• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of f i bre orientations on the mechanical properties of kenaf-aramid hybrid composites for spall-liner application

    2016-04-18 10:45:25YAHAYASAPUANJAWAIDLEMANZAINUDIN
    Defence Technology 2016年1期

    R.YAHAYA,S.M.SAPUAN*,M.JAWAID,Z.LEMAN,E.S.ZAINUDIN,c

    aDepartment of Mechanical and Manufacturing Engineering,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    bScience and Technology Research Institute for Defence (STRIDE),43000 Kajang,Selangor,Malaysia

    cLaboratory of Biocomposite Technology,Institute of Tropical Forestry and Forest Products (INTROP),Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    dAerospace Manufacturing Research Centre (AMRC),F(xiàn)aculty of Engineering,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    eDepartment of Chemical Engineering,College of Engineering,King Saud University,Riyadh,Saudi Arabia

    Effect of f i bre orientations on the mechanical properties of kenaf-aramid hybrid composites for spall-liner application

    R.YAHAYAa,b,S.M.SAPUANa,c,d,*,M.JAWAIDc,e,Z.LEMANa,E.S.ZAINUDINa,c

    aDepartment of Mechanical and Manufacturing Engineering,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    bScience and Technology Research Institute for Defence (STRIDE),43000 Kajang,Selangor,Malaysia

    cLaboratory of Biocomposite Technology,Institute of Tropical Forestry and Forest Products (INTROP),Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    dAerospace Manufacturing Research Centre (AMRC),F(xiàn)aculty of Engineering,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    eDepartment of Chemical Engineering,College of Engineering,King Saud University,Riyadh,Saudi Arabia

    This paper presents the effect of kenaf f i bre orientation on the mechanical properties of kenaf-aramid hybrid composites for military vehicle's spall liner application.It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78%and 43.55%higher than that of UD and mat samples respectively.Charpy impact strength of woven kenaf composites is 19.78%and 52.07%higher than that of UD and mat kenaf hybrid composites respectively.Morphological examinations were carried out using scanning electron microscopy.The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.

    Hybrid composites;Spall-liner;Aramid f i bre;Porosity;Mechanical testing

    1.Introduction

    The search for alternative f i bres as a replacement for manmade f i bres has had continued.The well-known advantages of natural f i bres are low density,low cost,its availability,renewability,ease of production,low process energy,non-abrasive,good acoustic property,acceptable specif i c strength and modulus,low cost,easily available,and easy recyclability[1-5].However,there are some limitations which required further improvement such as its moisture absorption due to hydrophobicity,dimensional stability and poor wettability,low thermal stability during processing and its poor adhesion with synthetic f i bres [5,6].The combination of two or more natural and synthetic f i bres into a single matrix has led to the development of hybrid composites [7].Natural-synthetic f i bre hybrid composites are increasingly used in a wide range of applications [8].The advantages of hybridisation are fully utilised to reduce the use of synthetic f i bres which are generally nonenvironmentally friendly.Hybrid composites can be made from artif i cial f i bres,natural f i bres and with a combination of both artif i cial and natural f i bres [9].

    Kenaf f i bres (Hibiscus cannabinus L.)have a potential as an alternative for partial replacement of conventional materials or synthetic f i bres as reinforcement in composites [10].It is reported in the literature that kenaf are already being used in hybrid form with synthetic materials such as glass [8,11-13],carbon [14],and polyethylene terephthalate (PET)[15].Aramid is one of the synthetic f i bres used in hybrid composites.Aramid fi bres are a class of heat-resistant and strong synthetic f i bres which are widely used in aerospace and military applications,for ballistic rated body armour fabric and ballistic composites. Para-aramid f i bre (Kevlar)is one of the commercially available aramid f i bres and provides a unique combination of toughness,extra high tenacity and modulus,and thermal stability [16]. Kenaf-Kevlarhybridisation fordefenceapplication was reported in Refs.[17,18].

    There are factors that inf l uence the properties of kenaf hybrid composites.One of the factors is the hybrid types(inner-laminar and interlaminar)[19].Pearce et al.[20]relates the architecture and permeability of the fabrics and mechanical properties of woven carbon-f i bre fabrics reinforced epoxy composites.Khan et al. [21]studied the inf l uence of woven structure and direction on the mechanical properties,i.e.tensile,f l exural and impact properties.It was reported that the mechanical properties of untreated woven jute composite (in warp direction)were improved compared with the non-woven. Azrin Hani et al.[22]studied the mechanical analysis of woven coir and kenaf natural f i bres.They found that the structure used as a composite reinforcement in turn produced better mechanical properties.Pothan et al. [23]studied composites of woven sisal and polyester using three different weave architectures(plain,twill and matt)with special reference to resin viscosity,applied pressure,weave architecture,and f i bre surface modif ication.This study provided detailed information on the effect of weaving,architecture and f i bre content on the mechanical properties of the hybrid composites.Karahan et al.[24]observed the decrease in the mechanical properties of carbon-epoxy composites as a result of weaving structure.Karahan et al. [25]determined the effect of weaving structure and hybridisation on the low velocity impact properties of carbon-epoxy composites.It was reported that the best result obtained from twill woven composite with the energy absorption capacity was increased by around 9-10%with hybridisation.Alavudeen et al.[26]studied the effect of weaving patterns and random orientation on the mechanical properties of banana,kenaf,and banana/kenaf f i bre-reinforced hybrid polyester composites. They found that the plain type showed improved tensile properties compared to the twill type in all the fabricated composites.

    Based on the literature studies,it was found that mechanical properties of kenaf-aramid hybrid composites were not reported.The present study aimed to evaluate the mechanical performance of kenaf-aramid hybrid composites for spall-liner application.Since the properties of a composite are often determined by the properties of the components and the fraction of inclusions [27],there is a requirement to study the effect of f i bre properties in hybrid composite.In this study,the effects of kenaf f i bre orientation on the physical and mechanical properties of kenaf-Kevlar hybrid laminate composites were studied. The kenaf f i bres and Kevlar were arranged in similar sequences to prepare the hybrid laminated composites.The kenaf tested are in the form of woven and non-woven structures.The effects of the f i bre content and its morphology were also analysed.

