劉 達(dá),張 康,吳選俊,韓守法,劉平果*
( 1.廈門大學(xué)醫(yī)學(xué)院,福建廈門361102; 2.廈門大學(xué)化學(xué)化工學(xué)院,福建廈門361005)
?
基于原發(fā)性大鼠肝癌模型的糖修飾熒光膠束腫瘤成像診斷評(píng)價(jià)
劉達(dá)1,張康1,吳選俊2,韓守法2,劉平果1*
( 1.廈門大學(xué)醫(yī)學(xué)院,福建廈門361102; 2.廈門大學(xué)化學(xué)化工學(xué)院,福建廈門361005)
摘要:手術(shù)成瘤模型因其腫瘤微環(huán)境與原發(fā)性肝癌相差較大而不能準(zhǔn)確評(píng)價(jià)肝癌靶向性藥物,二乙基亞硝胺( diethylnitrosamine,DEN)誘發(fā)大鼠肝癌模型因其誘發(fā)癌變的病理過(guò)程及腫瘤微環(huán)境均與原發(fā)性肝癌相似而成為理想的肝癌動(dòng)物模型.本研究在傳統(tǒng)的DEN誘導(dǎo)法基礎(chǔ)上進(jìn)行改進(jìn),實(shí)現(xiàn)了大鼠的100%成癌率和誘導(dǎo)過(guò)程中的零死亡率.基于該肝癌模型評(píng)價(jià)了新型肝癌靶向性糖修飾熒光膠束在肝癌中的實(shí)際應(yīng)用價(jià)值,結(jié)果證明結(jié)合半乳糖胺的羅丹明功能化的糖修飾熒光膠束( RST@ P-Gal)表現(xiàn)出了較好的腫瘤靶向性和較低的背景信號(hào),可以檢測(cè)出0.5~5 mm的腫瘤病灶,這將對(duì)人類肝癌的早期診斷和術(shù)中微小病灶的清除帶來(lái)一定的幫助.
關(guān)鍵詞:原發(fā)性肝癌;熒光成像;二乙基亞硝胺( DEN) ;熒光膠束
原發(fā)性肝癌(簡(jiǎn)稱肝癌)是全球第5大高發(fā)癌癥,全球每年新發(fā)癌癥1 300萬(wàn)例,其中肝癌占78萬(wàn)例左右[1].肝癌早期沒(méi)有特異性臨床癥狀,出現(xiàn)癥狀時(shí)腫瘤一般已經(jīng)增長(zhǎng)至4~8 cm,由于肝癌診斷時(shí)腫瘤往往較大,雖然肝癌手術(shù)器械不斷地革新,切除技術(shù)日臻完善,但是腫瘤根治切除率仍較低(約25%),5年生存率徘徊在38%~47%,術(shù)后的復(fù)發(fā)率高達(dá)61.5%,這些可能與肝癌早期診斷率低,術(shù)前、術(shù)中未能發(fā)現(xiàn)微小(直徑小于5 mm)肝癌病灶有關(guān)[2-6].
糖受體參與的細(xì)胞信號(hào)傳導(dǎo)一度成為研究熱點(diǎn),如去唾液酸糖蛋白受體、甘露糖受體、半乳糖受體等[7-17],但是糖受體參與的腫瘤熒光檢測(cè)領(lǐng)域還存在空白.近期有文章報(bào)道了一種酸敏感羅丹明( Rhodamine)功能化的聚(苯乙烯-馬來(lái)酸)熒光膠束( RST@ P),其根據(jù)肝癌細(xì)胞表面不同糖蛋白受體含量的不同,分別將葡萄糖、半乳糖、甘露糖3種糖蛋白連接到RST@ P上形成新的膠束(依次簡(jiǎn)寫為RST@ P-Glu、RST@ P-Gal、RST@ P-Man)進(jìn)行腫瘤熒光檢測(cè)成像,在皮下腫瘤模型和肝臟原位種植腫瘤模型中表現(xiàn)出了較高的腫瘤靶向性和較低的背景信號(hào)[3].
