• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of three-loop missile autopilot gainunder crossover frequency constraint

    2016-04-18 10:45:22ABDELATIFLongjunQIANYumingBO
    Defence Technology 2016年1期

    M.A.ABD-ELATIF*,Long-jun QIAN,Yu-ming BO

    School of Automation,University of Science and Technology,Nanjing 210094,China

    Optimization of three-loop missile autopilot gainunder crossover frequency constraint

    M.A.ABD-ELATIF*,Long-jun QIAN,Yu-ming BO

    School of Automation,University of Science and Technology,Nanjing 210094,China

    Received 25 June 2015;revised 18 August 2015;accepted 26 August 2015 Available online 21 September 2015

    The open-loop crossover frequency is pointed as an important parameter for practical autopilot design.Since different gain designs may achieve the same open-loop crossover frequency,it should be neither considered as a performance objective of the optimal autopilot design-schemes nor neglected.Besides,the main assignment of the autopilot is to drive the missile to track the acceleration commands,so the autopilot gain design should be evaluated directly according to the resultant tracking performance.For this purpose,an optimal design methodology of the three-loop missile autopilot is introduced based on constraint optimization technique,where the tracking performance is established analytically as the design objective and the open-loop crossover frequency is formed as inequality constraint function,both are manipulated in terms of stable characteristic parameters of the autopilot closed-loop.The proposed technique is implemented with the assistance of a numerical optimization algorithm which automatically adjusts the design parameters.Finally,numerical simulation results are provided to demonstrate the effectiveness and feasibility of the proposed approach compared with that in some references.

    Three-loop missile autopilot;Optimal gain design;Crossover frequency constraint;Performance optimization

    1.Introduction

    The main mission of missile autopilot is to track the guidance commands with a guaranteed level of system performance.In order to successfully achieve this mission,the performance characteristics of the autopilot must have a fast response to intercept a maneuvering target and reasonable robustness for system stability under the effect of un-modeled dynamics and noise.Basically,the concept of open-loop transfer function is the cornerstone of feedback control system analysis,where the relative stability and the robustness can be determined from analysis of the stability margins.However,Ref. [1]shows that ignoring the value of open-loop crossover frequency in the design procedure,even with good phase and gain margins,will cause design instability for relatively innocuous plant perturbations.In fact,this design may cause too high crossover frequency,which indicates that the system may go unstable when it is built and tested.Moreover,Ref. [2]concludes that the concept of open-loop gain and phase margins isnot as useful realistically at high frequency design due to the increase of model non-linearity,which leads to considerable difference between the predicted gain and phase values and their real values at high frequency.A common approach to address this problem is by modifying the crossover frequency value to make sure that the open-loop gain is below some desired level at high frequencies.This value is set based on the assumptions about the high-frequency modeling errors,sometimes based on test data,and often comes from hard-learned experience.A classical “rule of thumb”that addressed this value is introduced in Refs. [1,3].As a result,the crossover frequency is an important parameter in gain design process to achieve good trade-off between fastness and robustness.Nevertheless,in multi-loop autopilot design different gain combinations could meet the same open-loop crossover frequency with different f l ight performances.

    Consequently,different methods and strategies have been implemented by researchers in order to introduce the open-loop frequency requirements into the autopilot design procedure. From optimal design prospective,some methods are considered as weight adjusted LQR technique for the objective of minimum error between desired and actual open loop crossover frequency [4-7].Although it is possible to get the samecrossover frequency for different gain designs,these techniques take the prescribed crossover frequency as the design goal;this scheme will not essentially guarantee an ideal autopilot. Besides,it is based on initial guessing of weights which might need to be carried out and repeated many times to adjust the required initial performance.In a different way,the multiobjective optimization technique is introduced in Ref. [8],where both time and frequency performance design aspects are combined into one objective function through multi-weight technique.Even so,this method optimizes the autopilot to a certain specif i ed performance level with the challenge of objective's weight adjustment.Moreover,Ref. [9]introduces a dynamic inversion technique,which uses a constraint optimization algorithm to get the design parameters for the autopilot system.However,this method is considered for a specif i ed controller structure with some assumptions and totally numerical procedure.In addition,the system stability is conf i rmed by the inequality constraints on gain and phase margins and minimum controller cycle,which may perform a hard optimization problem with some performance degradation.

    Since the crossover dynamic itself cannot determine the total performance of the autopilot,so it is necessary to f i nd more reasonable objective function for optimal autopilot gain design so that an appropriate optimization technique can consider directly the open-loop crossover frequency constraint and avoid the burden of design weight adjustment.In this paper,an optimal autopilot gain design is introduced based on constraint optimization technique,where the tracking performance is set as design objective and the open-loop crossover frequency as design constraint.First,an analytical formula between the autopilot gain and the stable characteristic parameters of the autopilot closed loop is systematically derived.Then,the exact open-loop crossover frequency constraint is established in a form of analytical inequality.Moreover,the performance index ISE of the autopilot tracking error is analytically formed as the design objective [10-13].Both the objective and the constraint are manipulated in terms of the characteristic parameters. Finally,a constrained optimization problem is constructed and the optimal gain design is achieved for the corresponding optimum design parameters with the assistance of an optimization algorithm.This work is extended to numerical autopilot design of a typical missile system using the proposed technique,and the results are compared with the design strategy of Ref.[14].