    2.Materials and methods

    2.1.Materials

    Aramid fabric used in this study is the plain weaved structure Kevlar 129.Three types of kenaf f i bres were used in this study: woven,unidirectional and mat.The woven kenaf was produced by the interlacement of warp and weft yarns by using table loom.The yarns were obtained from local suppliers,Innovative Pultrusion Sdn Bhd.The unidirectional samples consist of kenaf yarn (800 tex)cross plied at 0°/90°.No chemical treatment was conducted on the kenaf f i bres prior to this study.The resin used in this study is DER 331 liquid epoxy with a density of 1.08 g/m3.The resin was cured using joint mine type (905-3S),cycloaliphatic amines.

    Fig.1.Illustration of kenaf-Kevlar hybrid composites.

    2.2.Fabrication of composite laminates

    Hand lay-up method was adopted to fabricate laminates of Kevlar 129 and kenaf in epoxy resin.The specimen consists of six layers of Kevlar with the kenaf f i bres in the middle as shown in Fig.1.Kenaf and Kevlar fabric were hand lay-up with the epoxy matrix by mixing epoxy resin (DER 331)and amine hardener in the ratio of 2:1.Two thick mild steel plates are used as a mould (20 × 20 cm)in the fabrication process.All the mould surfaces were sprayed with a mould release agent to prevent adhesion of composites to the mould after curing and also to ensure smooth sample surface.Composites were cured by applying compression pressure using dead weights on the top of the mould and cured at room temperature for 24 hours. The specimens were also post-cured at 70 °C for 2 hours after removing from the mould.The composition of hybrid composites is shown in Table 1.

    2.3.Density and void contents

    The density of the hybrid laminates was measured according to theASTM D792 standards.Rectangular samples with size of 10 mm × 10 mm were used.Distilled water at room temperature was used as the immersion f l uid and the mass was measured using a digital balance with a 10-3g resolution.Five specimens were tested and an average was taken.To analyse the void percentage in the composite laminates,the ASTM D2734 standard was used.The void content was determined from thetheoretical and the experimental density of the composites by using Eqs.(1)and (2):

    Table 1Hybrid composite formulation.

    wfis the f i bre weight fraction,wmis the matrix weight fraction,ρfis the f i bre density,and ρris the resin density.

    2.4.Dimensional stability and water absorption test

    The dimensional stability of kenaf-Kevlar hybrid composites was determined by water absorption and thickness swelling test.Three samples of each composite were immersed in distilled water at room temperature.After a certain period of time,the samples were removed from the water,wiped with a clean tissue paper before the weight and thickness value was measured.The percentage of water absorption was calculated by the weight difference using the following equation:

    where weis the relative weight change or water absorption percentage,wtis the weight at time t,and w0is the initial weight at t=0,and t is the soaking time.

    The percentage of thickness swelling was estimated by

    where Treis the percentage of thickness swelling,Ttis the thickness at time t,and T0is the initial thickness at t=0.

    2.5.Mechanical testing of composites

    Tensile test was conducted to determine the stress-strain behaviour of Kevlar-kenaf hybrid laminated composites.The test was carried out using Instron 33R 4484 testing machine based on ASTM D 3039 on samples with a size of 200 mm × 25 mm × actual thickness.A standard head displacement at a speed of 5 mm/min was applied.Flexural test was conducted by using 3-point loading using Instron 33R 4484 testing machine according to the ASTM D 790-03.The rectangular samples with dimensions of 100 mm × 20 mm were cut using a circular saw.The tests were conducted at a crosshead displacement rate of 5 mm/minute.For each test,three samples were tested at room temperature and average data were taken as a f i nal result.For Charpy impact,the test samples are prepared and tested according to the ASTM D256.Five un-notched samples with dimensions of 80 mm × 10 mm × respective thickness from each composition were tested.The composite toughness was analysed and reported.

    2.6.Scanning electron microscopy (SEM)

    Kenaf-Kevlar hybrid composite samples were observed using a scanning electron microscope Leo 1430VP.The cross-sectional surfaces of the samples were cut and the scanning electron micrographs were taken to observe the interface adhesion of f i bre layers and the matrix of the hybrid composites. Prior to the analysis,the hybrid composite samples were coated with palladium using a sputter coater.

    Table 2Physical properties of hybrid composites.

    3.Results and discussion

    3.1.Density and void

    The measured density composites are listed in Table 2.It was observed that the density of samples W and UD are higher(1.10 g/cm3)thanothercomposites.Atthesametime,thedensity of sample M is 0.87 g/cm3,which is lower than other composites. The presence of voids inside the samples was calculated by comparing the measured density with the theoretical density.It was found that the contents of the void in samples W,UD and M are 7.32%,8.39%and 26.70%respectively.The result may be due to less air entrapment in the hybrid composites with woven kenaf structure,which led to lower void content.Measurement of void content is important as it is a critical imperfection in f i bre reinforced composite materials [28].

    3.2.Thickness swelling test

    Fig.2.Thickness swelling of hybrid composites.

    Fig.3.Water absorption of hybrid composites.

    The result of thickness swelling test was shown in Fig.2. Sample UD shows the highest thickness swelling (3.03%)among all the samples.The woven sample shows moderate(2.20%)thickness swelling and the mat sample is lower(2.04%).The f i gure also showed that the increase in immersion time will allow water absorption,thus increases the thickness swelling of the hybrid composites until a constant thickness was obtained.According to Jawaid et al.[29]the hydrophilic properties of lignocellulose materials and the capillary action will cause the intake of water when the samples were soaked inwater and thus increase the dimension of the composite.The presence of voids also related to the thickness swelling of as the higher the void contents increase the thickness swelling of composites[29].However,the result in swelling thickness is contradictory to this statement.This may be the effect of the hybridisation of kenaf with Kevlar,synthetic f i bres.According to Ray and Rout[30],water molecules attract the hydrophilic groups of natural f i bres and react with the hydroxyl groups (—OH)of the cellulose molecules to form hydrogen bonds.Thickness swelling occurred as the water molecules penetrate the natural f i brereinforced composite through micro-cracks and reduce the interfacial adhesion of f i bre with the matrix.Higher Kevlar content in sample M resulted in higher f i bre-matrix interfacial adhesion,thus lower thickness swelling.Khalil et al. [31]reported that the water absorption and the thickness swelling of natural f i bre reinforced with polyester composites are improved by the incorporation of synthetic f i bres.The contradiction of water absorption and thickness swelling in this study may also be due to the exposure of the lignocellulosic f i bre on the surface of the composite [32].