但是,腫瘤的發(fā)生發(fā)展與其所處的內(nèi)環(huán)境密不可分,由腫瘤細(xì)胞、間質(zhì)細(xì)胞、微血管、組織液及少量浸潤(rùn)細(xì)胞等共同組成,有別于正常細(xì)胞與其周圍組織所形成的微環(huán)境,它們與腫瘤相互作用,對(duì)細(xì)胞的癌變、癌細(xì)胞的轉(zhuǎn)移和對(duì)抗癌藥物的抵抗和靶向性的干擾等都有重要的作用[18-21].皮下腫瘤模型和肝臟原位種植腫瘤模型不能很好地模擬出自然狀態(tài)下腫瘤細(xì)胞所處的微環(huán)境,對(duì)評(píng)價(jià)該糖修飾熒光膠束的靶向性等方面存在一些不足.而二乙基亞硝胺( diethylnitrosamine,DEN)誘導(dǎo)的大鼠肝癌模型因其誘發(fā)癌變的整個(gè)過(guò)程與人類肝癌發(fā)生過(guò)程十分相似,都經(jīng)歷了經(jīng)典的“肝癌三部曲”(肝炎,肝硬化,肝癌)[22].因此,我們嘗試構(gòu)建DEN誘發(fā)的Fisher大鼠原發(fā)性肝癌模型以評(píng)價(jià)該糖修飾熒光膠束真正臨床應(yīng)用價(jià)值.同時(shí),我們?cè)趥鹘y(tǒng)DEN誘導(dǎo)大鼠肝癌法的基礎(chǔ)上對(duì)用藥濃度和周期進(jìn)行了改良,實(shí)現(xiàn)了大鼠的100%成癌率和誘導(dǎo)過(guò)程中的零死亡率.
1. 1試劑耗材
DEN、臺(tái)盼藍(lán)、RPMI 1640培養(yǎng)基( Sigma公司),胎牛血清( FBS) ( Gibco公司),青霉素、鏈霉素(廈門大學(xué)附屬中山醫(yī)院),100 mm細(xì)胞培養(yǎng)皿( Corning公司),槍尖( Axygen公司),1 mL注射器(福建莆田市醫(yī)藥有限公司),LO2、HepG2細(xì)胞( ATCC公司),實(shí)驗(yàn)所用水均為超純水.
1. 2儀器
FX PRO型小動(dòng)物光學(xué)活體成像系統(tǒng)( Carestream Health公司),AV 400 MHz型核磁共振儀( Bruker公司),SP5型激光共聚焦顯微鏡(德國(guó)Leica顯微系統(tǒng)有限公司),HV-110型全自動(dòng)高壓蒸汽滅菌器(日本HIYARAMA公司),18.2 MΩ·cm超純水儀(美國(guó)PALL公司),XB-K-2型血球計(jì)數(shù)板(浙江玉環(huán)縣求精醫(yī)用儀器廠),KD-8025型計(jì)數(shù)器(義務(wù)逵達(dá)電子儀器廠).
1. 3動(dòng)物
Fisher 344大鼠(清潔級(jí)) :雄性,5周齡(北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司) ; BalB/c小鼠(清潔級(jí)) :雄性,5周齡(上海斯萊克實(shí)驗(yàn)動(dòng)物有限公司).
1. 4實(shí)驗(yàn)方法
細(xì)胞激光共聚焦成像:熒光共聚焦成像用SP5型激光共聚焦顯微鏡來(lái)完成.1)分別稱取RST@ P、RST @ P-Glu、RST@ P-Gal、RST@ P-Man各1 mg溶于1 mL超純水中,超聲波清洗器混勻5 min; 2)染色:向LO2、HepG2兩種細(xì)胞(各4盤)中每盤加入一種熒光膠束100 μL至終質(zhì)量濃度10 μg/mL,于37℃培養(yǎng)30 min; 3)固定:吸盡培養(yǎng)基,用磷酸鹽緩沖液( PBS)潤(rùn)洗一遍后,分別加入2 mL多聚甲醛常溫固定細(xì)胞5 min; 4)封片:吸盡多聚甲醛,用PBS潤(rùn)洗3遍后封片; 4)觀察: 490 nm激發(fā)光激發(fā),然后收集510 nm的發(fā)射光成像.