    2.Missile modeling and analytical gain formula

    The classic three-loop missile autopilot [15,16],namely Raytheon autopilot,depicted in Fig.1,is the topology considered throughout this paper.Mathematically,the airframe transfer function input is the f i n def l ection,and the output is the achieved missile acceleration.The missile airframe dynamics is determined by six-dimensional equations of forces and moments acting on the missile body.The longitudinal missile dynamics,using the small disturbance linearization assumptions,are given as

    where ? is the body pitch angle,θ is the trajectory angle,α is the angle of attack,V is the missile velocity,δ is the fi n de fl ection,ayis the missile acceleration,and Mα,Mδ, Mq,Zαand Zδare the aerodynamics coef fi cients [3].The missile airframe transfer functions can be written as

    where

    Fig.1.Raytheon three-loop autopilot.

    The Raytheon autopilot is composed of rate loop,syntheticstability loop and accelerometer feedback loop with feedbackgains Kg,Kωand KAfor each loop respectively.These gains must be designed carefully to satisfy the desired performance. The gain KDCis computed from the above three gains so that the achieved acceleration will match the commanded acceleration.Regarding Fig.1,the closed-loop transfer function of the three-loop autopilot is computed from the inner to the outer loop through the following steps.

    Rate loop transfer function is written as

    The transfer function of stable-synthetic loop with rate loop is given as

    Then,the transfer function of the open forward loop is written as

    where

    Finally,the close-loop transfer function is given as

    For a stable closed-loop,the characteristic polynomial of the three-loop autopilot can be described by three positive parameters τ,ζ and ω with a real and a pair of conjugate complex stable poles [3],where the desired close-loop transfer function of the autopilot is written in the following form:

    The positive selection of the three parameters guarantees the stability of the autopilot closed-loop.Moreover,the autopilot performance is totally described by these design parameters.In the following,an analytical formula between the autopilot gain and the design parameters is derived by equating both transfer functions (4)and (5)to obtain

    and

    where the inverse matrix is well def i ned for applicable missile parameters with the assumption that T1? Tαand T2? Tα. Furthermore,regarding Eq.(3),the autopilot gains KA,Kωand Kgcan be calculated with analytical functions

    in terms of design parameters τ,ζ and ω.Furthermore,KDCis computed from the above three gains as

    Based on Eqs.(5)and (7),the autopilot design is handled by the parameters τ,ζ and ω to achieve the desired performance requirements.For optimal gain design,these parameters are tuned to the optimum of certain cost function.The tuning technique should be carried out under the system limitations,so the crossover frequency constraint will be highlighted in the next section.

    3.Crossover frequency constraint function

    For robust and adequate control properties,frequency domain speci fi cations are speci fi ed using the crossover frequency and stability margins of the open-loop system.The crossover frequency must be chosen to be high enough to ensure a wide autopilot bandwidth but low enough to prevent stability problems due to actuator,rate gyro and other un-modeled dynamics.The limit of crossover frequency can be determined by system stability requirements and fi n actuator performance.According to the classical “rule of thumb”,the crossover frequency should be less than one-third of the actuator bandwidth ωACT[1,3].The open-loop transfer function of the three-loop autopilot with loop broken right before the fi n actuator is expressed as

    The open loop magnitude ratio is written as

    For practical autopilot,the crossover frequency is beyond the airframe fundamental dynamic frequency,i.e.ωAF<ωACT. Moreover,the magnitude trajectory of the open-loop transfer functionGop(s) will cross the 0 dB line only once.At the crossover frequency,the magnitude ratio isequal to one,i.e.Therefore crossover frequency constraint should satisfy the following inequality:

    where ωCRdis the prescribed limitation of ωCR,that is,for any gain combination K1,K2and K3satisfying Eq.(10),then the corresponding ωCRwill beωCR≤ ωCRd<13ωACT.Referring to Eqs.(6)and (10),the crossover frequency constraint function is equivalently expressed in terms of τ,ζ,ω and ωCRdas

    where

    4.Optimal autopilot gain design

    The main objective of the autopilot system is to force the missile to follow the steering commands developed by the guidance system.According to Eqs.(5),(6)and (9),the positive parameters τ,ζ and ω are tuned to minimize the integral error criteria of the input-output of the autopilot closed-loop transfer function:

    Integral of various functions of error between the reference input and the controlled plant output is a powerful quantitative measurementofthesystemperformance.Thereareseveralkinds of integral error criteria to describe the system performance [8]. Among them,the integral of the square of the error (ISE)

    is chosen as the command tracking performance index of the autopilot with the consideration of obtaining its analytical expression.Referring to Eq.(12),with partial fraction expansion,the unit step response is expressed as

    where

    By inverse Laplace transform,the unit step output response in the time-domain is given as

    and the error for unity command tracking is expressed as

    Therefore,the analytical objective function of ISE performance index can be written as