    3.3.Water absorption test

    The water absorption test was used to determine the amount of water absorbed by hybrid composite which consists of woven,UD and mat kenaf layers under specif i ed conditions. Fig.3 shows the behaviour of water absorption in the woven,mat and unidirectional(UD)samples.Initially,all samples had a sharp linear increase in moisture absorption and reached their saturation state with maximum moisture content of 8.07%for W and UD samples and 26.84%in sample M after 320 h of water immersion respectively.It was found that samples with woven and UD kenaf absorb less water before it reached a saturation state and the samples with kenaf mat recorded the highest water absorption before reaching the saturated state. Similar in thickness swelling,water absorption was also inf l uenced by the void content of the composite;the weight of the composite will increase by trapping the water inside the voids[29].In general,moisture diffusion in a composite depends on factors such as the volume fraction of f i bre,f i bre orientation,f i bre type,area of exposed surfaces,surface protection voids,viscosity of the matrix,humidity and temperature [33].

    Fig.4.Stress-strain curves of hybrid composites.

    3.4.Effect of kenaf f i bre orientations on the tensile properties of the hybrid composites

    Tensile strength of hybrid composites determined its ability to resist breaking under tensile stress.The tensile properties of kenaf-Kevlar hybrid composites are compared with various kenaf structures.Fig.4 shows the tensile stress-strain curves of the tested samples.The curves show the brittleness and ductile nature of the composites.For woven and UD samples,the samples elongated with the increased stress level up to certain values where the kenaf layer failure occurred.The curve is continuous until total failure of the samples occurred as the outer layers of the Kevlar fabric break.No such observation was reported in the mat samples.Based on the curves,it was observed that the elongation at the break of woven samples is lesser than the other samples.The tensile properties of samples are compared and given in Fig.5.The tensile strength and tensile modulus are found to be higher,145.8 MPa and 3336.71 MPa,respectively,for composites with woven kenaf. The tensile strength and modulus of sample UD were recorded in intermediate with the values of 115.36 MPa and 2368.48 MPa.The lowest tensile properties are observed in non-woven kenaf sample M with the strength and modulus of101.56 MPa and 1888.39 MPa respectively.The properties of the samples with woven kenaf are improved from the previous report [34].It was found that the use of table looms weaved kenaf fabric compared with hand-weaved in earlier produced kenaf fabric.The result shows that the kenaf f i bre orientation has an inf l uential effect on the tensile properties of the composites.The advantages of woven f i bre structure were observed in a previous work [26].There are many other advantages of using woven composite such as stated in the published works[35,36].

    Fig.5.Tensile properties of hybrid composites.

    Fig.6.Load-extension curves of hybrid composites.

    3.5.Effect of kenaf orientations on the f l exural properties of the hybrid composites

    The f l exural test is useful in quantifying the properties of composite mainly in structural applications.The f l exural loadextension curves of woven,UD and mat kenaf-Kevlar hybrid composites are shown in Fig.6.The curves indicate the failure mode of the composites.According to Pothan et al. [23]the abrupt failure of the composite can be related to f l exural failure and the gradual decrease in loading indicates shear failure as the predominant mode.In this study,the failure mode can be classif i ed as a mixed failure mode.Fig.7 shows the variation in the f l exural properties of kenaf-Kevlar hybrid composites.It is observed that the f l exural strength of sample UD is the highest(100.3 MPa),followed by weaved structure and mat structure: 94.21 MPa and 35.82 MPa respectively.In terms of f l exural modulus the woven samples are found to be the highest compared with other samples.From the works of earlier researchers it was found that the f i bre orientation inf l uences the properties of the composites [37].The positive effect of woven structure was also observed by Alavudeen et al.[26].

    Fig.7.Flexural properties of hybrid composites.

    Fig.8.Charpy impact strength of hybrid composites.

    Multiple factors can inf l uence the f l exural strength and modulus of hybrid composites.One factor might be the interfacial bonding between the f i bres and epoxy matrix that facilitates load transfer.Fibre volume fraction and f i bre orientation were determined as important factors in the mechanical properties of the composites [38].Higher percentage of voids has also a negative effect on the f l exural modulus and strength of the composites [39].

    3.6.Effect of kenaf orientations on the Charpy impact strength of the hybrid composites

    The Charpy impact test was conducted to determine the amount of energy absorbed by the hybrid composites during fracture.The results of the Charpy impact test are presented in Fig.8.It is observed that the value of Charpy impact strength is higher in woven samples (51.41 kJ/m2)compared with the UD samples (41.24 kJ/m2)and mat samples (24.64 kJ/m2).The impact properties of composites depend on the interlaminar and interfacial adhesion between the f i bre and the matrix.In this study it was found that the impact strength of kenaf-Kevlar hybrid composites is in similar trend as the tensile properties. This is in contrast with the observation of Van der Oever et al.[40]that the Charpy impact strength decreases with increasing f i bre internal bonding and enhanced f i bre-matrix adhesion,which is opposite to the trend for the tensile and f l exural properties.The impact toughness of kenaf/glass hybrid composites was found to be inf l uenced by the f i bre orientation [41].It was found to be affected by f i bre orientation in glass f i bre reinforced polymer matrix composites [42].In determining the inf l uences of weaving architectures on the impact resistance of multi-layer fabrics,Yang et al. [43]found that the weaving architectures and fabric f i rmness are less inf l uential on the overall ballistic protection of multi-ply systems compared to the single-ply cases.

    Generally,based on the above discussion,it was found that the effect of f i bre orientations is important to the mechanical properties of hybrid composites as well as for ballistic resistantapplication [44].Kenaf-Kevlarhybridcomposites may f i nd applications as alternatives to current spall-liners which are aimed at protection from impact by small fragments.

    Fig.9.Woven-Kevlar hybrid composite.

    Fig.10.UD-Kevlar hybrid composite.

    3.7.Scanning electron microscope

    Figs.9-11 show the SEM surface morphology of kenaf-Kevlar hybrid composites.The cross-sectional observation of untested samples was focused on the f i bre-matrix interfacial and void content in the matrix.The interstitial regions which serve as crack initiators are observed in woven and UD samples.Fig.11 reveals a weak f i bre/matrix interface with voids and cracks.This could be responsible for the deterioration of the stress transfer from the matrix to the f i bres,thus affecting the mechanical properties of the composites [11].

