Although a concrete slab is rather small,compared with the dam body in CFRDs,the volume of the concrete slab in a high CFRD is still relatively large.It is not realistic to conduct numerical calculation of concrete slabs in a strict mesoscale.Therefore,an imaginary concept of a so-called relative mesoscale is put forward in this paper,in which the inf l uence of mesoscopic inhomogeneity undertheassumptionofmacroscopichomogeneityofmaterialis considered,and the mesh of a concrete slab can be f i nely subdivided in the so-called relative mesoscale.

    After a f i ne secondary subdivision of the concrete slab mesh,each slab element can be considered a continuous medium,but the mechanical properties,such as Young's modulus, the strength,and Poisson's ratio,are different for each element, which suggests discreteness and inhomogeneity.If the f i nely subdivided concrete slab mesh is regarded as a sample space, each slab element can be considered a sample.When the sample space is large enough,mechanical properties of the concrete slab can be considered random variables,which follow certain random distributions.The mean value of samples stands for the general level of the material's properties, and the variance represents the discrete degree.Although the mesoscopic structure of each concrete slab element cannot be described accurately with this method,as the mechanical properties of the slab are inhomogeneously distributed,with different orders of damage for different elements in the calculation process,the complex nonlinearmechanical behavior of the concrete slab can be simulated as a whole.

    Weibull(1939)put forward the idea of adopting the method of probability to describe heterogeneous materials.It is impossible to measure the material failure strength accurately, but the probability of material failure when damage occurs at a given stress level can be well def i ned.Tang and Zhu(2003) and Chen(2001)held the view that the Weibull distribution, compared with the normal distribution,was more suitable for simulating the strain softening of inhomogeneous brittle materials.Thus,the Weibull distribution was used to characterize mesoscopic inhomogeneity of material parameters of concrete in this study.The elastic modulus and strength parameters were considered random variables,and assumed to follow the Weibull distribution.In the calculation process,material parameters following the Weibull distribution were assigned to each slab element randomly,and,thus,the concrete slab mesh was considered inhomogeneous.The density function of the Weibull distribution is

    where x is a material parameter that follows the Weibull distribution,x0is a parameter related to the mean value of the material parameter x,and m is the shape parameter of the density function curve of the Weibull distribution.

    The shape parameter m ref l ects the discrete degree of material parameters.With the increase of m,the density function curve changes from a low and wide shape to a high and narrow one,indicating that the material parameter x is closer to x0. Hence,m can also be called a homogeneity coeff i cient in this study.The larger the value m is,the more homogeneous the material is,and the lower the variance of the density function is.In specif i c calculation,random numbers of the uniform distribution are assigned values from 0 to 1,and then,according to the inverse function method and the density function of the Weibull distribution,those random numbers are utilized to form the material parameters.

    4.Dynamic damage and cracking analysis of concrete slab for a high CFRD

    4.1.Finite element model and calculation condition

    A typical 100-m high CFRD was used in a case study.Both upstream and downstream slope ratios were 1:1.4.The finite element model of the dam with a f i nely subdivided mesh of the concrete slab is shown in Fig.2(a).Fig.2(b)shows the mesh of the maximum cross-section of the dam with f i ne slab elements.Figs.2(c)and(d)illustrate the details of original and fi nely subdivided slab elements,as well as cushion elements behind the slab in the transverse direction(zone A)and dam axial direction(zone B),respectively.Each nodal displacement at the dam bottom was f i xed in three directions.

    For concreteslab elements,theelasticmodulusE, compressive strength fc,density ρ,and Poisson's ratio μ are given in Table 1.E and fcare random variables.Some parameters of concrete material are as follows:ξ=8,λ=0.1, r=0.3,and ζ=10.The mesoscopic parameters were obtained from the relationship curve between the mesoscopic and macroscopic elastic moduli and strength ratios according to the simulated results of Xiong et al.(2013).The Duncan E-B model and equivalent linear viscoelastic model were employed for the static and dynamic calculation of rockfill material,andcorresponding material parameters were obtained from Zhang (2015).The peripheral joint was simulated with a thin-layer element.The interface behavior between the slab and cushion was simulated with a nonlinear interface model using the thin-layer element,which was developed in commercial FEM software ADINA by Zhang et al.(2015b).

    Table 1Macroscopic and mesoscopic parameters of concrete slab.

    Fig.2.Finite element model of a CFRD.