    The value of the above ISE analytical formula is always a real positive number due to complex conjugated relation in Eq.(14).Then optimal autopilot gain design is stated in the form of constrained optimization problem as

    This optimization problem is the core of the introduced optimal technique,where the objective functionIJ

    SE(τ, ζ, ω)isthe performance evaluation scale and the constraint g(τ,ζ,ω)is the performance limitation for practical design.The bounds of design parameters are set to positive values to ensure the system stability for the whole space of the cost function.Since the crossover frequency cannot satisfy the total performance requirements,it is needed to set a lower limit for the closed loop damping parameter ζmin> 0,usually it is about 0.7.Referring to Table 3,this limit shall guarantee a suf fi cient system damping and phase margin.Particularly,the optimization problem (Eq.15)is a nonlinear constrained multi-variable optimization problem.As expected,the function fmincon of the MATLAB OptimizationToolbox can solve such kind of smooth objective optimization problem well effectively with feasible initial design parameters.Moreover,it converges to the same minimum point even starting from different initial guesses.In this line of thought,the optimal autopilot gains KA,Kωand Kgare easily calculated by substituting the optimum parameters τ,ζ and ω into Eqs.(7)and (8)without the need for design weight adjustment.

    Table 1Typical missile aerodynamic data.

    5.Numerical analysis

    In this section,numerical analysis is carried out to show the effectiveness of the proposed optimal technique for autopilot gain design.Data of a typical missile system [14],listed in Table 1,are used for this purpose.Moreover,the actuator is considered as a second-order dynamic system with naturalfrequency ωACT=220rad/s and damping factor ζACT=0. 65.Let ωCRd=50rad/s be used as the upper limitation to the open-loop crossoverfrequency, which guarantees the open-loop system to have about 30°of the phase margin after considering the phase lags caused by autopilot's hardware systems [14].

    In the following,the numerical analysis is introduced through two steps.In the fi rst step,the proposed technique is applied to introduce some analysis for the considered optimization problem,and the nature of its cost function alsoemphasizes the achievement of required crossover frequency for practical optimal design of autopilot system.Moreover,the lower boundζmin of damping factor is examined for proper setting.In the second step,the introduced technique is compared to another design strategy with the same crossover frequency requirement.

    Table 2Optimal design performance with and without constraint.

    First,the objective function (Eq.14)of the optimization problem (Eq.15)is the performance evaluation scale and it could be described as three-dimensional search space def i ned by the design parameters τ,ζ and ω.This space is formed by multi-surfaces for different values of ζ.Specif i cally,each particular point in this space corresponds to particular autopilot gain combination with particular response based on the analytical equation (7).Fig.2(a)exhibits the smooth objective space for the specif i ed region of the three design parameters without applying the crossover frequency constraint.The objective space after applying the crossover frequency constraint can be observed in Fig.2(b),where the unf i tted portion is removed.In both cases the optimization technique easily converges to the minimum point.The optimal design of both cases,with and without the crossover frequency constraint,is introduced in Table 2.Clearly,the constraint design achieves the open-loop crossover frequency within the constraint limit,while the unconstrained autopilot design derives very high open-loop crossover frequency which is compatible with the conclusion in Ref. [1].Furthermore,as listed in Table 3,for the constraint case,the smallest value of objective ISE mostly belongs to the surface of smaller value of ζ.As a result,the optimum performances express degradation in phase margin and overshootvalue even with good tracking performance.In order to achieve suf fi cient system damping and phase margin,a prescribed ζmin> 0is set as the lower bound of damping factor ζ.The results show that the bound ζmin=0. 7achieves a good compromise between system response and robustness with suf ficient phase margin,appropriate overshoot and settling time.

    Fig.2.ISE objective search space of certain design parameters period.(a)Objective function space without ωCRconstraint.(b)Objective function space after ωCRconstraint.

    Table 3Constraint optimal design performance for different ζminbound.

    Fig.3.Performance comparison with different strategies.(a)Acceleration response for 5g input command.(b)The f i n def l ection response for 5g input command.

    Second,the proposed technique is compared to the design strategy of Ref. [14]for the three-loop autopilot design.This strategy is keen on adjustment of the design parameters for single objective of minimizingSpeci fi cally,this strategy is pole adjustment technique where the pole position is described by τ,ζ and ω.Both τ and ζ are prescribed,while ω is tuned to minimize the crossover frequency objective with unclear relation between ω andωCR.Likewise,the strategies in Refs. [4-7]are LQR approach with weight adjustment procedure for minimizing the same objective.On the other hand,the proposed approach freely optimizes the whole three parameters for minimum tracking objective that satis fi es the crossover frequency constraint.