    4.Conclusions

    The outcomes of the present work are the effect of kenaf fi bre orientation on the mechanical properties of hybrid composites.The effect of kenaf structure (woven,non-woven UD and non-woven mat)was investigated along with the tensile, fl exural and impact performance of the prepared composites. The following conclusions are made based on the extensive experimental study:

    Fig.11.Mat kenaf-Kevlar hybrid composite.

    1)The experiments show that a non-woven mat kenaf-Kevlar hybrid composite has low density as there are high void contents.Hybrid composites with woven and UD kenaf are almost similar in density and void content.

    2)The addition of kenaf affects the water absorption behaviour of the composites.The hydrophilic nature of kenaf f i bres and void content are responsible for the water absorption and this adversely affects the f i bre swelling and dimensional stability.

    3)The tensile and Charpy impact strength properties of woven kenaf-Kevlar composite are higher than other hybrid composites.On the contrary,the f l exural strength of the hybrid composites with UD kenaf is slightly higher compared with a hybrid with woven kenaf.

    4)The scanning electron micrograph of the hybrid composite exhibited higher void content in the mat kenaf composites compared with the UD and woven kenaf.

    Acknowledgments

    The authors would like to show their appreciation to UniversitiPutraMalaysia and Scienceand Technology Research Institute for Defence (STRIDE)for supporting the research activity.

    [1]Leman Z,Sapuan SM,Azwan M,Ahmad MMHM,Maleque MA.The effect of environmental treatments on f i ber surface properties and tensile strength of sugar palm f i ber-reinforced epoxy composites.Polym Plast Technol Eng 2008;47:606-12.

    [2]Anwar UMK,Paridah MT,Hamdan H,Sapuan SM,Bakar ES.Effect of curing time on physical and mechanical properties of phenolic-treated bamboo strips.Ind Crops Prod 2009;29:214-19.

    [3]Sapuan SM,Harimi M,Maleque MA.Mechanical properties of epoxy/coconutshellf i llerparticlecomposites.Arab JSciEng 2003;28:171-81.

    [4]Rashdi AAA,Sapuan SM,Ahmad MMHM,Khalina A.Combined effects of water absorption due to water immersion,soil buried and naturalweather on mechanical properties of kenaf fi bre unsaturated polyester composites (KFUPC).Int J Mech Mater Eng 2010;5:11-17.

    [5]Jawaid M,Abdul Khalil HPS,Abu Bakar A.Woven hybrid composites: tensile and fl exural properties of oil palm-woven jute fi bres based epoxy composites.Mater Sci Eng A 2011;528:5190-5.

    [6]Saw SK,Sarkhel G,Choudhury A.Effect of layering pattern on the physical,mechanical,and thermal properties of jute/bagasse hybrid if ber-reinforced epoxy novolac composites.Polym Compos 2012;33: 1824-31.

    [7]Jawaid M,Abdul Khalil HPS,Hassan A,Dungani R,Hadiyane A. Effect of jute fi bre loading on tensile and dynamic mechanical properties of oil palm epoxy composites.Compos Part B Eng 2013;45:619-24.

    [8]Atiqah A,Maleque M,Jawaid M,Iqbal M.Development of kenaf-glass reinforced unsaturated polyesterhybrid composite forstructural applications.Compos Part B Eng 2014;56:68-73.

    [9]Nunna S,Chandra PR,Shrivastava S,Jalan A.A review on mechanical behavior of natural fi ber based hybrid composites.J Reinf Plast Compos 2012;31:759-69.

    [10]Rashdi AAA,Sapuan SM,Ahmad MMHM,Abdan K.Review of kenaf fi ber reinforced polymer composites.Polimery 2009;12:1-4.

    [11]Davoodi MM,Sapuan SM,Ahmad D,Ali A,Khalina A,Jonoobi M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam.Mater Des 2010;31:4927-32.

    [12]Wan Busu WN,Anuar H,Ahmad SH,Rasid R,Jamal NA.The mechanical and physical properties of thermoplastic natural rubber hybrid composites reinforced with Hibiscus cannabinus,L and short glass fi ber. Polym Plast Technol Eng 2010;49:1315-22.

    [13]Jeyanthi S,Rani JJ.Improving mechanical properties by KENAF natural long fi ber reinforced composite for automotive structures.JAppl Sci Eng 2012;15:275-80.

    [14]Anuar H,Ahmad SH,Rasid R,Ahmad A,Wan Busu WN.Mechanical properties and dynamic mechanical analysis of thermoplastic-naturalrubber-reinforced short carbon fi ber and kenaf fi ber hybrid composites. J Appl Polym Sci 2008;107(6):4043-52.

    [15]Zaki Abdullah M,Dan-mallam Y,Megat Yusoff PSM.Effect of environmentaldegradation on mechanicalproperties of kenaf/ polyethylene terephthalate fi ber reinforced polyoxymethylene hybrid composite.Adv Mater Sci Eng 2013;2013:1-8.

    [16]Jassal M,Ghosh S.Aramid fi bers:an overview.Indian J Fibre Text Res 2002;27:290-306.

    [17]Yahaya R,Sapuan S,Jawaid M,Leman Z,Zainudin E.Mechanical performance of woven kenaf-Kevlar hybrid composites.J Reinf Plast Compos 2014;33:2242-54.

    [18]Yahaya R,Sapuan SM,Jawaid M,Leman Z,Zainudin ES.Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites. Mater Des 2014;63:775-82.

    [19]Lu S-H,Liang G-Z,Zhou Z-W,Li F.Structure and properties of UHMWPE fi ber/carbon fi ber hybrid composites.J Appl Polym Sci 2006;101:1880-4.

    [20]Pearce NR,Summerscales J,Guild F.Improving the resin transfer moulding process for fabric-reinforced composites by modi fi cation of the fabricarchitecture.ComposPartA ApplSciManuf2000;31: 1433-41.

    [21]Khan GMA,Terano M,Gafur MA,Alam MS.Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid)composites. J King Saud Univ Eng Sci 2013.doi:10.1016/j.jksues.2013.12.002.