改進(jìn)型原發(fā)性大鼠肝癌模型的建立:選取雄性Fisher 344大鼠50只,體質(zhì)量150~160 g,穩(wěn)定喂養(yǎng)3 d后,隨機(jī)分為實(shí)驗(yàn)組45只(采用間斷給藥法,在第1,3,5月用0.1 mg/mL的DEN溶液喂養(yǎng),第2,4月用超純水喂養(yǎng))和對(duì)照組5只(整個(gè)實(shí)驗(yàn)過(guò)程中均飲用超純水),在第5個(gè)月末用磁共振成像( MRI)檢測(cè)大鼠肝癌形成情況.
肝癌靶向性糖修飾熒光膠束成像:用FX PRO型小動(dòng)物光學(xué)活體成像系統(tǒng)完成.1)將8只MRI驗(yàn)證過(guò)的肝癌鼠隨機(jī)分為RST@ P、RST@ P-Glu、RST@ PGal、RST@ P-Man 4組,每組2只,分別經(jīng)尾靜脈注射糖修飾熒光膠束40 mg/kg,每只500 μL; 2)器官分離:注射15 h后分別分離出各組實(shí)驗(yàn)鼠的代表器官,即腦、心臟、脾臟、腎臟、肺和肝; 3)熒光成像: 490 nm激發(fā)光激發(fā),然后收集510 nm的發(fā)射光成像.
蘇木精-伊紅( HE)染色.1)取材并制作石蠟切片:切取0.5 cm×0.5 cm×0.5 cm大小的肝臟組織塊投入10%(體積分?jǐn)?shù),下同)甲醛固定2周,脫水、浸蠟包埋、切片; 2)脫蠟:切片在二甲苯中脫蠟10 min; 3)乙醇梯度復(fù)水:依次經(jīng)過(guò)100%,100%,95%,85%,70%,50%的乙醇溶液和去離子水,各浸泡3 min; 4)蘇木精染色: 0.5%(質(zhì)量分?jǐn)?shù))蘇木精中染色10 min,用水沖洗掉玻片上多余染液,1%鹽酸乙醇溶液( 70%乙醇配制)分色片刻,顯微鏡觀察細(xì)胞核染色情況; 5)伊紅復(fù)染:流水沖洗20 min;經(jīng)0.5%(質(zhì)量分?jǐn)?shù))伊紅染液染色3 min; 6)乙醇梯度脫水:依次經(jīng)過(guò)70%,85%,95%,100%,100%的乙醇溶液,各浸泡3 min; 7)透明:經(jīng)過(guò)兩次二甲苯溶液,各浸泡5 min; 8)封片:加1~2滴中性樹(shù)膠,迅速加蓋玻片封固.
細(xì)胞水平安全性評(píng)估:正常培養(yǎng)的LO2和HepG2細(xì)胞各16盤,經(jīng)臺(tái)盼藍(lán)拒染法細(xì)胞計(jì)數(shù)后將1 mg/mL 的RST@ P熒光膠束加入4盤LO2和HepG2細(xì)胞中,至終質(zhì)量濃度分別為0,50,200,400 μg/mL,37℃培養(yǎng)24 h后同法計(jì)數(shù).RST@ P-Glu、RST@ P-Gal、RST@ P-Man評(píng)價(jià)方法同RST@ P.