    To illustrate,the tracking performances of acceleration command 5g are displayed in Fig.3(a),and the numerical comparison results are stated in Table 4.The simulation results show that the proposed optimal design method derives much better tracking performance than that in Ref. [14],even if the open-loop crossover frequencies and phase margins in both cases are almost the same.Moreover,the related f i n def l ections are demonstrated in Fig.3(b),where the exhibited elevator def l ections reach the same steady value since it is totally determined by the aerodynamic parameters and the f l ight velocity ofthe missile.Besides,the slight larger elevator def l ection and def l ection rate introduced by the proposed technique during transient time serves as a payment for the faster response.Since the role of the autopilot system is to drive the missile to track the acceleration commands,so its tracking performance should be the main point to evaluate the design quality within the applicability dynamic constraints.

    Table 4Design performance comparison.

    6.Conclusion

    Optimal design technique is proposed for the three-loop missile autopilot.The command tracking performance is established as the design objective using the analytical form of the integral square of the autopilot closed-loop tracking error. Moreover,the design practicality and robustness are achieved by an inequality constraint on the system open-loop crossoverfrequency.Then a constrained optimization problem is constructed in terms of stable characteristic parameters of the autopilot closed-loop.The optimum design parameters are automatically achieved with the assistance of a numerical optimization algorithm.Numerical simulations show that the proposed method can provide a better tracking performance with the required robustness level.

    [1]Nesline FW,Zarchan P.Why modern controllers can go unstable in practice.J Guid Control Dyn 1984;7(4):495-500.

    [2]Jackson PB.Overview of missile f l ight control systems.Johns Hopkins APL Tech Dig 2010;29(1):9-24.

    [3]Zarchan P.Tactical and strategic missile guidance.Reston,VA:American Institute of Aeronautics and Astronautics;2002.p.483-526.

    [4]De-fu L,Jun-fang F,Zaikang Q,Yu M.Analysis and improvement of missile three-loop autopilots.J Syst Eng Electron 2009;20(4):844-51.

    [5]Hui W,Defu L,Jiaxin W,Tao S.An analytical design method for the missile two-loop acceleration autopilot.In:Tianyuan X,Lin Z,Shiwei,M,editors.System simulation and scientif i c computing (ICSC).Heidelberg: Springer;2012.p.157-65.

    [6]Fan J,Su Z,Li Q,Dong S.Design and control limitation analysis of two-loop autopilot.In:2011 Chinese control and decision conference(CCDC).Mianyang,China:IEEE;2011.p.3814-18.

    [7]Lidan X,Kenan Z,Wanchun C,Xingliang Y.Optimal control and output feedback considerations for missile with blended aero-f i n and lateral impulsive thrust.Chin J Aeronaut 2010;23(4):401-8.

    [8]Sreenuch T,Tsourdos A,Hughes E,White B.Lateral acceleration control design of a non-linear homing missile using multi-objective evolution strategies.In:American Automatic Control Council,editor.Proceedings of the 2004 American control conference,vol.4.Boston,MA: ETATS-UNIS;2004.p.3628-33.

    [9]Byoung-Mun M,Daekyu S,Min-Jea A,Byoung-Soo TK.Missile autopilot design via output redef i nition and gain optimization technique. In:SICE 2007 annual conference.Takamatsu,Japan:IEEE;2007.p. 2615-19.

    [10]Duarte-Mermoud MA,Prieto RA.Performance index for quality response of dynamical systems.ISA Trans 2004;43(1):133-51.

    [11]Kumar C,Jebakumar JS,Mishra B.Controller selection and sensitivity check on thebasisofperformanceindex calculation.IJEEDC 2014;2(1):91-3.

    [12]Patra J,Sarathi P,Samal S.Analysis and comparison of different performance index factor for conventional PID and GA plus PID controller.IJETCAS 2013;4(3):242-50.

    [13]Hussain KM,Rajendran RA,Kumar MS.Comparison of tuning methods of PID controllers for FOPTD system.IJIREEICE 2014;2(3): 1177-80.

    [14]Qiu-Qiu W,Qun-Li X,Zai-kang Q.Pole placement design with open-loop crossover frequency constraint for three-loop autopilot.Syst Eng Elect 2009;2:420-3 [in Chinese].

    [15]Mracek CP,Ridgely DB.Missile longitudinal autopilots:comparison of multiple three loop topologies.In:AIAA guidance,navigation,and control conference and exhibit,San Francisco;2005.p.917-28.

    [16]Jun-Fang F,Bao-Cai S,Zhong S,Si-Yu D.A novel analysis for tactical missile autopilot topologies.In:31st Chinese control conference (CCC). Hefei,China:IEEE;2012.p.2316-20.

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:08615905193644.