    [22]Azrin Hani AR,Seang CT,Ahmad R,Mariatti JM.Impact and fl exural properties of imbalance plain woven coir and kenaf composite.Appl Mech Mater 2012;271-272:81-5.

    [23]Pothan L,Mai YW,Thomas S,Li RKY.Tensile and fl exural behavior of sisal fabric/polyester textile composites prepared by resin transfer molding technique.J Reinf Plast Compos 2008;27:1847-66.

    [24]Karahan M,Karahan N.In fl uence of weaving structure and hybridization on the tensile properties of woven carbon-epoxy composites.J Reinf Plast Compos 2013;33:212-22.

    [25]Karahan M,Karahan N.Effect of weaving structure and hybridization on the low-velocity impact behavior of woven carbon-epoxy composites. Fibres Text East Eur 2014;3:109-15.

    [26]AlavudeenA, RajiniN,Karthikeyan S,Thiruchitrambalam M,Venkateshwaren N.Mechanicalpropertiesofbanana/kenaf fi berreinforced hybrid polyester composites:effect of woven fabric and random orientation.Mater Des 2015;66:246-57.

    [27]Smolin AY,Shilko EV,Astafurov SV,Konovalenko IS,Buyakova SP,Psakhie SG.Modeling mechanical behaviors of composites with various ratios of matrix-inclusion properties using movable cellular automaton method.Defence Technol 2015;11:18-34.

    [28]Little JE,Yuan X,Jones MI.Characterisation of voids in fi bre reinforced composite materials.NDT E Int 2012;46:122-7.

    [29]Jawaid M,Abdul Khalil HPS,Noorunnisa Khanam P,Abu Bakar A. Hybrid composites made from oil palm empty fruit bunches/jute fi bres: water absorption,thickness swelling and density behaviours.J Polym Environ 2010;19:106-9.

    [30]Ray D,Rout J.Thermoset biocomposites.In:Ray D,Rout J,Mohanty AK,Misra M,Drzal LT,editors.Natural fi bers,biopolymers,and biocomposites.New York:Taylor&Francis Group;2005.p.2005.

    [31]Khalil HPSA,Hanida S,Kang CW,F(xiàn)uaad NAN.Agro-hybrid composite: the effects on mechanical and physical properties of oil palm fi ber(EFB)/Glass hybrid reinforced polyester composites.J Reinf Plast Compos 2007;26:203-18.

    [32]Khalil HPSA,Jawaid M,Bakar AA.Woven hybrid composites:water absorption and thickness swelling behaviours.BioResources 2011;6: 1043-52.

    [33]Ellyin F,Maser R.Environmental effects on the mechanical properties of glass- fi ber epoxy composite tubular specimens.Compos Sci Technol 2004;64:1863-74.

    [34]Yahaya R,Sapuan SM,Jawaid M,Leman Z,Zainudin ES.Effects of kenaf contents and fi ber orientation on physical,mechanical,and morphological properties of hybrid laminated composites for vehicle spall liners.Polym Compos 2015;36(8):1469-76.

    [35]Khashaba UA,Seif MA.Effect of different loading conditions on the mechanical behavior of [0/±45/90]s woven composites.Compos Struct 2006;74:440-8.

    [36]Lomov SV.Picture frame test of woven composite reinforcements with a full- fi eld strain registration.Text Res J 2006;76:243-52.

    [37]Shibata S,Cao Y,F(xiàn)ukumoto I.Press forming of short natural fi ber-reinforced biodegradable resin:effects of fi ber volume and length on lf exural properties.Polym Test 2005;24:1005-11.

    [38]Sathishkumar TP,Navaneethakrishnan P,Shankar S.Tensile and fl exural properties of snake grass natural fi ber reinforced isophthalic polyester composites.Compos Sci Technol 2012;72:1183-90.

    [39]Hagstrand P-O,Bonjour F,M?nson J-AE.The in fl uence of void content on the structural fl exural performance of unidirectional glass fi bre reinforced polypropylene composites.Compos Part A Appl Sci Manuf 2005;36:705-14.

    [40]Van den Oever MJA,Bos HL,Molenveld K.Flax fi bre physical structure and its effect on composite properties:impact strength and thermo-mechanical properties.Angew Makromol Chem 1999;272: 71-6.

    [41]Salleh Z,Berhan MN,Hyie KM,Isaac DH,Material A.Cold-pressed kenaf and fi breglass hybrid composites laminates:effect of fi bre types. World Acad Sci Eng Technol 2012;71:969-73.

    [42]Alam S,Habib F,Irfan M,Iqbal W,Khalid K.Effect of orientation of glass fi ber on mechanical properties of GRP composites.J Chem Soc Pak 2010;32:265.

    [43]Yang C-C,Ngo T,Tran P.In fl uences of weaving architectures on the impact resistance of multi-layer fabrics.Mater Des 2015;85:282-95.

    [44]McWilliams B,Yu J,Pankow M,Yen C-F.Ballistic impact behavior of woven ceramic fabric reinforced metal matrix composites.Int J Impact Eng 2015;86:57-66.

    Received 18 April 2015;revised 20 August 2015;accepted 20 August 2015 Available online 14 September 2015

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+603 89466318.

    E-mail address:sapuan@upm.edu.my (S.M.SAPUAN).