    The time histories of three acceleration components were introduced for dynamic analysis after static analysis.The total seismic duration was 20 s,and the time histories of acceleration of a 7.0-magnitude earthquake are shown in Fig.3,with peak values of 100,66.7,and 100 cm/s2in three directions. The time histories of acceleration of 8.0-and 9.0-magnitude earthquakes were obtained through proportional magnif i cation of that of the 7.0-magnitude earthquake.

    4.2.Dynamic damage and cracking analysis of concrete slab

    Fig.4 shows the distributions of dynamic damaged zones and macrocracks on the concrete slab during earthquakes with different seismic intensities.The distribution of dynamic damaged zones on the slab is mainly concentrated in the dam blocks on the riverbank within a range of 2/5 to 4/5 of the slab height.During a 7.0-magnitude earthquake,the damage to the slab shows local mesocracks or crack sprouting,without formation ofcontinuous macrocracking zones.With the increasing seismic intensity,more and more slab elements suffer damage,and the damaged zone gradually expands, mainly in the dam block on the riverbank.Some of the dynamic damaged elements then reach the damage threshold and macrocracks appear on the slab.Under low seismic intensity,there are few macrocracks on the concrete slab,and only a few completely destroyed elements connect,mainly in the range near the peripheral joint.With the increasing seismic intensity, more and more slab elements are completely destroyed and the zone on the slabs with destroyed elements,namely the macrocracking zone,grows wider.

    Fig.3.Time histories of acceleration of 7.0-magnitude earthquake.

    Fig.4.Distribution of dynamic damaged zone and macrocracking zone on concrete slab under earthquakes of different seismic intensities.

    A magnified schematic diagram of local mesocracks on the slab from Fig.4(c)is demonstrated in Fig.5.The string of small red circles at a Gauss point of each element means that when the principal stress of concrete in a certain direction reaches the tensile strength,mesocracks will occur in the plane normal to the principal stress where the red circles exist.On the whole,the direction of mesocracks on the slab is roughly parallel to the peripheral joint.

    Fig.5.Propagation direction of mesocracks on concrete slab in dam block on riverbank.

    During a strong earthquake,the slab suffers the interactive effect of multidirectional tensile and compressive stresses. Thus,stress conditions are relatively complex.Once damage to an individual slab element occurs,mesocracks will occur on the slab,dynamically opening or closing during the earthquake.As damage to the elements becomes severe,the stress surrounding elements will be redistributed in a more concentrated pattern,causing mesocracks to expand continuously and generating macrocracks eventually.Calculation indicates that the tensile damage to the slab element is the main reason for the slab's cracking and complete destruction under strong seismic excitation.Figs.6 and 7 illustrate the distributions of damaged elements and macrocracking zones on the concrete slab at different times during a 9.0-magnitude earthquake,respectively(Here only the left half of the slab is displayed).The f i gures reveal that,with the increasing seismic duration,the damaged elements on the slab grow gradually,and the number of mesocracks on the slab increases signif i cantly,f i nally leading to a large damaged zone.With continuous deepening ofdamage,some elements are completely destroyed,mesocracks pass through adjacent elements,and then the macrocracking or crushed zone on the slab appears.Therefore,throughout the process of the earthquake, we can see the sprouting,developing,and expanding of the slab cracks,namely the dynamic formation and development of damage and cracking.

    The percentages of damaged elements and macrocracking (completely destroyed)elements in the total slab element at different times during a 9.0-magnitude earthquake are shown in Fig.8.With the increasing seismic duration,the proportions of dynamically damaged and macrocracking elements do not increase linearly.Both increase signif i cantly in the first half of the earthquake,and later arrive at relatively stable values.At the end of the earthquake,the damaged and macrocracking slab elements account for around 26%and 5%of the total elements,respectively.

    Fig.6.Distribution of damaged elements on concrete slab at different times during 9.0-magnitude earthquake.

    Fig.7.Distribution of macrocracking zone on concrete slab at different times during 9.0-magnitude earthquake.

    Fig.8.Percentages of damaged elements and macrocracking elements on concrete slab at different times under 9.0-magnitude earthquake.

    There are many factors affecting the seismic response of a concrete slab under earthquake excitation.The dam prof i le has a large inf l uence on the dynamic cracking of the slab.Sensitivity analysis shows that,with the increase of the riverbank slope,the seismic effect on the dam gets stronger,the damaged zone on the slab gets wider,and corresponding macrocracks on the slab also increase.With the increasing seismic intensity, the inf l uence of the riverbank slope becomes more and more signif i cant.By contrast,the dam slope has little effect on the dynamic damage of the slab(Zhang,2015).The detailed calculation results will be illustrated in later research.

