• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studies on impact sensitivity of nanosized trinitrotoluene (TNT)conf i ned in silica processed by sol-gel method

    2016-04-18 10:45:24INGALEWAGHPSASTRYBASAKBANDYOPADHYAYPHAPALEStishGUPTA
    Defence Technology 2016年1期

    S.V.INGALE*,P.B.WAGHP.U.SASTRY,C.B.BASAK,D.BANDYOPADHYAY,S.B.PHAPALE,Stish C.GUPTA

    aApplied Physics Division,Bhabha Atomic Research Centre,Mumbai,India

    bSolid State Physics Division,Bhabha Atomic Research Centre,Mumbai,India

    cGlass and Advanced Materials Division,Bhabha Atomic Research Centre,Mumbai,India

    dHeavy Water Division,Bhabha Atomic Research Centre,Mumbai,IndiaeChemistry Division,Bhabha Atomic Research Centre,Mumbai,India

    Studies on impact sensitivity of nanosized trinitrotoluene (TNT)conf i ned in silica processed by sol-gel method

    S.V.INGALEa,*,P.B.WAGHa,P.U.SASTRYb,C.B.BASAKc,D.BANDYOPADHYAYd,S.B.PHAPALEe,Satish C.GUPTAa

    aApplied Physics Division,Bhabha Atomic Research Centre,Mumbai,India

    bSolid State Physics Division,Bhabha Atomic Research Centre,Mumbai,India

    cGlass and Advanced Materials Division,Bhabha Atomic Research Centre,Mumbai,India

    dHeavy Water Division,Bhabha Atomic Research Centre,Mumbai,IndiaeChemistry Division,Bhabha Atomic Research Centre,Mumbai,India

    Nano-sized trinitrotoluene (TNT)material restrained in silica gel has been prepared by using the sol-gel process to study the effect of varying porosity in gel on the sensitivity ofTNT.TheTNT content in the gel has been varied from 60 to 90 wt% (at f i xed acetone/tetramethoxysilane ratio of 50).Also,for a f i xed TNT content of 75 wt%,the pore structure in the gel has been varied by changing the ratio of silica gel precursor to the solvent.The resultantTNT-silica gel composites have been characterized using scanning electron microscopy,thermal analysis,small angle X-ray scattering and surface area analysis techniques.Impact sensitivity studies were carried out using Fall Hammer ImpactTest.The results showed that the sensitivity of nanostructured explosives prepared by sol-gel process can be tailored precisely by controlling the process parameters.

    Nanostructured TNT;Sol-gel method;Composites;Impact sensitivity

    1.Introduction

    Chemical explosives are the materials capable of storing energy due to its chemical composition and this energy can be harnessed with proper stimulant over an exceedingly short period of time.The detonation behavior of explosive materials is inf l uenced by their microstructural features like particle size distribution,surface area,density of explosive charge,impurities,defects or inhomogeneities present,as well as processing methods [1].Among these parameters,particle size and defects play a critical role in controlling the explosive properties like sensitivity and rate of energy release.As the particle size of explosive material is reduced,there is more surface area in contact between the particles of an explosive which may cause a faster reaction rate [2].It has been observed that explosive materials with reduced particle size show a decrease in impact sensitivity,but this trend has been found to be reversed for theexplosive materials with particle size less than 200 nm [3]. Many attempts have been carried out to study the effect of particle size distribution in nanometer range on the sensitivity of explosive materials.However,the limited data are available on the effect of the microstructure of nano-sized particles on the sensitivity of explosives materials [4,5].Therefore,investigation of nano-sized explosives with varying microstructure is an important aspect in studying the sensitivity of these materials.

    Some of the popular techniques used to produce nanosized explosive materials are crystallization out of solutions,crystallization using supercritical f l uids or rapid expansion of supercritical solvent (RESS)and sol-gel technique [6].Out of these techniques,crystallization out of solutions is a commonly used method.Using this method,particle size can be reduced to submicron level.Although this method is very simple and safe,it is diff i cult to control the particle size and size distribution. Using the RESS method,nano-crystals of explosive with mean particle size in the range of 110-220 nm have been produced[7].However,it requires sophisticated instrumentation including low temperature and high pressure set-up.Moreover,various parameters like solvent temperature,pressure,nozzlesize,etc.,need to be controlled accurately,which makes this method complicated.In the sol-gel method,the explosive material is dissolved in a specif i c solvent and to this solution silica gel precursors like tetramethoxysilane and water are added.The hydrolysis and condensation of tetramethoxysilane results in the formation of nanosized primary particles of silica suspended in the solution,called sol.The primary particles of silica cross-link to form a three dimensional porous network which is referred to as gel.The pores of the gel contain the solvent in which explosive material is dissolved.Evaporation of liquid from the gel at ambient conditions results in xerogel material with recrystallized explosive material in the gel pores. Unlike other methods,the sol-gel method is simpler and safer as it does not require complicated instruments and it does not involve high temperature or high pressure.The advantage of sol-gel method is that the microstructure can be tailor-made so as to achieve the particle size in nanometer range with narrow size distribution as well as the porosity in the gel matrix can be varied.The usual average particle size obtained by this method is about 20-30 nm [8].However,the sensitivity of explosive materials may get affected due to enhanced defect density in terms of pores [9].