動(dòng)物水平安全性評(píng)估:取5周齡健康雄性BalB/c小鼠48只,隨機(jī)分為6組,每組8只;分別經(jīng)尾靜脈注射25,50,100,200,400 mg/kg的RST@ P-Gal,每只500 μL,對(duì)照組用PBS代替;每5 d監(jiān)測(cè)體質(zhì)量一次,連續(xù)觀察一個(gè)月.
2. 1糖修飾熒光膠束的攝取
目前用來(lái)成像的糖修飾熒光膠束一種是作用于細(xì)胞表面,另一種是特異性進(jìn)入細(xì)胞內(nèi)發(fā)揮作用.而本文所述糖修飾熒光膠束是根據(jù)腫瘤細(xì)胞表面糖受體的種類和含量不同而被特異性介導(dǎo)入腫瘤細(xì)胞內(nèi),且熒光在溶酶體酸性( pH 4.0~6.5)環(huán)境下被490 nm激發(fā)光激發(fā),然后收集510 nm的發(fā)射光而實(shí)現(xiàn)成像[3,23].腫瘤細(xì)胞表面比正常細(xì)胞的去唾液酸糖蛋白受體的表達(dá)水平高[24-26],半乳糖受體在不同種腫瘤細(xì)胞表面含量有較大差異,但它在肝細(xì)胞表面表達(dá)豐富[27-28],甘露糖受體在高凋亡和壞死細(xì)胞中含量較高[29],而肝硬化、肝臟癌變過(guò)程中細(xì)胞凋亡數(shù)量較正常細(xì)胞要多,因此去唾液酸糖蛋白受體、半乳糖受體、甘露糖受體都成為生物體內(nèi)檢測(cè)腫瘤情況的潛在受體.通過(guò)激光共聚焦顯微鏡對(duì)LO2、HepG2兩種細(xì)胞熒光成像結(jié)果(圖1)可知,糖修飾熒光膠束是在細(xì)胞內(nèi)部發(fā)揮作用,但含量無(wú)明顯區(qū)別,正如熒光分布在皮下腫瘤模型與在肝臟原位種植腫瘤模型中不一致一樣,這都可能與腫瘤微環(huán)境有關(guān).
圖1糖修飾熒光膠束發(fā)揮作用位置的鑒定Fig.1 Identification of fluorescence micelles' work place
2. 2改進(jìn)型原發(fā)性肝癌模型的構(gòu)建及鑒定
實(shí)驗(yàn)中所涉及操作均遵循《實(shí)驗(yàn)動(dòng)物管理?xiàng)l例》[30].我們?cè)趥鹘y(tǒng)的DEN誘導(dǎo)法的基礎(chǔ)上進(jìn)行改進(jìn),用藥質(zhì)量濃度由1 mg/mL降低至0.1 mg/mL,同時(shí)增加了用藥間歇期,實(shí)現(xiàn)了大鼠的100%成癌率和誘導(dǎo)過(guò)程中的零死亡率.實(shí)驗(yàn)中對(duì)實(shí)驗(yàn)組和對(duì)照組大鼠進(jìn)行體質(zhì)量監(jiān)測(cè)(圖2( a) ),實(shí)驗(yàn)結(jié)束對(duì)所有實(shí)驗(yàn)組大鼠進(jìn)行統(tǒng)一MRI檢測(cè)成瘤情況(圖2 ( b) ).
圖2體質(zhì)量監(jiān)測(cè)( a)及MRI鑒定成瘤情況( b)Fig.2 Chronological changes in the body weight( a) and MRI to detect the tumor( b)
2. 3原發(fā)性肝癌的糖修飾熒光膠束成像
對(duì)原發(fā)性肝癌大鼠注射不同糖修飾熒光膠束(與圖2( b)中所注1~4對(duì)應(yīng)) 15 h后,熒光成像結(jié)果(圖3)顯示:熒光膠束主要聚集在肝臟腫瘤部位,在正常肝臟組織有少量聚集,而在腦、心臟、腎臟等肝外器官很少聚集.可以看出RST@ P-Gal表現(xiàn)出了更好的腫瘤靶向性和更低的背景信號(hào),可以檢測(cè)出0.5~5 mm的腫瘤病灶.