    5.Conclusions

    The concrete random mesoscopic damage model was extended to describe the dynamic damage behavior of concrete slabs in CFRDs.Compared with the conventional nonlinear viscoelastic or elastoplastic constitutive model,it can better describe the sprouting,growing,connecting,and expanding of slab cracks.Application of the model to a typical 100-m high CFRD shows that this model can well ref l ect the seismic response of a concrete slab during earthquakes.When the seismic intensity is low,the stress level of the slab is low, without damage or with slight damage to the slab;when the seismic intensity increases,the numbers of damaged and macrocracking elements on the slab ascend signif i cantly.After a 9.0-magnitude earthquake,the damaged and macrocracking elements account for about 26%and 5%of the total slab elements,respectively.The anti-seismic safety of the concrete slab is in a controllable state.

    Arici,Y.,2011.Investigation of the cracking of CFRD face plates.Comput. Geotech.38(7),905—916.http://dx.doi.org/10.1016/j.compgeo.2011.06.004.

    Bazant,Z.P.,Tabbara,M.R.,1990.Random particle models for fracture of aggregate or f i ber composites.J.Eng.Mech.116(8),1686—1705.http:// dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).

    Chen,S.S.,Fang,X.S.,Qian,Y.J.,2011.Thoughts on safety assessment and earthquake-resistance for high earth-rock dams.Hydro Sci.Eng.(1), 17—21(in Chinese).

    Chen,S.S.,Li,G.Y.,Fu,Z.Z.,2013.Safety criteria and limit resistance capacity of high earth-rock dams subjected to earthquakes.Chin.J.Geotech. Eng.35(1),59—65(in Chinese).

    Chen,Y.Q.,2001.Numerical Simulations of Effective Mechanical Properties and Failure Process of Heterogeneous Materials.Tsinghua University, Beijing(in Chinese).

    Huang,Z.Q.,Shen,X.P.,Tang,C.A.,2008.Numerical simulation of instability failure of high rolled compacted concrete gravity dam.J.Shenyang Univ. Technol.30(5),591—594(in Chinese).

    Kong,X.,Zhou,Y.,Zou,D.,Xu,B.,Yu,L.,2011.Numerical analysis of dislocations of the face slabs of the Zipingpu concrete faced rockfill dam during the Wenchuan earthquake.Earthq.Eng.Eng.Vib.10(4),581—589. http://dx.doi.org/10.1007/s11803-011-0091-z.

    Mazars,J.,1984.Application de la Mecanique de Lendnnag Emment an Comportememt non Lineaire de Structure.Ph.D.Dissertation.These de Doctorat Detat University,Paris(in French).

    Mohamed,A.R.,Hansen,W.,1999.Micromechanical modeling of concrete response under static loading,Part I:Model development and validation. ACI Mater.J.96(2),196—203.

    Schlangen,E.,Garboczi,E.J.,1997.Fracture simulations of concrete using lattice models:Computational aspects.Eng.Fract.Mech.57(2/3), 319—332.http://dx.doi.org/10.1016/S0013-7944(97)00010-6.

    Tang,C.A.,Zhu,W.C.,2003.Damage and Fracture of Concrete.Science Press,Beijing,pp.120—145(in Chinese).

    Wang,Z.J.,Liu,S.H.,Vallejo,L.,Wang,L.J.,2014.Numerical analysis of the causes of face slab cracks in Gongboxia Rockfill Dam.Eng.Geol.181, 224—232.http://dx.doi.org/10.1016/j.enggeo.2014.07.019.

    Weibull,W.,1939.A Statistical Theory of the Strength of Materials.Generalstabens Litograf i ska Anstalts F¨orlag,Stockholm.

    Wieland,M.,2009.The effects of the May 12,2008 Wenchuan Earthquake on large storage dams.Wasserwirtschaft 99(9),10—15.

    Xiong,K.,Weng,Y.H.,He,Y.L.,2013.Seismic failure modes and seismic safety of hardfill dam.Water Sci.Eng.6(2),199—214.http://dx.doi.org/ 10.3882/j.issn.1674-2370.2013.02.008.