    We synthesized nano-sized trinitrotoluene (TNT)material in silica gel by using sol-gel method to study the effect of varying porosity in the gel on the sensitivity of TNT.TNT has been chosen for these studies because,due to high solubility of TNT in acetone,by controlling acetone to silica gel precursor molar ratio,the microstructure and porosity in the TNT-SiO2composite can be varied signif i cantly so as to study these materials in wide range.The TNT content in the gel was varied from 60 to 90 wt%.The porosity was also varied by varying the process parameters.The resultant explosive materials were characterized by various techniques and impact sensitivity of these materials has been studied.

    2.Materials and methods

    2.1.Preparation of TNT-SiO2composites

    The TNT-SiO2nanocomposites were prepared by using the sol-gel method [10].To prepare the TNT-SiO2composites,the predetermined amount of TNT was dissolved in acetone. The molar ratio ofTNT/tetramethoxysilane (TMOS)was varied from 0.4 to 2.4 to obtain the TNT content in the gel ranging from 60 wt%to 90 wt%.TMOS and water in the form of diluted hydrof l uoric (HF)acid (1 M)were added to this solution as silica gel precursors.H2O/TMOS ratio was kept at 16,whereas acetone/TMOS ratio was kept at 50.To vary the pore volume in the gel matrix in the samples containing 75 wt% TNT,the ratio ofTMOS to acetone was varied from 50 to 20 by maintaining the molar ratio of TNT/TMOS as 0.8 and H2O/ TMOS as 16.The hydrolysis and condensation of TMOS resulted in the formation of a clear gel within three hours.After the formation of the gel,the solvent from the gel pores was allowed to evaporate at ambient conditions to obtain nano-sized TNT retained in the pores of the gel.The samples containing 60 wt%,75 wt%and 90 wt%of TNT and acetone/TMOS ratio as 50 have been designated as T60,T75-I and T90 respectively. The samples containing 75 wt%of TNT has been further designated as T75-I,T 75-II and T75-III with acetone/TMOS ratio as 50,35 and 20,respectively.

    2.2.Characterization of TNT-SiO2composites

    The presence of TNT in the gel was conf i rmed by X-ray diffraction (XRD)measurements.The XRD data for the resultant TNT-SiO2xerogel were obtained on a Philips X-ray diffractometer using a PW 1710 goniometer (CuKα,30 kV,20 mA).The data were recorded by step-scan mode from 2θ of 10.01°to 79.99°,with step size of 0.02°.The amount ofTNT in the gel was conf i rmed by thermogravimetric and differential scanning calorimetry (TG-DSC)analysis using SETSYS Evolution,SETARAM system.The samples were heated in Argon atmosphere from room temperature to 500 °C at heating rate of 10 °C/min.The microstructure of the gel containing nano-sized TNT was studied by using Carl Zeiss Auriga f i eld emission scanning electron microscope (FESEM).For FESEM analysis,the TNT-SiO2gel powder was suspended in methanol and the suspension was dispersed on a copper plate.The samples were then gold coated.Small angle X-ray scattering (SAXS)measurements were carried out on pure silica xerogels and TNT incorporated silica xerogels using a Rigaku small angle goniometer mounted on rotating anode X-ray generator.Scattered intensity I(Q)was recorded using a scintillation counter by varying the scattering angle 2θ.Here Q is the scattering vector equal to 4π sin (θ)/λ,λ is the wavelength of incident (CuKα)X-rays.The intensities were corrected for sample absorption and smearing effects of collimating slits [11].Specif i c surface area was measured by nitrogen physisorption method using a Sorptomatic 1990 analyzer from CE Instruments.Prior to surface area measurements,the samples were degassed at 40 °C under vacuum for 6 hours.The specif i c surface area was calculated using the Brunauer-Emmett-Teller (BET)method from the amount of N2gas adsorbed at 77 K at various partial pressures (eleven points;0.05 < p/p0< 0.3).Impact sensitivity studies were carried out by Fall Hammer Impact Test using a 2 kg weight.For impact sensitivity test,powder sample of about 30-40 mg was placed on anvil and the height of impact (2 kg hammer)was varied to arrive at a height where 50%probability of initiation is found.Tetryl with f i gure of insensitivity (FoI)of 70 was considered as the standard.

    3.Results and discussion

    3.1.X-ray diffraction studies

    Fig.1 shows the XRD patterns for raw TNT and the sol-gel processed TNT-SiO2composites containing 90,75 and 60 wt %TNT.The diffraction peaks of crystalline phase in the XRD pattern corresponds to the monoclinic phase of TNT [12].It indicates the presence ofTNT in the sol-gel processed composites.As the silica content in the composite samples increases,the visibility of crystalline nature ofTNT is less prominent due to the amorphous nature of silica gel.As TNT recrystallizes in the pores of silica gel,there could be some variation in the peak intensity of scattering planes.

    Fig.1.XRD pattern forTNT andTNT-SiO2composites:(a)rawTNT;(b)T90;(c)T75;(d)T60.

    3.2.TG-DSC analysis

    Fig.2 shows typical TG-DSC curves for the TNT-SiO2nano-composite with 90 wt%TNT (T90).The endothermic peak at about 70 °C indicates melting of TNT.The melting temperature of TNT in the composite has shifted to lower temperature as compared to melting temperature of 80 °C for neat TNT.It reveals that recrystallized TNT in the composites is with nanometric size.The exothermic peak at about 280 °C is attributed to TNT decomposition [13].This conf i rms that TNT is retained in the gel matrix.