    E-mail address:Mdyosf2010@yahoo.com (M.A.ABD-ELATIF).

    http://dx.doi.org/10.1016/j.dt.2015.08.006

    2214-9147/? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2015 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    人人妻人人澡人人看| 欧美日韩黄片免| 中文字幕制服av| 波多野结衣av一区二区av| 99re6热这里在线精品视频| 成年美女黄网站色视频大全免费| 国产成人av教育| 国产日韩一区二区三区精品不卡| 一本大道久久a久久精品| 每晚都被弄得嗷嗷叫到高潮| 99re6热这里在线精品视频| 亚洲国产欧美一区二区综合| 亚洲欧美成人综合另类久久久| 青春草亚洲视频在线观看| 亚洲 欧美一区二区三区| 欧美人与性动交α欧美软件| 国产日韩欧美亚洲二区| 亚洲成色77777| 欧美日韩成人在线一区二区| 午夜激情久久久久久久| 我要看黄色一级片免费的| 999久久久国产精品视频| 捣出白浆h1v1| 国产极品粉嫩免费观看在线| 美女福利国产在线| 亚洲伊人色综图| 午夜福利在线免费观看网站| 日本wwww免费看| 一区二区三区四区激情视频| 天天躁夜夜躁狠狠躁躁| 亚洲av美国av| 久9热在线精品视频| 夫妻午夜视频| 亚洲午夜精品一区,二区,三区| 免费少妇av软件| 国产熟女欧美一区二区| 婷婷丁香在线五月| 老司机在亚洲福利影院| 天天躁夜夜躁狠狠躁躁| 叶爱在线成人免费视频播放| 免费不卡黄色视频| 又黄又粗又硬又大视频| 成年动漫av网址| 51午夜福利影视在线观看| 在线av久久热| 国产成人a∨麻豆精品| 一本综合久久免费| 日韩视频在线欧美| 麻豆av在线久日| 国产激情久久老熟女| 五月天丁香电影| 欧美在线黄色| 男女免费视频国产| 中文精品一卡2卡3卡4更新| 咕卡用的链子| 涩涩av久久男人的天堂| 在线看a的网站| 国产一区亚洲一区在线观看| 老司机在亚洲福利影院| 男女床上黄色一级片免费看| 成人手机av| 精品第一国产精品| 亚洲国产成人一精品久久久| 波野结衣二区三区在线| 精品欧美一区二区三区在线| 一级黄色大片毛片| 欧美老熟妇乱子伦牲交| 日本一区二区免费在线视频| 国精品久久久久久国模美| 国产一级毛片在线| 色94色欧美一区二区| 久久精品久久久久久噜噜老黄| 日日夜夜操网爽| 91字幕亚洲| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9 | 国产精品一区二区精品视频观看| 亚洲男人天堂网一区| 国产黄频视频在线观看| 男男h啪啪无遮挡| 91字幕亚洲| 黑丝袜美女国产一区| 日韩制服骚丝袜av| 又黄又粗又硬又大视频| 国产精品国产av在线观看| 国产黄色免费在线视频| 两个人看的免费小视频| 老汉色∧v一级毛片| 国产在线视频一区二区| 色婷婷av一区二区三区视频| 女性被躁到高潮视频| av欧美777| 精品福利永久在线观看| √禁漫天堂资源中文www| 久久国产精品影院| 亚洲国产精品999| 成年人黄色毛片网站| 亚洲欧美日韩高清在线视频 | 一二三四在线观看免费中文在| 一区二区日韩欧美中文字幕| 欧美成狂野欧美在线观看| 啦啦啦在线免费观看视频4| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 极品人妻少妇av视频| 亚洲自偷自拍图片 自拍| 亚洲国产看品久久| 国产色视频综合| 国产成人av激情在线播放| 中文字幕亚洲精品专区| 色网站视频免费| 国产男人的电影天堂91| 欧美精品亚洲一区二区| 欧美人与善性xxx| 日本午夜av视频| 好男人视频免费观看在线| av线在线观看网站| 天天躁夜夜躁狠狠久久av| 在线观看国产h片| 精品国产超薄肉色丝袜足j| 捣出白浆h1v1| xxx大片免费视频| 水蜜桃什么品种好| 国产在线免费精品| 国产男人的电影天堂91| 欧美亚洲日本最大视频资源| 欧美日韩亚洲综合一区二区三区_| 精品久久蜜臀av无| 在线观看www视频免费| 美女高潮到喷水免费观看| 成年免费大片在线观看| 麻豆成人av在线观看| 久久久久久久久久黄片| 老司机午夜十八禁免费视频| 免费无遮挡裸体视频| 国产精品免费一区二区三区在线| x7x7x7水蜜桃| 国产精品一区二区精品视频观看| videosex国产| 亚洲avbb在线观看| 亚洲三区欧美一区| 久久中文字幕人妻熟女| 最新在线观看一区二区三区| 一边摸一边做爽爽视频免费| 亚洲九九香蕉| 