    Xiong,K.,Hua,J.J.,Li,R.,2014.Static and seismic failure modes and structural safety of Oyuk Dam considering material heterogeneity.J. Yangtze River Sci.Res.Inst.31(7),74—80,90(in Chinese).

    Xu,B.,Zou,D.G.,Kong,X.J.,Hu,Z.Q.,Zhou,Y.,2015.Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plasticdamage model.Comput.Geotech.65,258—265.http://dx.doi.org/10.1016/ j.compgeo.2015.01.003.

    Zhang,J.M.,Yang,Z.Y.,Gao,X.Z.,Zhang,J.H.,2015a.Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake.Soil Dyn.Earthq.Eng. 76(s1),145—156.http://dx.doi.org/10.1016/j.soildyn.2015.03.014.

    Zhang,Z.Q.,2015.Study on Mechanism of Crack Damage of Concrete Slabs of High Concrete Face Rockfill Dams under Strong Earthquake.M.E. Dissertation.Hohai University,Nanjing(in Chinese).

    Zhang,Z.Q.,Cen,W.J.,Yuan,L.N.,2015b.Application of interface element in dynamic analysis of CFRD.Appl.Mech.Mater.723,353—357.

    Zhong,H.,Lin,G.,Li,H.J.,2009.Numerical simulation of damage in high arch dam due to earthquake.Front.Archit.Civ.Eng.China 3(3),316—322. http://dx.doi.org/10.1007/s11709-009-0039-9.

    Received 23 August 2015;accepted 29 March 2016

    This work was supported by the Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dams of the Ministry of Water Resources(Grant No.YK914019),the CRSRI Open Research Program(Grant No.CKWV2016376/KY),and the National Natural Science Foundation of China(Grant No.51009055).

    *Corresponding author.

    E-mail address:hhucwj@163.com(Wei-jun Cen).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2016.09.001