    Fig.2.TG-DSC curves for TNT-SiO2composite with 90%TNT content.

    There is a weight loss of about 86%within the range of 210-280 °C as shown in the TG curve of the T90 sample.As TNT decomposes completely into gaseous product,this weight loss is consistent with the desired TNT wt%in the composite. The remaining part is silica which is inert in this temperature range.The exothermic peak at 280 °C corresponds to the decomposition of TNT and the formation of gaseous products like CO,CO2,H2O,etc.,that accounts for sudden energy release.

    3.3.FESEM

    Fig.3(a)and (b)shows FESEM pictures of TNT-SiO2xerogels containing 75 wt%TNT with acetone/TMOS ratio as 50 and 20,respectively.Whereas Fig.3(c)shows FESEM of the sample containing 90 wt%TNT prepared with acetone/TMOS ratio of 50.

    All the composite samples show nano-structures.It is observed from Fig.3(a)and (b)that the sample T75-I is more porous as compared to T75-III.As the molar ratios of Acetone/ TMOS for theT75-I andT75-III samples are 50 and 20,respectively,the pores in T75-I are more widespread with larger pore volume which is conf i rmed by SEM pictures.The pores and particles are in mesoporous range.In the T75-III sample,the particles are closely spaced due to low acetone/TMOS ratio and the microstructure is more compact and indicates a signif i cant decrease in porosity.Fig.3(c)shows the SEM picture of T90 sample.The acetone/TMOS ratio for bothT 75-I andT 90 is 50. Compared to T75-I sample,the particles in T90 sample are more grown and the particle size is bigger.Due to higher loading of TNT,more pores get occupied with TNT and the particles grow more and particle size is bigger that result in less porous microstructure as compared to T75-I.As compared to T75-III sample,the microstructure in T90 sample is less compact which is due to higher acetone/TMOS ratio.These observations suggest that by varying the process parameters like solvent to TMOS ratio and TNT content in the composite,the microstructure can be suitably controlled.These results are found to be consistent with SAXS studies and surface area measurements.

    3.4.SAXS measurements

    The SAXS prof i les displayed on log-log scale are shown in Fig.4.

    The structure of silica based xerogels has been investigated extensively in earlier studies [14].In the silica xerogel,the scattering at low-Q (Q < Q1)region occurs from larger,submicron size particles and the inter-particle voids.Whereas in the region Q2< Q < Q1,the scattered intensity arises due to surfaces of the smaller particles or pores within the aggregates. For particles with smooth surface,I(Q)in this (Porod)region varies as Q-β,with β being equal to 4.In the region beyond Q2,the intensity is contributed by micropores within the silica network.

    As shown in Fig.4,the SAXS prof i le of pure sample follows a linear behavior with a change of slope at a Q.Below this crossover point,I(Q)varies as Q-α,with a value of 1.1 for α. This suggests that the silica particles are in the form of mass fractal aggregates with fractal dimension of 1.1.From the crossover point,the average size (D)of the basic particles within the aggregates is found to be about 18.5 nm.In thehigh-Q region,the slope of the linear prof i le is steeper than 4.0,suggesting a fuzzy or diffuse boundary [15]between particles and pores.The micropore region (Q > Q2)is beyond the Q-range of measurements of this study.

    Fig.3.FESEM of TNT-SiO2composites.

    Fig.4.Small angle X-ray scattering of silica xerogel with TNT (T).Lines are a guide to the eyes.

    For silica xerogels with TNT,the SAXS prof i les are in the same shape as for pure sample but the mass fractal dimension has increased with the highest value of 2.26 for 90%TNT.Thus,the matrix became compact with the presence ofTNT.The size of the basic particles (pores)increased marginally to about 20 nm forT60 andT75-I samples.It is increased to 22.5 nm for T75-III sample and a steep rise to 30.4 nm for 90 wt%TNT sample.The typical size of the particles is concurrent in order of magnitude with SEM pictures.

    3.5.Surface area measurements

    The results of surface area and pore volume measurements for silica xerogel and typical TNT-SiO2composites are shown in Table 1.

    The pore volume and surface area measured for TNT-SiO2composite are less as compared to SiO2xerogel.The decrease in pore volume of TNT-SiO2composites as compared to SiO2xerogels indicates that pores of the gel have been occupied by TNT.For samples T75-I and T90 which were prepared with acetone/TMOS ratio of 50,the surface area has been found to be decreased from 189 to 74 m2/g with an increase in the content of TNT.The pore volume has been found to be decreased from 0.136 to 0.053 cm3/g,respectively.This is due to growth of larger size particles of TNT in the pores.In the T75-I sample,some of the pores may also be non-occupied which might have resulted in high pore volume and surface area.For T75-I and T75-III samples,the surface area has been found to be drastically decreased from 189 to 18 m2/g.The acetone/TMOS ratios for these samples were 50 and 20,respectively.The decrease in solvent/precursor ratio has resulted in a much compact network,leading to a decrease in porosity as revealed from the SEM pictures.This has led to a decrease in surface area and pore volume.The pore volume has been found to be decreased from 0.136 to 0.011 cm3/g forT75-I andT75-III samples,respectively.The results show that porosity in TNTSiO2composites can be suitably controlled by controlling the process parameters likeTNT content or solvent/precursor ratio. The observed trend in surface area and pore volume measurements for TNT-SiO2composites is consistent with the FESEM results.