    http://dx.doi.org/10.1016/j.dt.2015.08.005

    2214-9147/? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    色综合站精品国产| 变态另类成人亚洲欧美熟女| 午夜视频精品福利| 91麻豆精品激情在线观看国产| 久久久国产精品麻豆| 亚洲精华国产精华精| 亚洲成国产人片在线观看| 看片在线看免费视频| 国产精品亚洲一级av第二区| 久久狼人影院| 国产成人精品久久二区二区91| 国产成人av教育| 看免费av毛片| ponron亚洲| www.999成人在线观看| 日韩高清综合在线| 日本一本二区三区精品| 国产精品98久久久久久宅男小说| 国产真人三级小视频在线观看| 免费高清在线观看日韩| 国内精品久久久久久久电影| 国产伦在线观看视频一区| 精品电影一区二区在线| 女生性感内裤真人,穿戴方法视频| 日韩大码丰满熟妇| 亚洲第一电影网av| 午夜两性在线视频| 亚洲男人天堂网一区| 午夜福利在线观看吧| 亚洲avbb在线观看| 亚洲一区中文字幕在线| 亚洲真实伦在线观看| 美女高潮到喷水免费观看| 在线观看午夜福利视频| 欧美久久黑人一区二区| 丝袜在线中文字幕| 国产一区二区激情短视频| 好男人在线观看高清免费视频 | 久久天堂一区二区三区四区| 成年人黄色毛片网站| 最新美女视频免费是黄的| 一级黄色大片毛片| 亚洲,欧美精品.| 男女视频在线观看网站免费 | 国产成+人综合+亚洲专区| 人人妻,人人澡人人爽秒播| 久久久久久国产a免费观看| 欧美人与性动交α欧美精品济南到| 人人澡人人妻人| 亚洲熟女毛片儿| 香蕉av资源在线| 亚洲精华国产精华精| 日本在线视频免费播放| 精品福利观看| 国产精品免费一区二区三区在线| 久久久久国内视频| 精品久久久久久久久久久久久 | 极品教师在线免费播放| 成人三级做爰电影| 国产精品亚洲一级av第二区| 亚洲精品粉嫩美女一区| 两人在一起打扑克的视频| 色播在线永久视频| 精华霜和精华液先用哪个| 国产伦人伦偷精品视频| 午夜成年电影在线免费观看| 国产黄片美女视频| 久久中文看片网| www.www免费av| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 亚洲第一av免费看| 一边摸一边抽搐一进一小说| 九色国产91popny在线| 亚洲熟女毛片儿| 深夜精品福利| 国产真实乱freesex| 日日夜夜操网爽| 每晚都被弄得嗷嗷叫到高潮| 久久久国产精品麻豆| 无人区码免费观看不卡| 在线国产一区二区在线| 亚洲真实伦在线观看| 91av网站免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品国产高清国产av| 在线观看一区二区三区| 中亚洲国语对白在线视频| 高清在线国产一区| 亚洲国产欧美日韩在线播放| 亚洲精品粉嫩美女一区| 在线av久久热| 免费无遮挡裸体视频| 草草在线视频免费看| 久久天躁狠狠躁夜夜2o2o| 午夜久久久在线观看| 白带黄色成豆腐渣| 黄片小视频在线播放| 亚洲国产精品成人综合色| 欧美中文综合在线视频| 欧美成人午夜精品| 国产精品九九99| 非洲黑人性xxxx精品又粗又长| 热re99久久国产66热| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 在线播放国产精品三级| 欧美一区二区精品小视频在线| 久久久国产精品麻豆| 亚洲一区高清亚洲精品| 手机成人av网站| 日韩欧美一区二区三区在线观看| 高清毛片免费观看视频网站| 看黄色毛片网站| 国产野战对白在线观看| a级毛片在线看网站| 91大片在线观看| 妹子高潮喷水视频| 一个人免费在线观看的高清视频| www.精华液| 精品少妇一区二区三区视频日本电影| 国产成年人精品一区二区| 日韩大码丰满熟妇| 免费观看精品视频网站| 成人三级黄色视频| 久久精品国产清高在天天线| 久久九九热精品免费| 亚洲精品av麻豆狂野| 人人妻人人澡欧美一区二区| 午夜免费激情av| 黄色a级毛片大全视频| 欧美一区二区精品小视频在线| 免费高清在线观看日韩| 色尼玛亚洲综合影院| 夜夜看夜夜爽夜夜摸| 精品国产美女av久久久久小说| 老鸭窝网址在线观看| 级片在线观看| 免费看a级黄色片| av视频在线观看入口| www.熟女人妻精品国产| 悠悠久久av| 极品教师在线免费播放| 国产精品久久电影中文字幕| 久久婷婷成人综合色麻豆| 成在线人永久免费视频| 国产aⅴ精品一区二区三区波| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 国产高清videossex| 黄色成人免费大全| videosex国产| 亚洲国产精品久久男人天堂| www.自偷自拍.com| 国产精品久久久久久人妻精品电影| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲一级av第二区| av有码第一页| 中出人妻视频一区二区| 麻豆久久精品国产亚洲av| 露出奶头的视频| 色综合欧美亚洲国产小说| 熟女电影av网| 国产伦人伦偷精品视频| 91老司机精品| 美女大奶头视频| 色播亚洲综合网| 日韩大尺度精品在线看网址| 亚洲真实伦在线观看| 老鸭窝网址在线观看| 啦啦啦韩国在线观看视频| 2021天堂中文幕一二区在线观 | 国产午夜福利久久久久久| 久久久精品欧美日韩精品| 国产精品久久电影中文字幕| 99国产极品粉嫩在线观看| 大型av网站在线播放| 两个人看的免费小视频| 一级a爱片免费观看的视频| 99riav亚洲国产免费| 男男h啪啪无遮挡| av欧美777| 99在线视频只有这里精品首页| 国产免费男女视频| 亚洲熟妇熟女久久| 日韩欧美在线二视频| 女同久久另类99精品国产91| 黄色视频,在线免费观看| 高清在线国产一区| av中文乱码字幕在线| 久久精品91无色码中文字幕| 国产亚洲精品综合一区在线观看 | 日本 欧美在线| 国产激情欧美一区二区| 久久天堂一区二区三区四区| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 