    1674-2370/?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    国产免费一区二区三区四区乱码| 国产男人的电影天堂91| 国内揄拍国产精品人妻在线| 久久99精品国语久久久| 亚洲怡红院男人天堂| 日韩三级伦理在线观看| 国产成人精品婷婷| 亚洲欧洲日产国产| 国产亚洲最大av| 免费久久久久久久精品成人欧美视频 | kizo精华| 黄色日韩在线| 麻豆成人av视频| 春色校园在线视频观看| 美女cb高潮喷水在线观看| 美女cb高潮喷水在线观看| 国模一区二区三区四区视频| 久久久精品94久久精品| 高清av免费在线| 美女国产视频在线观看| 久久99热这里只有精品18| 亚洲精品,欧美精品| 亚洲欧美精品专区久久| 久久久久久九九精品二区国产| 久久99精品国语久久久| 亚洲熟女精品中文字幕| 精品久久久久久久久亚洲| 少妇丰满av| 日日撸夜夜添| 国产男人的电影天堂91| 欧美少妇被猛烈插入视频| 欧美成人一区二区免费高清观看| 一个人免费看片子| 大话2 男鬼变身卡| 欧美国产精品一级二级三级 | 亚洲精品中文字幕在线视频 | 伊人久久精品亚洲午夜| 少妇丰满av| 人人妻人人添人人爽欧美一区卜 | 久久久久精品性色| 国产乱来视频区| 久久精品国产a三级三级三级| 国产伦精品一区二区三区四那| 色5月婷婷丁香| 国产av码专区亚洲av| 久久精品国产亚洲av涩爱| 少妇高潮的动态图| 看免费成人av毛片| 国产有黄有色有爽视频| 夫妻性生交免费视频一级片| 国产有黄有色有爽视频| 三级国产精品欧美在线观看| 亚洲精品日韩av片在线观看| 搡女人真爽免费视频火全软件| 国产国拍精品亚洲av在线观看| 亚洲国产精品一区三区| videossex国产| 毛片女人毛片| 国产淫片久久久久久久久| 在线免费十八禁| 狂野欧美激情性bbbbbb| 干丝袜人妻中文字幕| 国产久久久一区二区三区| 免费看不卡的av| 亚洲欧美日韩东京热| av天堂中文字幕网| 交换朋友夫妻互换小说| 久久久午夜欧美精品| 亚洲精品日韩av片在线观看| 日韩伦理黄色片| 亚洲欧美精品专区久久| 中国三级夫妇交换| 青春草亚洲视频在线观看| 午夜福利影视在线免费观看| 精品亚洲成a人片在线观看 | 99热6这里只有精品| 秋霞伦理黄片| 久久婷婷青草| 热99国产精品久久久久久7| 欧美精品亚洲一区二区| 精品99又大又爽又粗少妇毛片| 国产爽快片一区二区三区| 国产精品人妻久久久久久| 国产伦精品一区二区三区四那| 99精国产麻豆久久婷婷| 日日啪夜夜撸| 婷婷色综合大香蕉| 人人妻人人澡人人爽人人夜夜| 亚洲电影在线观看av| 成人毛片a级毛片在线播放| 精品人妻视频免费看| 伦理电影免费视频| 免费观看无遮挡的男女| 国产亚洲一区二区精品| 亚洲精华国产精华液的使用体验| 成人亚洲欧美一区二区av| 中文天堂在线官网| 国产真实伦视频高清在线观看| 18禁裸乳无遮挡动漫免费视频| 国产欧美另类精品又又久久亚洲欧美| 久久人人爽人人爽人人片va| a级毛片免费高清观看在线播放| 偷拍熟女少妇极品色| 欧美zozozo另类| 一区二区三区乱码不卡18| 久久久久国产精品人妻一区二区| 蜜桃亚洲精品一区二区三区| 97在线人人人人妻| h视频一区二区三区| 老司机影院毛片| 亚洲成人中文字幕在线播放| 亚洲欧洲国产日韩| 成人午夜精彩视频在线观看| 亚洲人成网站在线观看播放| 欧美激情极品国产一区二区三区 | 免费看不卡的av| 在线天堂最新版资源| 亚洲天堂av无毛| 多毛熟女@视频| 中文字幕精品免费在线观看视频 | 美女脱内裤让男人舔精品视频| 亚洲欧美精品专区久久| 亚洲欧洲日产国产| 99久久精品国产国产毛片| 欧美丝袜亚洲另类| 大又大粗又爽又黄少妇毛片口| 色综合色国产| 在线精品无人区一区二区三 | 国语对白做爰xxxⅹ性视频网站| 熟女人妻精品中文字幕| 中文字幕免费在线视频6| 国产伦精品一区二区三区四那| 插逼视频在线观看| 亚洲av中文av极速乱| 高清日韩中文字幕在线| 亚洲色图综合在线观看| 少妇 在线观看| 黄色欧美视频在线观看| 成人亚洲精品一区在线观看 | 一二三四中文在线观看免费高清| 99热6这里只有精品| 联通29元200g的流量卡| 欧美日韩综合久久久久久| av免费观看日本| 久久久久人妻精品一区果冻| 亚洲国产色片| 老师上课跳d突然被开到最大视频| 岛国毛片在线播放| 街头女战士在线观看网站| 一级毛片电影观看| 色婷婷久久久亚洲欧美| 伊人久久国产一区二区| 免费看光身美女| 