    Table 1Preparative condition and textural properties of SiO2xerogel and TNT-SiO2composites.

    3.6.Impact sensitivity

    Fig.5.Impact sensitivity data for raw TNT and TNT-SiO2composites.

    The data for sensitivity to impact of nano-sized TNT processed by sol-gel method are shown in Fig.5.It has been observed that f i gure of insensitivity (FoI)decreases,that is,the sensitivity to impact of the TNT-SiO2composite material increases as compared to raw TNT.The particle size of TNT in the TNT-SiO2composites has been found to be less than 100 nm.The impact sensitivity results are not in agreement with the general belief that the sensitivity of explosives is reduced with a decrease in particle size.However,it has to be mentioned that the reported data in the literature are accounted for the explosive materials in pure form and for the particle size in the micrometer range.In the present work,the decrease in particle size up to nanometer scale might have enhanced the reactivity due to high specif i c surface area which dominates the initiation mechanism and results in higher sensitivity.The sensitivity to impact for the TNT-SiO2composites has also been found to be increased with a decrease in TNT content in the composite from 90 wt%to 60 wt%.Generally the impurities like grit or silica in the explosives lead to friction in localized area and therefore increase of temperature in surrounding area that causes initiation.However,in sol-gel processing,the silica is homogeneously distributed at nanometer scale,and therefore although silica as an impurity may contribute to an increase in sensitivity of the composite,its contribution is limited.In the composites with 75%TNT and 25%silica,although the silica content is the same,the impact sensitivity was found to be increased with an increase in the acetone/TMOS ratio from 20 to 50.It indicates that the impact sensitivity could be altered with change in process parameters and hence microstructure of the composites.Therefore,the increase in sensitivity of the composites might be due to an increase in the density of defects like pores/voids which may lead to adiabatic compression of interstitial gases and act at centers for initiation of chemical reaction.In samples with lesser TNT content,the number of non-occupied pores will be more,which leads to higher defect density,which has also been observed from fractal dimensions in SAXS studies.

    4.Conclusions

    The sol-gel method has been successfully used to prepare nano-crystalline TNT materials.The advantage of sol-gel method of high solid loading in the porous matrix is utilized to prepare theTNT-SiO2xerogels containing up to 90 wt%explosive material.The results on impact sensitivity measurement showed that the sensitivity of nano-sized explosives can be tailored precisely by controlling either the amount of explosive loading in the gel or the microstructure of the material by varying process parameters like precursor ratio.These studies could be useful to understand the role of pore density defects in the initiation and detonation phenomenon of nano-sized secondary explosives.

    Acknowledgments

    The authors acknowledge the help from Ratanesh Kumar,I. K.Singh,Rakesh Patel,Sonu Gavit and SandipVirnak ofAPD,BARC in the experimental work.

    [1]Howe P.Trends in shock initiation of heterogeneous explosives.In: Proceedings of 11th Symposium (Int.)on Detonation,Washington,DC,USA;1998.p.670-8.

    [2]Armstrong RW. Dual advantages of ultra f i ne crystal-sized energetic/reactive material formulations.Int J Energ Mater Chem Prop 2007;6:335-45.

    [3]Stepanov V,Anglade V,Balas H,Wendy A,Bezmelnitsyn AV,Krasnoperov LN.Production and sensitivity evaluation of nanocrystalline RDX-based explosive compositions.Propell Explos Pyrotech 2011;36:240-6.

    [4]Jie L,Wei J,Jiang-bao Z,Qing Y,Yu-jiao W,F(xiàn)eng-sheng L.Effect of drying on particle size and sensitivities of nano hexahydro-1,3,5-trinitro-1,3,5-triazine.Def Technol 2014;10(1):9-16.

    [5]Jie L,Wei J,Qing Y,Jian S,Ga-zi H,F(xiàn)eng-sheng L.Study of nano-nitramine explosives:preparation,sensitivity and application.Def Technol 2014;10(2):184-9.

    [6]Huang B,Cao M,Nie F,Huang H,Hu C.Construction and properties of structure and size-controlled micro/nano energetic materials.DefTechnol 2013;9:59-79.

    [7]Stepanov V,Krasnoperov LN,Elkina IB,Zhang X.Production of nanocrystalline RDX by rapid expansion of supercritical solutions. Propell Explos Pyrotech 2005;30(3):178-83.

    [8]Ingale SV,Sastry PU,Patra AK,Tewari R,Wagh PB,Gupta SC.Micro structural investigations onTNT and PETN incorporated silica xerogels.J Sol-Gel Sci Technol 2010;54:238-42.

    [9]Ingale SV,Sastry PU,Wagh PB,Tripathi AK,Tewari R,Jayakrishnan VB,et al.Preparation of nano-structured RDX in a silica xerogel matrix. Propell Explos Pyrotech 2013;38(4):515-19.

    [10]Ingale SV,Wagh PB,Tewari R,Gupta SC.Nanocrystalline trinitrotoluene(TNT)using sol-gel process.J Non-Cryst Solids 2010;356:2162-7.

    [11]Schmidt PW,Height R.Slit height corrections in small angle X-ray scattering.Acta Cryst 1960;13:480-3.

    [12]Gallagher HG,Sherwood JN.Polymorphism,twinning and morphology of crystals of 2,4,6-trinitrotoluene grown from solution.J Chem Soc Faraday Trans 1996;92(12):2107-21.