午夜久久久在线观看| 国产视频一区二区在线看| 亚洲国产欧洲综合997久久, | 久久亚洲精品不卡| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 美女免费视频网站| 18禁裸乳无遮挡免费网站照片 | 香蕉av资源在线| 国产精华一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 精品国产美女av久久久久小说| 99精品久久久久人妻精品| 成人永久免费在线观看视频| 午夜免费观看网址| 女警被强在线播放| 白带黄色成豆腐渣| 久久久国产精品麻豆| 可以免费在线观看a视频的电影网站| 一级a爱视频在线免费观看| 精品国产美女av久久久久小说| 欧美日韩福利视频一区二区| 一级a爱视频在线免费观看| АⅤ资源中文在线天堂| 可以免费在线观看a视频的电影网站| 亚洲人成网站在线播放欧美日韩| 黑丝袜美女国产一区| 欧洲精品卡2卡3卡4卡5卡区| 999精品在线视频| 精品国产乱码久久久久久男人| www.熟女人妻精品国产| 久久精品人妻少妇| 日韩大码丰满熟妇| 亚洲午夜理论影院| 午夜福利一区二区在线看| 日本一区二区免费在线视频| 婷婷精品国产亚洲av| 在线天堂中文资源库| 亚洲成人久久性| 51午夜福利影视在线观看| 精品第一国产精品| 国产不卡一卡二| 亚洲成av人片免费观看| 老司机深夜福利视频在线观看| avwww免费| 在线观看日韩欧美| 亚洲五月色婷婷综合| 国产一区二区激情短视频| 老司机福利观看| 在线观看www视频免费| 香蕉丝袜av| 观看免费一级毛片| 日韩精品免费视频一区二区三区| 在线看三级毛片| 国产精品1区2区在线观看.| av有码第一页| 欧美大码av| 男女午夜视频在线观看| 1024手机看黄色片| 欧美性长视频在线观看| 亚洲熟妇中文字幕五十中出| 国产亚洲欧美98| 日韩中文字幕欧美一区二区| 国产高清有码在线观看视频 | 国产精品乱码一区二三区的特点| 老汉色av国产亚洲站长工具| 欧美丝袜亚洲另类 | 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 亚洲熟妇中文字幕五十中出| 久久久久久久精品吃奶| av在线播放免费不卡| 免费看美女性在线毛片视频| 女人被狂操c到高潮| 黑人欧美特级aaaaaa片| 免费在线观看影片大全网站| 久久久久久人人人人人| 国产91精品成人一区二区三区| 一区二区三区精品91| 美女扒开内裤让男人捅视频| netflix在线观看网站| 精品久久久久久,| av超薄肉色丝袜交足视频| xxx96com| 免费看a级黄色片| 搡老妇女老女人老熟妇| 亚洲欧洲精品一区二区精品久久久| 国产成人欧美| 国产精品日韩av在线免费观看| 国产单亲对白刺激| 精品福利观看| 国产av一区二区精品久久| 欧美成人一区二区免费高清观看 | 好男人电影高清在线观看| 午夜a级毛片| 国产欧美日韩一区二区三| 日韩三级视频一区二区三区| 亚洲九九香蕉| 又大又爽又粗| 精品久久久久久久久久免费视频| 12—13女人毛片做爰片一| 国产真人三级小视频在线观看| 亚洲人成77777在线视频| 久久久久国产一级毛片高清牌| 搞女人的毛片| 一区福利在线观看| or卡值多少钱| 人人妻人人澡人人看| 啦啦啦观看免费观看视频高清| 手机成人av网站| 国产一区在线观看成人免费| 人成视频在线观看免费观看| 国产v大片淫在线免费观看| 欧美绝顶高潮抽搐喷水| 巨乳人妻的诱惑在线观看| 黑丝袜美女国产一区| 亚洲精华国产精华精| 久久久久精品国产欧美久久久| 亚洲三区欧美一区| 天堂动漫精品| 亚洲av第一区精品v没综合| 欧美色欧美亚洲另类二区| 国内精品久久久久精免费| 老司机在亚洲福利影院| 久久婷婷人人爽人人干人人爱| 视频在线观看一区二区三区| 制服人妻中文乱码| 国产视频一区二区在线看| 国产三级黄色录像| 中文字幕久久专区| 日韩欧美一区二区三区在线观看| 久久精品国产99精品国产亚洲性色| 国产一区二区三区视频了| 色综合站精品国产| 非洲黑人性xxxx精品又粗又长| 久久热在线av| 欧美不卡视频在线免费观看 | 日韩精品青青久久久久久| 久久精品国产亚洲av香蕉五月| 长腿黑丝高跟| 亚洲av熟女| 日韩有码中文字幕| 国产成人啪精品午夜网站| 一二三四在线观看免费中文在| 一区二区日韩欧美中文字幕| 久久久久久久精品吃奶| 91麻豆av在线| 99国产精品一区二区三区| 日韩成人在线观看一区二区三区| 听说在线观看完整版免费高清| 亚洲成a人片在线一区二区| 无限看片的www在线观看| 久久亚洲精品不卡| 午夜福利视频1000在线观看| 一级毛片精品| 国产成人系列免费观看| 99久久无色码亚洲精品果冻| 国产又黄又爽又无遮挡在线| 久久久久久人人人人人| 欧美日韩亚洲综合一区二区三区_| 一卡2卡三卡四卡精品乱码亚洲| 国产精品免费视频内射| 啦啦啦 在线观看视频| 国产亚洲欧美98| 黄色成人免费大全| 亚洲精品粉嫩美女一区| 亚洲国产精品久久男人天堂| 久久亚洲精品不卡| www.