久久久午夜欧美精品| 国产精品免费大片| av国产久精品久网站免费入址| 嘟嘟电影网在线观看| 久久亚洲国产成人精品v| 亚洲av欧美aⅴ国产| 国产精品国产三级国产av玫瑰| 一二三四中文在线观看免费高清| 免费看av在线观看网站| 亚洲欧美成人精品一区二区| 91久久精品电影网| 日韩三级伦理在线观看| 一区二区三区乱码不卡18| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 黄片无遮挡物在线观看| 成人漫画全彩无遮挡| 熟女人妻精品中文字幕| 大又大粗又爽又黄少妇毛片口| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美成人综合另类久久久| 国产av国产精品国产| 免费看日本二区| 91狼人影院| 亚洲真实伦在线观看| 欧美另类一区| 人妻少妇偷人精品九色| 国产一区有黄有色的免费视频| .国产精品久久| 亚洲欧洲国产日韩| 午夜福利视频精品| 欧美成人精品欧美一级黄| 十八禁网站网址无遮挡 | 亚洲精品亚洲一区二区| 在线播放无遮挡| 亚洲人成网站在线播| av线在线观看网站| 高清在线视频一区二区三区| 美女内射精品一级片tv| 欧美xxxx性猛交bbbb| 精品亚洲成国产av| 老司机影院毛片| 我的女老师完整版在线观看| 国产精品一区二区在线不卡| 2021少妇久久久久久久久久久| 久热久热在线精品观看| 伦精品一区二区三区| 亚洲真实伦在线观看| 日本与韩国留学比较| 一区在线观看完整版| 女人十人毛片免费观看3o分钟| 国产深夜福利视频在线观看| 国产成人freesex在线| 中文欧美无线码| 一级毛片电影观看| 亚洲精品国产成人久久av| 毛片女人毛片| 成人午夜精彩视频在线观看| av免费观看日本| 夜夜骑夜夜射夜夜干| 国产亚洲av片在线观看秒播厂| 男人添女人高潮全过程视频| 国产男女超爽视频在线观看| 久久久久久久久久成人| 免费观看a级毛片全部| 久久韩国三级中文字幕| 九九爱精品视频在线观看| 看免费成人av毛片| 欧美bdsm另类| 91久久精品国产一区二区成人| 深爱激情五月婷婷| 久久久久精品久久久久真实原创| 久久久色成人| 秋霞伦理黄片| 亚洲真实伦在线观看| 亚洲欧洲日产国产| 蜜桃亚洲精品一区二区三区| av天堂中文字幕网| 国产精品免费大片| 建设人人有责人人尽责人人享有的 | 国产成人aa在线观看| 一级毛片aaaaaa免费看小| 国产女主播在线喷水免费视频网站| 色婷婷av一区二区三区视频| 丰满少妇做爰视频| 丝袜喷水一区| 亚洲最大成人中文| 九九爱精品视频在线观看| 国产成人一区二区在线| 久久热精品热| 九色成人免费人妻av| 亚洲欧美一区二区三区国产| 97超碰精品成人国产| 国产精品福利在线免费观看| 精品少妇久久久久久888优播| 欧美 日韩 精品 国产| 伦理电影大哥的女人| 久久99精品国语久久久| 国产欧美亚洲国产| 少妇人妻一区二区三区视频| 欧美日韩视频高清一区二区三区二| 日韩 亚洲 欧美在线| 成年女人在线观看亚洲视频| 国产av码专区亚洲av| 日韩不卡一区二区三区视频在线| 最近中文字幕高清免费大全6| 亚洲av不卡在线观看| 老司机影院毛片| 精品午夜福利在线看| 男人爽女人下面视频在线观看| av专区在线播放| av在线观看视频网站免费| 嫩草影院新地址| 久久久久久久国产电影| 免费av不卡在线播放| 黑人高潮一二区| 日韩 亚洲 欧美在线| 亚洲性久久影院| 男女下面进入的视频免费午夜| 亚洲精品国产av成人精品| 免费少妇av软件| 欧美日韩视频精品一区| 韩国高清视频一区二区三区| 亚洲av中文av极速乱| 久久久色成人| 制服丝袜香蕉在线| 欧美zozozo另类| 亚洲av成人精品一区久久| h日本视频在线播放| 国产乱来视频区| tube8黄色片| 欧美三级亚洲精品| 丰满迷人的少妇在线观看| 国产精品蜜桃在线观看| 亚洲av二区三区四区| 亚洲欧洲国产日韩| 热99国产精品久久久久久7| 女性被躁到高潮视频| 国产老妇伦熟女老妇高清| 免费看光身美女| 在线观看三级黄色| 久热久热在线精品观看| .