    [13]Trzcin′ski WA,Cudzi?o S,Dyjak S,Nita M.A comparison of the sensitivity and performance characteristics of melt-pour explosives with TNT and DNAN binder.Cent Eur J Energ Mater 2014;11(3): 443-55.

    [14]Fei H,Xiaodong H,Mingwei L,Sumei Z.SAXS investigations of the fractal character of additive silica xerogels.J Ceramic Proc Res 2008;9:389-92.

    [15]Schmidt PW,Anvir D,Levy D,Hohr A,Steiner M,R?ll A.Small-angle x-ray scattering from the surfaces of reversed-phase silicas:power-law scattering exponents of magnitudes greater than four.J Chem Phys 1991;94:1474-9.

    Received 16 April 2015;revised 17 August 2015;accepted 18 August 2015 Available online 15 September 2015

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+912225591808.

    E-mail address:svingale@barc.gov.in (S.V.INGALE).

    http://dx.doi.org/10.1016/j.dt.2015.08.004

    2214-9147/? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    看十八女毛片水多多多| 春色校园在线视频观看| 欧美日韩亚洲高清精品| 99re6热这里在线精品视频| 成人毛片60女人毛片免费| 免费av毛片视频| 啦啦啦中文免费视频观看日本| 狂野欧美激情性bbbbbb| 国产在线男女| 中文天堂在线官网| 男女边吃奶边做爰视频| 亚洲欧美一区二区三区国产| 午夜免费男女啪啪视频观看| 国产亚洲5aaaaa淫片| 成人特级av手机在线观看| 五月天丁香电影| 在线观看人妻少妇| av.在线天堂| 日韩不卡一区二区三区视频在线| 一区二区三区四区激情视频| 亚洲久久久久久中文字幕| 精品少妇黑人巨大在线播放| 午夜福利在线在线| 欧美日韩视频高清一区二区三区二| 最近的中文字幕免费完整| 欧美97在线视频| 夫妻性生交免费视频一级片| 我的女老师完整版在线观看| 春色校园在线视频观看| 精品视频人人做人人爽| 中文天堂在线官网| 亚洲av电影在线观看一区二区三区 | 伊人久久精品亚洲午夜| 欧美亚洲 丝袜 人妻 在线| 欧美另类一区| 人妻系列 视频| 成年女人在线观看亚洲视频 | 国产中年淑女户外野战色| 在线观看一区二区三区激情| 精品国产一区二区三区久久久樱花 | 小蜜桃在线观看免费完整版高清| 久久久午夜欧美精品| a级毛片免费高清观看在线播放| 国产精品久久久久久精品电影小说 | 国产又色又爽无遮挡免| 只有这里有精品99| 啦啦啦中文免费视频观看日本| 蜜桃亚洲精品一区二区三区| 少妇高潮的动态图| 日韩大片免费观看网站| 五月天丁香电影| 成人综合一区亚洲| 久久久久久九九精品二区国产| 国产黄a三级三级三级人| 国产片特级美女逼逼视频| 黄色欧美视频在线观看| 久久久亚洲精品成人影院| 久久久久久国产a免费观看| 国产成人aa在线观看| 日韩一区二区视频免费看| 身体一侧抽搐| 青春草亚洲视频在线观看| 99热6这里只有精品| 另类亚洲欧美激情| 亚洲熟女精品中文字幕| 一区二区三区免费毛片| 国产一区有黄有色的免费视频| 美女脱内裤让男人舔精品视频| 亚洲综合色惰| 男插女下体视频免费在线播放| 国产大屁股一区二区在线视频| av福利片在线观看| xxx大片免费视频| 99久国产av精品国产电影| 天堂网av新在线| 麻豆久久精品国产亚洲av| 国产精品人妻久久久影院| 亚洲四区av| 青春草视频在线免费观看| 亚洲av欧美aⅴ国产| 成人特级av手机在线观看| 少妇熟女欧美另类| 免费大片黄手机在线观看| 精品国产乱码久久久久久小说| 一二三四中文在线观看免费高清| 最近最新中文字幕大全电影3| 制服丝袜香蕉在线| 亚洲av电影在线观看一区二区三区 | 麻豆久久精品国产亚洲av| 一边亲一边摸免费视频| 少妇熟女欧美另类| 波野结衣二区三区在线| 啦啦啦在线观看免费高清www| 好男人在线观看高清免费视频| 成人欧美大片| 国产 一区精品| 