熟女人妻精品国产| 国产高清激情床上av| 久久久国产成人精品二区| 精品电影一区二区在线| 一本一本综合久久| 国产免费男女视频| 美女高潮喷水抽搐中文字幕| 亚洲成人久久爱视频| 男男h啪啪无遮挡| 久久人人精品亚洲av| 90打野战视频偷拍视频| 久久精品国产99精品国产亚洲性色| 国产精品亚洲一级av第二区| 亚洲精品美女久久av网站| 又大又爽又粗| 日韩大尺度精品在线看网址| 身体一侧抽搐| 欧美在线黄色| 男人的好看免费观看在线视频 | 精品国内亚洲2022精品成人| 最好的美女福利视频网| 麻豆av在线久日| 国产精品野战在线观看| 99re在线观看精品视频| 久久九九热精品免费| 男男h啪啪无遮挡| 欧美黑人精品巨大| av福利片在线| 亚洲最大成人中文| 亚洲国产欧洲综合997久久, | 无遮挡黄片免费观看| 日韩大码丰满熟妇| av电影中文网址| 亚洲片人在线观看| 成人18禁在线播放| 国产一卡二卡三卡精品| 99久久综合精品五月天人人| 美女大奶头视频| 无人区码免费观看不卡| 久久香蕉精品热| 久久久精品欧美日韩精品| 在线av久久热| 亚洲五月色婷婷综合| 精品国产一区二区三区四区第35| 男人操女人黄网站| 曰老女人黄片| 黄片小视频在线播放| 青草久久国产| 精品久久久久久久久久免费视频| 12—13女人毛片做爰片一| 亚洲精品中文字幕一二三四区| 国产aⅴ精品一区二区三区波| 亚洲精品一区av在线观看| 欧美在线一区亚洲| 一级毛片精品| 日本 av在线| 操出白浆在线播放| 白带黄色成豆腐渣| 国产亚洲欧美在线一区二区| 熟女少妇亚洲综合色aaa.| 国产高清视频在线播放一区| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 精品久久久久久,| 真人一进一出gif抽搐免费| 天天一区二区日本电影三级| 欧美成人性av电影在线观看| 国产精品一区二区精品视频观看| 99riav亚洲国产免费| 一级黄色大片毛片| 一区二区三区精品91| 久久久久久免费高清国产稀缺| 香蕉国产在线看| 丝袜在线中文字幕| 久久这里只有精品19| 午夜免费成人在线视频| 免费在线观看成人毛片| 国产精品久久久av美女十八| 法律面前人人平等表现在哪些方面| 久久精品夜夜夜夜夜久久蜜豆 | 欧美一级a爱片免费观看看 | 99久久国产精品久久久| 亚洲美女黄片视频| 精品久久久久久成人av| 国产91精品成人一区二区三区| 久久热在线av| 国产一区二区激情短视频| 亚洲中文日韩欧美视频| 成在线人永久免费视频| 欧美国产精品va在线观看不卡| 大型av网站在线播放| 国产黄片美女视频| 久久久久九九精品影院| 亚洲精品中文字幕在线视频| 美女 人体艺术 gogo| 神马国产精品三级电影在线观看 | 又黄又粗又硬又大视频| 男女视频在线观看网站免费 | 亚洲中文字幕日韩| 国产色视频综合| 12—13女人毛片做爰片一| 真人一进一出gif抽搐免费| 麻豆成人av在线观看| 亚洲精品国产精品久久久不卡| 亚洲国产欧美一区二区综合| 热re99久久国产66热| 国产在线观看jvid| 嫩草影院精品99| 亚洲欧洲精品一区二区精品久久久| 午夜视频精品福利| 中文字幕另类日韩欧美亚洲嫩草| 日本在线视频免费播放| 欧美又色又爽又黄视频| 日韩高清综合在线| 无限看片的www在线观看| 国产一区二区在线av高清观看| 欧美国产日韩亚洲一区| 村上凉子中文字幕在线| 日本一区二区免费在线视频| 一区二区三区激情视频| 欧美在线一区亚洲| 搡老熟女国产l中国老女人| 美女高潮喷水抽搐中文字幕| www.精华液| 国产精品久久久久久亚洲av鲁大| 香蕉国产在线看| 一二三四在线观看免费中文在| 香蕉丝袜av| 一区二区三区国产精品乱码| 99精品欧美一区二区三区四区| 日本在线视频免费播放| 亚洲国产看品久久| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧洲综合997久久, | 国产一区二区三区在线臀色熟女| 又黄又爽又免费观看的视频| 午夜福利视频1000在线观看| 嫩草影视91久久| 成年女人毛片免费观看观看9| 亚洲国产毛片av蜜桃av| 免费在线观看成人毛片| www.