国产精品久久| 美女国产视频在线观看| 97精品久久久久久久久久精品| 亚洲色图av天堂| 亚洲国产欧美在线一区| 日本黄色片子视频| 欧美日韩综合久久久久久| 麻豆国产97在线/欧美| 成年免费大片在线观看| 亚洲经典国产精华液单| 麻豆国产97在线/欧美| 蜜桃亚洲精品一区二区三区| 全区人妻精品视频| av一本久久久久| 成年av动漫网址| 国产成人精品久久久久久| 伦理电影免费视频| 内地一区二区视频在线| 日本黄大片高清| 亚洲国产精品一区三区| 精品亚洲成a人片在线观看 | 久久影院123| 高清在线视频一区二区三区| 亚洲精品自拍成人| 久久国产亚洲av麻豆专区| 亚洲三级黄色毛片| 免费看av在线观看网站| 亚洲国产精品999| 国产爱豆传媒在线观看| 国产亚洲午夜精品一区二区久久| 国产精品99久久99久久久不卡 | 国产午夜精品一二区理论片| 欧美日本视频| 最黄视频免费看| 18禁裸乳无遮挡免费网站照片| h视频一区二区三区| 日韩制服骚丝袜av| 国产精品熟女久久久久浪| 免费看不卡的av| 91精品一卡2卡3卡4卡| 久久久久久久久久成人| 看非洲黑人一级黄片| av女优亚洲男人天堂| 亚洲精华国产精华液的使用体验| 国产一区二区在线观看日韩| 亚洲av免费高清在线观看| 18+在线观看网站| 看非洲黑人一级黄片| 国精品久久久久久国模美| 亚洲精品色激情综合| 在现免费观看毛片| 国产毛片在线视频| 欧美日韩精品成人综合77777| 亚洲精品国产av成人精品| 久久av网站| 日日撸夜夜添| a级毛色黄片| av.在线天堂| 国产黄片视频在线免费观看| 免费少妇av软件| 免费高清在线观看视频在线观看| 青春草国产在线视频| 亚洲精品亚洲一区二区| 天堂俺去俺来也www色官网| freevideosex欧美| 色视频www国产| 国产精品福利在线免费观看| 香蕉精品网在线| 日本午夜av视频| 欧美成人精品欧美一级黄| 一区在线观看完整版| 国产一级毛片在线| 国内揄拍国产精品人妻在线| 精品人妻一区二区三区麻豆| 99久久中文字幕三级久久日本| 久久久久久久久久久丰满| 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 日韩制服骚丝袜av| tube8黄色片| av又黄又爽大尺度在线免费看| 国产成人a区在线观看| 亚洲精品乱久久久久久| 久久婷婷青草| 中国国产av一级| 色5月婷婷丁香| 综合色丁香网| 网址你懂的国产日韩在线| 一二三四中文在线观看免费高清| 波野结衣二区三区在线| videossex国产| 国产av码专区亚洲av| 春色校园在线视频观看| 边亲边吃奶的免费视频| 久久久久性生活片| 美女主播在线视频| 97在线人人人人妻| 自拍欧美九色日韩亚洲蝌蚪91 | 免费看光身美女| 91久久精品国产一区二区三区| 午夜精品国产一区二区电影| 在线观看av片永久免费下载| 精品少妇久久久久久888优播| 少妇的逼水好多| 大片电影免费在线观看免费| 亚洲国产毛片av蜜桃av| 99久久精品热视频| 中文字幕制服av| 亚洲精品日韩av片在线观看| 麻豆乱淫一区二区| 日韩人妻高清精品专区| 在现免费观看毛片| av天堂中文字幕网| 国产高清有码在线观看视频| 又黄又爽又刺激的免费视频.| 国产女主播在线喷水免费视频网站| av不卡在线播放| 精品国产露脸久久av麻豆| 91久久精品国产一区二区成人| 亚洲国产日韩一区二区| 日本爱情动作片www.在线观看| 麻豆成人av视频| 国产视频首页在线观看| h视频一区二区三区| 亚州av有码| 亚洲av在线观看美女高潮| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 国产黄频视频在线观看| 国产精品99久久99久久久不卡 | 国产亚洲91精品色在线| 人妻系列 视频| 日本黄大片高清| 91精品伊人久久大香线蕉| 国产毛片在线视频| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 亚洲欧洲国产日韩| 欧美 日韩 精品 国产| 国产精品成人在线| 国产精品99久久99久久久不卡 | 国产免费视频播放在线视频| 97超碰精品成人国产| 又粗又硬又长又爽又黄的视频| 中文字幕制服av| 日韩一区二区视频免费看| 欧美日韩一区二区视频在线观看视频在线| 综合色丁香网| 午夜免费观看性视频| 一级毛片 在线播放| 天堂俺去俺来也www色官网| av在线蜜桃| 中文字幕精品免费在线观看视频 | 亚洲高清免费不卡视频| 日日摸夜夜添夜夜添av毛片| 麻豆国产97在线/欧美| 精品久久久噜噜| 各种免费的搞黄视频| 国产大屁股一区二区在线视频| 日本午夜av视频| 亚洲成人一二三区av| 91aial.com中文字幕在线观看| 99国产精品免费福利视频| 晚上一个人看的免费电影| 蜜臀久久99精品久久宅男| 久久久久性生活片| 欧美亚洲 丝袜 人妻 在线| 一级黄片播放器| 