2. 4 HE染色鑒定肝癌情況
取圖3( a)中虛線位置組織制作HE染色切片,評(píng)價(jià)DEN誘發(fā)肝癌是否具有正常肝癌組織病理學(xué)特征.如圖4所示,纖維結(jié)締組織大量增生,正常肝小葉結(jié)構(gòu)被破壞,假小葉結(jié)構(gòu)形成,同時(shí)可見(jiàn)不同程度炎細(xì)胞浸潤(rùn)和脂肪樣變等肝癌典型病理變化,與原發(fā)性肝癌組織病理特點(diǎn)吻合.
圖3糖修飾熒光膠束在不同器官中的分布Fig.3 Distribution of the fluorescence materials in different organs
2. 5安全性評(píng)估
為了評(píng)價(jià)該糖修飾熒光膠束是否會(huì)對(duì)機(jī)體產(chǎn)生影響,故在細(xì)胞水平和動(dòng)物水平進(jìn)行相關(guān)毒性評(píng)價(jià).
在細(xì)胞水平,經(jīng)用藥質(zhì)量濃度為0,50,200,400 μg/mL的4組實(shí)驗(yàn)驗(yàn)證,各糖修飾熒光膠束均未對(duì)細(xì)胞產(chǎn)生明顯的毒性(圖5( a)和( b) ).在動(dòng)物水平,用藥質(zhì)量濃度為400 mg/kg組,在最初注射時(shí)個(gè)別小鼠會(huì)出現(xiàn)精神萎靡不振的癥狀,十幾分鐘后恢復(fù)正常,可能與用藥體積和注射速度有關(guān);實(shí)驗(yàn)結(jié)束時(shí)實(shí)驗(yàn)組與對(duì)照組動(dòng)物狀態(tài)無(wú)差異,無(wú)死亡情況,體質(zhì)量相當(dāng).證明藥物可隨新陳代謝排出體外,對(duì)機(jī)體不會(huì)造成明顯影響(圖5( c) ).
圖4肝癌組織切片HE染色Fig.4 Hematoxylin-Eosin staining of the sections of liver cancer tissues
圖5細(xì)胞和動(dòng)物水平安全性評(píng)估Fig.5 Safety assessment of the fluorescence micelles in cells and animals
改進(jìn)后DEN誘發(fā)型原發(fā)性大鼠肝癌模型實(shí)現(xiàn)了實(shí)驗(yàn)鼠的100%成癌率和誘導(dǎo)過(guò)程中的零死亡率,相對(duì)傳統(tǒng)DEN誘癌方法更安全、高效.這可能與實(shí)驗(yàn)誘癌過(guò)程中將傳統(tǒng)用藥質(zhì)量濃度從1 mg/mL降低為0.1 mg/mL并設(shè)立了誘癌間歇期有關(guān):低濃度DEN對(duì)動(dòng)物刺激性更低,而間歇期給了大鼠肝臟一定時(shí)間的休息和代償增生;但正是間歇期肝細(xì)胞對(duì)損傷修復(fù)的加強(qiáng),使基因突變平穩(wěn)積累、加劇,伴隨肝硬化和肝臟炎癥反應(yīng)不斷進(jìn)展,促進(jìn)了DEN誘癌過(guò)程中肝細(xì)胞的癌變,最終有效降低了動(dòng)物的死亡率并提高了成癌率.經(jīng)MRI和HE染色證明DEN誘發(fā)癌與自然肝癌組織的形成和病理特征較為接近,腫瘤微環(huán)境也比較相似,所以該肝癌模型比皮下成瘤模型、肝臟原位接種腫瘤模型對(duì)肝癌靶向性糖修飾熒光膠束的評(píng)價(jià)更有臨床參考價(jià)值.成像結(jié)果證明4種糖修飾熒光膠束主要聚集在肝臟組織,其中RST@ P-Gal熒光成像擁有腫瘤靶向性強(qiáng)、背景信號(hào)低等優(yōu)點(diǎn),這對(duì)肝癌的早期診斷和術(shù)中微小病灶的清除將帶來(lái)一定的幫助.