亚洲色图综合在线观看| 99热这里只有是精品50| av播播在线观看一区| 一区二区三区四区激情视频| tube8黄色片| 身体一侧抽搐| 观看美女的网站| 国产91av在线免费观看| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 国产高清三级在线| 蜜臀久久99精品久久宅男| 在线观看美女被高潮喷水网站| 晚上一个人看的免费电影| 国产成人精品福利久久| 国产男人的电影天堂91| 亚洲精品第二区| 中文资源天堂在线| 亚洲伊人久久精品综合| 日韩 亚洲 欧美在线| 亚洲欧美成人精品一区二区| 亚洲美女视频黄频| 国产亚洲av嫩草精品影院| 亚洲三级黄色毛片| 亚洲熟女精品中文字幕| 亚洲va在线va天堂va国产| 日韩视频在线欧美| 国产 一区精品| 一区二区三区免费毛片| 18+在线观看网站| 国产精品无大码| 久久韩国三级中文字幕| 久久这里有精品视频免费| 2022亚洲国产成人精品| 国产成人a∨麻豆精品| 免费黄频网站在线观看国产| 一区二区三区精品91| 久久99热这里只频精品6学生| 国产爽快片一区二区三区| 夜夜看夜夜爽夜夜摸| 97在线视频观看| 国产69精品久久久久777片| 伦理电影大哥的女人| 成人国产av品久久久| 国产女主播在线喷水免费视频网站| 欧美国产精品一级二级三级 | 黄色视频在线播放观看不卡| 网址你懂的国产日韩在线| 大码成人一级视频| 一级av片app| .国产精品久久| 午夜激情久久久久久久| 午夜精品国产一区二区电影 | 国产成人免费无遮挡视频| av黄色大香蕉| 亚洲精品视频女| 亚洲,一卡二卡三卡| 极品少妇高潮喷水抽搐| 亚洲欧美精品专区久久| 禁无遮挡网站| 成人高潮视频无遮挡免费网站| 免费av毛片视频| 精品人妻熟女av久视频| 亚洲最大成人中文| 国产成人免费观看mmmm| 超碰97精品在线观看| 在线a可以看的网站| 啦啦啦在线观看免费高清www| 久久99热6这里只有精品| 亚洲av电影在线观看一区二区三区 | 亚洲精品乱码久久久久久按摩| 听说在线观看完整版免费高清| 成人亚洲精品av一区二区| 精品熟女少妇av免费看| 国产av国产精品国产| 乱码一卡2卡4卡精品| 国产爱豆传媒在线观看| 97热精品久久久久久| 久热这里只有精品99| 欧美日韩精品成人综合77777| 99久久精品国产国产毛片| 少妇的逼水好多| 黄片wwwwww| 亚洲欧美清纯卡通| 国产在线男女| 亚洲一级一片aⅴ在线观看| 51国产日韩欧美| 国产一区二区三区综合在线观看 | 久久久久网色| h日本视频在线播放| 中文精品一卡2卡3卡4更新| 建设人人有责人人尽责人人享有的 | 在线播放无遮挡| 亚洲怡红院男人天堂| 水蜜桃什么品种好| 国产av码专区亚洲av| a级毛片免费高清观看在线播放| 欧美极品一区二区三区四区| 日韩一本色道免费dvd| 久久6这里有精品| 一级爰片在线观看| 日韩不卡一区二区三区视频在线| 青春草国产在线视频| av福利片在线观看| 精品少妇久久久久久888优播| 亚洲人成网站高清观看| 少妇人妻 视频| 老司机影院成人| 一个人看视频在线观看www免费| 日日撸夜夜添| 晚上一个人看的免费电影| av在线蜜桃| 嫩草影院新地址| 在线观看一区二区三区激情| 亚洲国产av新网站| 婷婷色av中文字幕| 在线观看av片永久免费下载| 性色avwww在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲av福利一区| 国产精品蜜桃在线观看| 亚洲精品视频女| av国产久精品久网站免费入址| 久久久欧美国产精品| 国产成人免费观看mmmm| 免费看av在线观看网站| 久久热精品热| 美女cb高潮喷水在线观看| 中文资源天堂在线| 国产成人福利小说| av线在线观看网站| 日韩欧美精品v在线| 国内精品宾馆在线| 99久久九九国产精品国产免费| 色哟哟·www| 久久久久久久国产电影| 亚洲av国产av综合av卡| 日本欧美国产在线视频| 国产精品一区二区三区四区免费观看| 青春草亚洲视频在线观看| 在线观看人妻少妇| 亚洲美女视频黄频| 久热久热在线精品观看| 亚洲精品亚洲一区二区| 日韩免费高清中文字幕av| 亚洲性久久影院| 大码成人一级视频| 中文字幕人妻熟人妻熟丝袜美| 免费高清在线观看视频在线观看| 丝袜脚勾引网站| 久久久久久久久久久免费av| 搡老乐熟女国产| 在线观看人妻少妇| 久久99热这里只有精品18| 久久99热6这里只有精品| 欧美xxⅹ黑人| 亚洲综合精品二区| 一个人看的www免费观看视频| 亚洲精品国产成人久久av| videos熟女内射| 亚洲真实伦在线观看| 春色校园在线视频观看| 久久女婷五月综合色啪小说 | 一级毛片aaaaaa免费看小| 草草在线视频免费看| 少妇熟女欧美另类| 久久久亚洲精品成人影院| 久久久久九九精品影院| 人人妻人人澡人人爽人人夜夜| 听说在线观看完整版免费高清| 天堂网av新在线| 