中文字幕av成人在线电影| 午夜福利视频精品| 伦精品一区二区三区| 777米奇影视久久| 高清在线视频一区二区三区| 看非洲黑人一级黄片| 亚洲av综合色区一区| 久久久亚洲精品成人影院| 日韩亚洲欧美综合| 免费观看av网站的网址| 亚洲国产最新在线播放| 网址你懂的国产日韩在线| 有码 亚洲区| 青春草视频在线免费观看| 国产精品三级大全| 99久久精品一区二区三区| 免费av中文字幕在线| 国产精品人妻久久久久久| 99九九线精品视频在线观看视频| 高清视频免费观看一区二区| 免费大片18禁| 欧美+日韩+精品| 日本av手机在线免费观看| 国产精品99久久久久久久久| 一级毛片电影观看| 99久久精品一区二区三区| 日韩强制内射视频| 91狼人影院| 亚洲,一卡二卡三卡| 岛国毛片在线播放| 免费观看性生交大片5| 人妻制服诱惑在线中文字幕| 国产成人a∨麻豆精品| 欧美日韩综合久久久久久| 我要看黄色一级片免费的| 精品熟女少妇av免费看| 一本一本综合久久| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说 | 亚洲av日韩在线播放| 久久国内精品自在自线图片| 成年美女黄网站色视频大全免费 | 日韩伦理黄色片| 国产久久久一区二区三区| 精品国产乱码久久久久久小说| 美女高潮的动态| 91久久精品电影网| 边亲边吃奶的免费视频| 免费观看性生交大片5| 亚洲人成网站在线观看播放| 免费不卡的大黄色大毛片视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 一级毛片 在线播放| 国产大屁股一区二区在线视频| 日本wwww免费看| 亚洲精品乱码久久久v下载方式| 五月伊人婷婷丁香| 免费黄网站久久成人精品| 久热久热在线精品观看| 国产爱豆传媒在线观看| 能在线免费看毛片的网站| 欧美最新免费一区二区三区| 免费观看的影片在线观看| 男的添女的下面高潮视频| 麻豆乱淫一区二区| 最黄视频免费看| 在线观看人妻少妇| 亚洲内射少妇av| 熟女av电影| 午夜免费鲁丝| 国产精品一区二区三区四区免费观看| 91精品伊人久久大香线蕉| 国产成人freesex在线| 青青草视频在线视频观看| 精品视频人人做人人爽| 国产亚洲欧美精品永久| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美精品自产自拍| 精品一区二区三区视频在线| 亚洲,欧美,日韩| 精品少妇久久久久久888优播| 三级经典国产精品| 女人十人毛片免费观看3o分钟| av福利片在线观看| 2021少妇久久久久久久久久久| 1000部很黄的大片| 韩国av在线不卡| freevideosex欧美| 韩国高清视频一区二区三区| 国产黄色免费在线视频| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂| 亚洲精品乱码久久久久久按摩| 啦啦啦在线观看免费高清www| 男女无遮挡免费网站观看| 国产亚洲91精品色在线| 午夜免费观看性视频| 成人特级av手机在线观看| 国产伦在线观看视频一区| 欧美zozozo另类| 插逼视频在线观看| 下体分泌物呈黄色| 国产黄频视频在线观看| 国产91av在线免费观看| 中国三级夫妇交换| 秋霞伦理黄片| 欧美日韩视频高清一区二区三区二| 国产精品一区二区三区四区免费观看| videossex国产| 亚洲精品aⅴ在线观看| 三级国产精品片| 久久久久精品久久久久真实原创| 国产亚洲av片在线观看秒播厂| 免费久久久久久久精品成人欧美视频 | 国产人妻一区二区三区在| 日产精品乱码卡一卡2卡三| 欧美 日韩 精品 国产| 99久久精品热视频| 国产色婷婷99| 亚洲国产欧美人成| 99国产精品免费福利视频| 久久午夜福利片| 国产高潮美女av| 美女高潮的动态| 菩萨蛮人人尽说江南好唐韦庄| 久久国产精品男人的天堂亚洲 | a 毛片基地| 三级国产精品欧美在线观看| 成年人午夜在线观看视频| 亚洲av中文av极速乱| 欧美成人精品欧美一级黄| 人人妻人人看人人澡| 国产亚洲91精品色在线| 欧美日本视频| 六月丁香七月| 欧美精品一区二区大全| 免费看日本二区| 亚洲国产精品专区欧美| 免费少妇av软件| 舔av片在线| 色综合色国产| 久久久精品94久久精品| av不卡在线播放| av播播在线观看一区| av在线app专区| 成人影院久久| 大香蕉久久网| 亚洲国产精品成人久久小说| 亚洲美女黄色视频免费看| 精品亚洲乱码少妇综合久久| 亚洲欧洲日产国产|