久久中文字幕一级| 淫妇啪啪啪对白视频| 最好的美女福利视频网| 久久九九热精品免费| 无限看片的www在线观看| 91麻豆精品激情在线观看国产| 午夜老司机福利片| 亚洲熟女毛片儿| 久久中文字幕一级| 久久热在线av| 美女免费视频网站| 黄色片一级片一级黄色片| 亚洲av五月六月丁香网| a级毛片a级免费在线| 国产精品永久免费网站| 亚洲精品一区av在线观看| av超薄肉色丝袜交足视频| 看片在线看免费视频| 日韩精品免费视频一区二区三区| 免费在线观看亚洲国产| 欧美亚洲日本最大视频资源| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 村上凉子中文字幕在线| 99精品久久久久人妻精品| 亚洲国产精品合色在线| 亚洲精品国产精品久久久不卡| 十分钟在线观看高清视频www| 久热爱精品视频在线9| 亚洲av电影在线进入| 黄色丝袜av网址大全| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| www.999成人在线观看| 精品久久蜜臀av无| 成人国产一区最新在线观看| 免费搜索国产男女视频| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 免费看日本二区| 麻豆久久精品国产亚洲av| 91av网站免费观看| 国产aⅴ精品一区二区三区波| 97碰自拍视频| 18禁裸乳无遮挡免费网站照片 | 日韩精品免费视频一区二区三区| 日韩有码中文字幕| 国语自产精品视频在线第100页| 日本精品一区二区三区蜜桃| 一级作爱视频免费观看| 特大巨黑吊av在线直播 | 国产v大片淫在线免费观看| 日韩一卡2卡3卡4卡2021年| 精品卡一卡二卡四卡免费| 国产99白浆流出| 国产私拍福利视频在线观看| 一边摸一边抽搐一进一小说| 亚洲第一欧美日韩一区二区三区| 夜夜躁狠狠躁天天躁| 午夜激情av网站| 99re在线观看精品视频| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 久久伊人香网站| 亚洲国产精品合色在线| 国产高清激情床上av| 欧美成人性av电影在线观看| 国产av又大| 久久国产亚洲av麻豆专区| 亚洲 国产 在线| 欧美性猛交╳xxx乱大交人| 国产97色在线日韩免费| 成人一区二区视频在线观看| 老司机靠b影院| 日韩成人在线观看一区二区三区| 国产私拍福利视频在线观看| 亚洲国产精品成人综合色| 成人三级做爰电影| 国产免费男女视频| 此物有八面人人有两片| 淫秽高清视频在线观看| 久久久国产成人精品二区| 亚洲av中文字字幕乱码综合 | 大香蕉久久成人网| 我的亚洲天堂| 久久香蕉精品热| 天堂√8在线中文| 午夜精品在线福利| 午夜免费鲁丝| 色哟哟哟哟哟哟| 久久久精品欧美日韩精品| 级片在线观看| 欧美又色又爽又黄视频| 99国产精品一区二区蜜桃av| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 两个人看的免费小视频| 久久中文看片网| 欧美中文综合在线视频| av欧美777| 国产精品亚洲av一区麻豆| 大型黄色视频在线免费观看| 操出白浆在线播放| 身体一侧抽搐| 在线观看免费日韩欧美大片| 亚洲欧美精品综合一区二区三区| 老鸭窝网址在线观看| 国产精品乱码一区二三区的特点| 90打野战视频偷拍视频| 啦啦啦韩国在线观看视频| 欧美激情 高清一区二区三区| 欧美中文日本在线观看视频| 最好的美女福利视频网| 国产亚洲欧美98| 国产爱豆传媒在线观看 | 欧美久久黑人一区二区| 欧美黄色片欧美黄色片| 制服人妻中文乱码| 亚洲,欧美精品.| 高清在线国产一区| 精品国产美女av久久久久小说| 91麻豆av在线| www日本黄色视频网| aaaaa片日本免费| 精品电影一区二区在线| 一进一出抽搐动态| www.自偷自拍.com| 日韩一卡2卡3卡4卡2021年| 日韩免费av在线播放| 男人操女人黄网站| 老司机靠b影院| tocl精华| 亚洲成人久久性| 成人手机av| 女同久久另类99精品国产91| 最近最新免费中文字幕在线| 国产精品一区二区精品视频观看| 色播亚洲综合网| 欧美日韩瑟瑟在线播放| 日本a在线网址| 欧美乱码精品一区二区三区| 日韩欧美免费精品| 欧美乱码精品一区二区三区| 欧美日韩乱码在线| 757午夜福利合集在线观看| 免费女性裸体啪啪无遮挡网站| 女人爽到高潮嗷嗷叫在线视频| 久久久久久国产a免费观看| 久久青草综合色| 免费在线观看完整版高清| 国产高清videossex| 一区二区日韩欧美中文字幕| 日本三级黄在线观看| av欧美777| 99热这里只有精品一区 | 岛国在线观看网站| 免费人成视频x8x8入口观看| 一二三四在线观看免费中文在| 亚洲一码二码三码区别大吗| 欧美乱色亚洲激情| 亚洲av成人av| 老司机午夜福利在线观看视频| 又黄又粗又硬又大视频| 一区二区日韩欧美中文字幕| 一进一出抽搐动态| 亚洲av成人一区二区三| 美女免费视频网站| 真人一进一出gif抽搐免费| 欧美绝顶高潮抽搐喷水| 中文字幕人妻丝袜一区二区| 精品午夜福利视频在线观看一区| 亚洲精品中文字幕在线视频| 国产亚洲精品久久久久5区| 淫妇啪啪啪对白视频| 一级a爱片免费观看的视频| 久久香蕉激情| 亚洲一区中文字幕在线| 国产精品九九99| 国内久久婷婷六月综合欲色啪| 999久久久国产精品视频| 18美女黄网站色大片免费观看| 亚洲av片天天在线观看| 黄片小视频在线播放| 非洲黑人性xxxx精品又粗又长| 大型黄色视频在线免费观看| e午夜精品久久久久久久| 国产av在哪里看| 久久久久久亚洲精品国产蜜桃av| 成人三级黄色视频| 日韩欧美在线二视频| 草草在线视频免费看| 欧美中文综合在线视频| 国产精品免费一区二区三区在线| 一级毛片女人18水好多| a级毛片a级免费在线| 久久精品国产综合久久久| 亚洲狠狠婷婷综合久久图片| 无限看片的www在线观看| 亚洲av第一区精品v没综合| 欧美激情久久久久久爽电影| 一级片免费观看大全| 精品少妇一区二区三区视频日本电影| 久久午夜亚洲精品久久| 91字幕亚洲| 