亚洲美女视频黄频| 久久久久久久国产电影| 成人黄色视频免费在线看| 国产精品99久久99久久久不卡 | 建设人人有责人人尽责人人享有的 | 一个人看的www免费观看视频| 亚洲av电影在线观看一区二区三区 | 成人国产麻豆网| 亚洲精品第二区| 国内精品美女久久久久久| 一个人观看的视频www高清免费观看| 亚洲精品一二三| 国产男人的电影天堂91| 国产一区有黄有色的免费视频| 在线观看一区二区三区| 欧美成人精品欧美一级黄| 天天躁夜夜躁狠狠久久av| 久久久久九九精品影院| 99视频精品全部免费 在线| 日本av手机在线免费观看| 赤兔流量卡办理| 亚洲精品色激情综合| 蜜桃久久精品国产亚洲av| av在线观看视频网站免费| 国产精品嫩草影院av在线观看| 五月开心婷婷网| 青青草视频在线视频观看| 午夜视频国产福利| 精品久久国产蜜桃| 国产淫语在线视频| 日韩av免费高清视频| 老女人水多毛片| 欧美日韩精品成人综合77777| 少妇熟女欧美另类| 日日啪夜夜撸| 99热6这里只有精品| 成人毛片60女人毛片免费| 18禁在线无遮挡免费观看视频| 精品少妇黑人巨大在线播放| 黄色怎么调成土黄色| 人人妻人人看人人澡| 一边亲一边摸免费视频| 成年女人在线观看亚洲视频 | 日日摸夜夜添夜夜添av毛片| 嫩草影院精品99| 日韩电影二区| 高清av免费在线| 国产一区有黄有色的免费视频| 日韩制服骚丝袜av| 国产乱人偷精品视频| 日韩中字成人| 香蕉精品网在线| 网址你懂的国产日韩在线| 午夜激情久久久久久久| 午夜老司机福利剧场| 免费观看av网站的网址| 精品一区二区免费观看| 毛片女人毛片| 久久久a久久爽久久v久久| 精品国产露脸久久av麻豆| 少妇丰满av| 成人无遮挡网站| av在线老鸭窝| 2022亚洲国产成人精品| 久久久久性生活片| 婷婷色麻豆天堂久久| av女优亚洲男人天堂| 亚洲成人av在线免费| 毛片一级片免费看久久久久| 黄色日韩在线| 欧美成人一区二区免费高清观看| 欧美日韩综合久久久久久| 六月丁香七月| 亚洲欧美日韩东京热| 中国国产av一级| av专区在线播放| 国产av不卡久久| 天堂网av新在线| 各种免费的搞黄视频| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频 | 久久久国产一区二区| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 国产日韩欧美亚洲二区| 久久久久久久久大av| 别揉我奶头 嗯啊视频| 男女下面进入的视频免费午夜| 欧美 日韩 精品 国产| 亚洲自拍偷在线| 干丝袜人妻中文字幕| 日产精品乱码卡一卡2卡三| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 秋霞在线观看毛片| av播播在线观看一区| 欧美丝袜亚洲另类| 深夜a级毛片| 韩国高清视频一区二区三区| 深夜a级毛片| 成人二区视频| 又大又黄又爽视频免费| 又爽又黄a免费视频| 国产成人免费观看mmmm| 亚洲在线观看片| xxx大片免费视频| 国产色婷婷99| 丰满乱子伦码专区| 国产伦在线观看视频一区| 成人漫画全彩无遮挡| 国产成人一区二区在线| av国产精品久久久久影院| 久久久久国产网址| 色播亚洲综合网| 国产黄片美女视频| 最近手机中文字幕大全| 国产免费福利视频在线观看| 国产片特级美女逼逼视频| 男的添女的下面高潮视频| 水蜜桃什么品种好| 国产黄频视频在线观看| 国产一级毛片在线| 精品国产乱码久久久久久小说| 精品99又大又爽又粗少妇毛片| 成人国产麻豆网| 国产在线一区二区三区精| 久久久久久久久大av| 老女人水多毛片| 亚洲精品色激情综合| 大又大粗又爽又黄少妇毛片口| 国产国拍精品亚洲av在线观看| 国产伦精品一区二区三区四那| 男女国产视频网站| 日韩国内少妇激情av| 国产精品女同一区二区软件| 国产精品一区二区三区四区免费观看| 日韩欧美精品免费久久| 永久网站在线| 午夜激情福利司机影院| 亚洲精品日韩av片在线观看| 亚洲图色成人| 自拍欧美九色日韩亚洲蝌蚪91 | 国产综合懂色| 国产男女内射视频| 亚洲无线观看免费| 女人十人毛片免费观看3o分钟| 少妇高潮的动态图| 男插女下体视频免费在线播放| 我的老师免费观看完整版| 亚洲欧美一区二区三区国产| 深夜a级毛片| 亚洲久久久久久中文字幕| 亚洲综合色惰| 免费人成在线观看视频色| 欧美另类一区| 伊人久久精品亚洲午夜| 97热精品久久久久久| 欧美xxⅹ黑人| 亚洲精品第二区| 日韩欧美精品v在线| 国产91av在线免费观看| 黑人高潮一二区| 美女被艹到高潮喷水动态| 我要看日韩黄色一级片| 伦理电影大哥的女人| 精品久久久精品久久久| 91久久精品电影网| 亚洲成人一二三区av| 亚洲欧洲国产日韩| 欧美一级a爱片免费观看看| 久久久久久国产a免费观看| 亚洲性久久影院| 69av精品久久久久久| av天堂中文字幕网| 老司机影院成人| 