自偷自拍.com| 欧美色视频一区免费| 亚洲五月色婷婷综合| 午夜亚洲福利在线播放| 日韩欧美国产在线观看| 在线看三级毛片| 亚洲全国av大片| 别揉我奶头~嗯~啊~动态视频| 999久久久国产精品视频| 亚洲一区高清亚洲精品| 日韩欧美一区二区三区在线观看| 我的亚洲天堂| 亚洲av日韩精品久久久久久密| 欧美乱色亚洲激情| 这个男人来自地球电影免费观看| 国内少妇人妻偷人精品xxx网站 | tocl精华| 国产av在哪里看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人国产一区在线观看| 看黄色毛片网站| av视频在线观看入口| 中文亚洲av片在线观看爽| 欧美日韩福利视频一区二区| 国产又爽黄色视频| 精品久久久久久久久久免费视频| 听说在线观看完整版免费高清| 曰老女人黄片| 欧美人与性动交α欧美精品济南到| 此物有八面人人有两片| 欧洲精品卡2卡3卡4卡5卡区| 黄色视频不卡| 日韩国内少妇激情av| a级毛片在线看网站| 老司机靠b影院| 免费在线观看成人毛片| 婷婷精品国产亚洲av在线| 午夜激情福利司机影院| 动漫黄色视频在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美日韩瑟瑟在线播放| 狠狠狠狠99中文字幕| 国产成人精品久久二区二区免费| 午夜免费观看网址| 久久久国产成人精品二区| 妹子高潮喷水视频| 51午夜福利影视在线观看| 一级毛片女人18水好多| 一a级毛片在线观看| 三级毛片av免费| 亚洲成人免费电影在线观看| 两性夫妻黄色片| 久久久久久免费高清国产稀缺| 人成视频在线观看免费观看| 在线观看舔阴道视频| 亚洲狠狠婷婷综合久久图片| 日韩欧美在线二视频| 欧美av亚洲av综合av国产av| 国产欧美日韩一区二区精品| 亚洲国产高清在线一区二区三 | 特大巨黑吊av在线直播 | 久久香蕉激情| 不卡一级毛片| 又大又爽又粗| 中文亚洲av片在线观看爽| 麻豆国产av国片精品| 亚洲熟女毛片儿| 一本久久中文字幕| 亚洲色图av天堂| 日韩av在线大香蕉| 欧美 亚洲 国产 日韩一| 一夜夜www| 中文字幕精品免费在线观看视频| 黄色视频,在线免费观看| 脱女人内裤的视频| 亚洲av成人av| 国产99久久九九免费精品| 精品乱码久久久久久99久播| 91大片在线观看| 天堂√8在线中文| 脱女人内裤的视频| 美女高潮到喷水免费观看| 色综合婷婷激情| 19禁男女啪啪无遮挡网站| 啦啦啦韩国在线观看视频| 亚洲精品色激情综合| 免费在线观看日本一区| 亚洲成人国产一区在线观看| 两个人看的免费小视频| 一进一出好大好爽视频| 久久人妻av系列| 亚洲,欧美精品.| 法律面前人人平等表现在哪些方面| 两个人免费观看高清视频| 两人在一起打扑克的视频| 亚洲精品一区av在线观看| 国产视频内射| 人人妻,人人澡人人爽秒播| 国产国语露脸激情在线看| 午夜视频精品福利| 最近在线观看免费完整版| 国产午夜福利久久久久久| 日韩大码丰满熟妇| 麻豆久久精品国产亚洲av| 99在线视频只有这里精品首页| 国产精品亚洲一级av第二区| 给我免费播放毛片高清在线观看| 中文亚洲av片在线观看爽| 欧美乱妇无乱码| 少妇粗大呻吟视频| 99久久国产精品久久久| 午夜福利在线在线| 最新在线观看一区二区三区| 亚洲国产精品999在线| 欧美中文日本在线观看视频| 亚洲国产精品sss在线观看| 国产精品亚洲av一区麻豆| 午夜视频精品福利| 久久香蕉激情| 国产真人三级小视频在线观看| 我的亚洲天堂| 免费人成视频x8x8入口观看| 欧美一区二区精品小视频在线| 成人三级做爰电影| videosex国产| 久热爱精品视频在线9| 亚洲色图 男人天堂 中文字幕| 嫩草影视91久久| 亚洲精品国产一区二区精华液| 色综合站精品国产| 女同久久另类99精品国产91| 国产av又大| 精品人妻1区二区| 色av中文字幕| 91成年电影在线观看| 一区二区三区激情视频| 婷婷丁香在线五月| 亚洲av日韩精品久久久久久密| 国产精品亚洲一级av第二区| 少妇的丰满在线观看| 19禁男女啪啪无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| av片东京热男人的天堂| 欧美黑人欧美精品刺激| 曰老女人黄片| 在线看三级毛片| www.999成人在线观看| 亚洲色图av天堂| e午夜精品久久久久久久| 亚洲av成人av| 黄色成人免费大全| 久久久国产成人精品二区| 亚洲精品粉嫩美女一区| 国产亚洲av高清不卡| 精品欧美一区二区三区在线| 亚洲av日韩精品久久久久久密| 中文亚洲av片在线观看爽| 老司机福利观看| 免费高清在线观看日韩| 亚洲精品国产区一区二| 熟女少妇亚洲综合色aaa.|