精品一区二区三区四区五区乱码| 成人三级黄色视频| 欧美国产日韩亚洲一区| 亚洲第一青青草原| 亚洲 欧美一区二区三区| 黄色视频不卡| 黑人操中国人逼视频| 极品教师在线免费播放| 婷婷亚洲欧美| 日韩高清综合在线| 免费在线观看影片大全网站| 日韩一卡2卡3卡4卡2021年| 亚洲成人精品中文字幕电影| 国产激情久久老熟女| 香蕉av资源在线| 国产成人av激情在线播放| 亚洲精品粉嫩美女一区| 一本综合久久免费| 夜夜爽天天搞| 久久久久久免费高清国产稀缺| 国产av又大| 伊人久久大香线蕉亚洲五| 国产亚洲欧美98| 国产一区在线观看成人免费| 91大片在线观看| 久久精品影院6| 人人妻人人看人人澡| 91av网站免费观看| 黄色成人免费大全| 99在线视频只有这里精品首页| 自线自在国产av| 女人被狂操c到高潮| 亚洲第一av免费看| 一本精品99久久精品77| АⅤ资源中文在线天堂| 国产成人精品久久二区二区免费| 久久精品国产亚洲av高清一级| 欧美不卡视频在线免费观看 | 最新美女视频免费是黄的| 老汉色av国产亚洲站长工具| 搡老熟女国产l中国老女人| 一夜夜www| 一级a爱视频在线免费观看| 丝袜人妻中文字幕| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 亚洲国产看品久久| 制服人妻中文乱码| 国产三级黄色录像| 中文字幕精品免费在线观看视频| 国产精品 国内视频| 黄网站色视频无遮挡免费观看| 久99久视频精品免费| 亚洲自偷自拍图片 自拍| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| av免费在线观看网站| 午夜免费激情av| 999久久久国产精品视频| 97超级碰碰碰精品色视频在线观看| 亚洲精品一区av在线观看| 校园春色视频在线观看| 亚洲男人天堂网一区| 热re99久久国产66热| а√天堂www在线а√下载| 黑人巨大精品欧美一区二区mp4| 久久香蕉激情| 国产在线观看jvid| xxx96com| 日韩视频一区二区在线观看| 手机成人av网站| 亚洲成av人片免费观看| 男女午夜视频在线观看| 黄色丝袜av网址大全| 在线天堂中文资源库| 久久久久免费精品人妻一区二区 | 国产成+人综合+亚洲专区| 最近最新免费中文字幕在线| ponron亚洲| 成年女人毛片免费观看观看9| 国产欧美日韩一区二区三| 丁香六月欧美| av视频在线观看入口| 亚洲电影在线观看av| 国产国语露脸激情在线看| 美女大奶头视频| 最新美女视频免费是黄的| 成人亚洲精品一区在线观看| 欧美日韩精品网址| 真人一进一出gif抽搐免费| 国产野战对白在线观看| 中文在线观看免费www的网站 | 日韩一卡2卡3卡4卡2021年| 久久精品夜夜夜夜夜久久蜜豆 | 美国免费a级毛片| 99久久无色码亚洲精品果冻| 黄色 视频免费看| 性欧美人与动物交配| 黄色女人牲交| 真人做人爱边吃奶动态| 欧美在线一区亚洲| 免费在线观看影片大全网站| 久久久久国产一级毛片高清牌| 精品乱码久久久久久99久播| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 国产精品综合久久久久久久免费| 成熟少妇高潮喷水视频| 亚洲av成人av| 少妇熟女aⅴ在线视频| 两性夫妻黄色片| 色在线成人网| 国产精品一区二区免费欧美| 国产精品精品国产色婷婷| 亚洲精品一卡2卡三卡4卡5卡| 日韩有码中文字幕| 国内揄拍国产精品人妻在线 | 啦啦啦免费观看视频1| 午夜久久久久精精品| 国产一区二区三区在线臀色熟女| 又黄又爽又免费观看的视频| 午夜福利视频1000在线观看| 欧美日本亚洲视频在线播放| 九色国产91popny在线| 露出奶头的视频| 女性被躁到高潮视频| 大香蕉久久成人网| 亚洲欧美日韩无卡精品| 亚洲人成网站高清观看| 男女之事视频高清在线观看| 身体一侧抽搐| 午夜福利成人在线免费观看| 欧美激情极品国产一区二区三区| 成年版毛片免费区| av福利片在线| 久热这里只有精品99| 亚洲中文日韩欧美视频| 在线观看午夜福利视频| 最好的美女福利视频网| 国产在线精品亚洲第一网站| 香蕉丝袜av| 日韩中文字幕欧美一区二区| 久久久国产成人精品二区| 国产成年人精品一区二区| 超碰成人久久| 国产欧美日韩一区二区精品| 国产不卡一卡二| 久久国产亚洲av麻豆专区| a级毛片在线看网站| 日韩欧美国产一区二区入口| 日韩欧美国产在线观看| 免费看美女性在线毛片视频| 国产99白浆流出| 特大巨黑吊av在线直播 | 超碰成人久久| 欧美人与性动交α欧美精品济南到| 一a级毛片在线观看| 黄色毛片三级朝国网站| 午夜福利在线观看吧| 女人高潮潮喷娇喘18禁视频| 观看免费一级毛片| 日本a在线网址| 国产成人欧美| 亚洲avbb在线观看| 露出奶头的视频| 日韩中文字幕欧美一区二区| 成年女人毛片免费观看观看9| 天堂√8在线中文| 老司机在亚洲福利影院| 国产成人av教育| 午夜免费观看网址| 欧美绝顶高潮抽搐喷水| 中文字幕人妻熟女乱码| 少妇被粗大的猛进出69影院| 在线观看舔阴道视频| 久久九九热精品免费| 国产一区在线观看成人免费| 99国产精品99久久久久| cao死你这个sao货| 欧美+亚洲+日韩+国产| 制服人妻中文乱码| 亚洲精品中文字幕一二三四区| 久久久久久九九精品二区国产 | 亚洲午夜精品一区,二区,三区| 成人手机av| 18禁黄网站禁片免费观看直播| 黄色毛片三级朝国网站| 日韩大码丰满熟妇| 亚洲自拍偷在线| 窝窝影院91人妻| 亚洲精品久久国产高清桃花| 亚洲国产毛片av蜜桃av| 一级毛片女人18水好多| 亚洲精华国产精华精| 午夜福利18| 成人一区二区视频在线观看| 久久精品91无色码中文字幕| 精品久久久久久,| 国产av一区在线观看免费| 极品教师在线免费播放| 亚洲国产欧美日韩在线播放| 亚洲avbb在线观看| 极品教师在线免费播放| 国产99白浆流出| 午夜成年电影在线免费观看| 亚洲九九香蕉| 欧美一区二区精品小视频在线| 国产人伦9x9x在线观看| 欧美成人性av电影在线观看| 日韩欧美国产一区二区入口| 国产成人av激情在线播放| 日本 欧美在线| 精品久久久久久,|