午夜福利在线在线| 国产爽快片一区二区三区| 我的女老师完整版在线观看| 亚洲av中文字字幕乱码综合| 免费观看性生交大片5| 久久久久久久久久人人人人人人| 一本一本综合久久| 亚洲精品,欧美精品| 精品99又大又爽又粗少妇毛片| 一级毛片 在线播放| 成人一区二区视频在线观看| 偷拍熟女少妇极品色| 久久鲁丝午夜福利片| 亚洲婷婷狠狠爱综合网| 纵有疾风起免费观看全集完整版| 建设人人有责人人尽责人人享有的 | 日韩av不卡免费在线播放| 女人被狂操c到高潮| 99热国产这里只有精品6| 免费黄频网站在线观看国产| 国产精品爽爽va在线观看网站| 欧美+日韩+精品| videossex国产| 永久免费av网站大全| 最近2019中文字幕mv第一页| 国产黄频视频在线观看| 伊人久久国产一区二区| 国产男女内射视频| 天天一区二区日本电影三级| 美女cb高潮喷水在线观看| 男女边摸边吃奶| 极品教师在线视频| 亚洲自偷自拍三级| 亚洲性久久影院| 国产免费一区二区三区四区乱码| 交换朋友夫妻互换小说| 国产精品久久久久久久久免| 高清日韩中文字幕在线| 国产午夜精品一二区理论片| 亚洲,一卡二卡三卡| 成年女人看的毛片在线观看| 韩国高清视频一区二区三区| 亚洲国产精品专区欧美| 日韩欧美一区视频在线观看 | 激情 狠狠 欧美| 人妻制服诱惑在线中文字幕| 亚洲最大成人手机在线| 日产精品乱码卡一卡2卡三| 亚洲美女搞黄在线观看| 大码成人一级视频| 99re6热这里在线精品视频| 性色avwww在线观看| 亚洲精品亚洲一区二区| 亚洲美女搞黄在线观看| 夫妻午夜视频| 岛国毛片在线播放| 五月天丁香电影| 91aial.com中文字幕在线观看| 尤物成人国产欧美一区二区三区| 欧美国产精品一级二级三级 | 国产毛片在线视频| 丰满少妇做爰视频| 男女啪啪激烈高潮av片| 高清毛片免费看| 国产精品三级大全| 五月开心婷婷网| av女优亚洲男人天堂| av免费观看日本| 国产精品麻豆人妻色哟哟久久| 亚洲av电影在线观看一区二区三区 | 欧美性感艳星| 熟女电影av网| 美女高潮的动态| 日韩大片免费观看网站| 色5月婷婷丁香| 国产在视频线精品| 黄片无遮挡物在线观看| 欧美成人精品欧美一级黄| 亚洲自偷自拍三级| 不卡视频在线观看欧美| 男人和女人高潮做爰伦理| 国产真实伦视频高清在线观看| 亚洲不卡免费看| 国产精品三级大全| 一个人看的www免费观看视频| 乱系列少妇在线播放| 亚洲精品乱码久久久久久按摩| 麻豆乱淫一区二区| 黄色配什么色好看| 亚洲精品,欧美精品| 女人被狂操c到高潮| 国产午夜精品久久久久久一区二区三区| 91精品国产九色| 亚洲怡红院男人天堂| 久久久久久久亚洲中文字幕| 美女国产视频在线观看| 成人综合一区亚洲| 综合色av麻豆| 十八禁网站网址无遮挡 | 国产免费福利视频在线观看| 久久久久国产精品人妻一区二区| 欧美精品一区二区大全| 久久久久精品性色| 亚洲欧美精品专区久久| 久久久久久久国产电影| 我的女老师完整版在线观看| 午夜免费观看性视频| 亚洲最大成人av| 欧美+日韩+精品| 欧美成人a在线观看| 免费观看在线日韩| 国产成人aa在线观看| 亚洲精品日韩在线中文字幕| 国产精品一区www在线观看| 天天躁夜夜躁狠狠久久av| 狂野欧美白嫩少妇大欣赏| 国产午夜精品久久久久久一区二区三区| 国产精品麻豆人妻色哟哟久久| 日本av手机在线免费观看| 国产女主播在线喷水免费视频网站| 久久久久久久国产电影| 亚洲精品国产成人久久av| 最近中文字幕2019免费版| 性色av一级| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久欧美国产精品| 国语对白做爰xxxⅹ性视频网站| 国产精品偷伦视频观看了| 丝袜喷水一区| 久久97久久精品| 久久热精品热| 新久久久久国产一级毛片| 在线观看美女被高潮喷水网站| av在线蜜桃| 丝瓜视频免费看黄片| 青春草亚洲视频在线观看| 午夜福利在线观看免费完整高清在| 亚洲精品456在线播放app| 亚洲内射少妇av| 国产男女超爽视频在线观看| 99热这里只有是精品在线观看| 亚洲自偷自拍三级| 国产成人精品福利久久| 韩国av在线不卡| 五月玫瑰六月丁香| 国产黄片美女视频| 性色av一级| 国产男女内射视频| 色网站视频免费| 日本黄色片子视频| 一级片'在线观看视频| 波野结衣二区三区在线| 欧美3d第一页| 亚洲欧洲日产国产| 国产av码专区亚洲av| 国产v大片淫在线免费观看| 欧美国产精品一级二级三级 | 成人亚洲精品一区在线观看 | 国产亚洲av片在线观看秒播厂| 嫩草影院新地址| 亚洲精品视频女| 一级爰片在线观看| av卡一久久| 亚洲精品,欧美精品| 日韩电影二区| 一级毛片我不卡| 黄片wwwwww| 久久亚洲国产成人精品v| 男人爽女人下面视频在线观看| www.色视频.com| 日韩,欧美,国产一区二区三区| 在线免费观看不下载黄p国产| 亚洲自偷自拍三级|