參考文獻(xiàn):
[1]BRUIX J,BOIX L,SALA M,et al.Focus on hepatocellular carcinoma[J].Cancer Cell,2004,5( 3) : 215-219.
[2]ESPINA C,PORTA M,SCHüZ J,et al.Environmental and occupational interventions for primary prevention of cancer: a cross-sectorial policy framework[J].Environ Health Perspect,2013,121( 4) : 420-426.
[3]WU X J,TIAN Y P,YU M Z,et al.A targetable acid-responsive micellar system forsignal activation based high performance surgical resolution of tumors[J].Biomaterials Science,2014,7( 7) : 972-979.
[4]VAHRMEIJER A L,HUTTEMAN M,VORST J R V D,et al.Image-guided cancer surgery using near-infrared fluorescence [J].Nat Rev Clin Oncol,2013,10( 9) : 507-518.
[5]COLOMBO M.Hepatocellular carcinoma[J].J Hepatol,1992,15( 1/2) : 225-236.
[6]TREVISANI F,CANTARINI M C,WANDS J R,et al.Recent advances in the natural history of hepatocellular carcinoma [J].Carcinogenesis,2008,29( 7) : 1299-1305.
[7]SONOKE S,UEDA T,F(xiàn)UJIWARA K,et al.Galactosemodified cationic liposomes as a liver-targeting delivery system for small interfering RNA[J].Biol Pharm Bull,2011,34( 8) : 1338-1342.
[8]MA P,LIU S,HUANG Y,et al.Lactose mediated liver-targeting effect observed by ex vivo imaging technology[J].Biomaterials,2010,31( 9) : 2646-2654.
[9]LEE M H,HAN J H,KWON P S,et al.Hepatocyte-targeting single galactose-appended naphthalimide: a tool for intracellular thiol imaging in vivo[J].J Am Chem Soc,2011,134 ( 2) : 1316-1322.
[10]GUO B,CHENG Y,LI N,et al.In vitro and in vivo studies of galactose-modified liver-targeting liposomes[J].J Drug Target,2013,21( 3) : 257-264.
[11]KIKKERI R,LEPENIES B,ADIBEKIAN A,et al.In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots[J].J Am Chem Soc,2009,131( 6) : 2110-2112.
[12]CUI L,COHEN J A,BROADERS K E,et al.Mannosylated dextran nanoparticles: a pH-sensitive system engineered for immunomodulation through mannose targeting[J].Bioconjugate Chem,2011,22( 5) : 949-957.
[13]MOVAHEDI K,SCHOONOOGHE S,LAOUI D,et al.Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages[J].Cancer Res,2012,72( 16) : 4165-4177.
[14]ARTNER L M,MERKEL L,BOHLKE N,et al.Siteselective modification of proteins for the synthesis of structurally defined multivalent scaffolds[J].Chem Commun,2012,48( 4) : 522-524.
[15]ORSINI F,VILLA P,PARRELLA S,et al.Targeting mannose-binding lectin confers long-lasting protection with a surprisingly wide therapeutic window in cerebral ischemia [J].Circulation,2012,126( 12) : 1484-1494.
[16]EL-DAKDOUKI M H,ZHU D C,EL-BOUBBOU K,et al.Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells[J].Biomacromolecules,2012,13( 4) : 1144-1151.
[17]KAWASAKI N,VELA J L,NYCHOLAT C M,et al.Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation[J].Proc Natl Acad Sci USA,2013,110( 19) : 7826-7831.
[18]HEDE K.Environmental protection: studies highlight importance of tumor microenvironment[J].J Natl Cancer Inst,2004,96( 15) : 1120-1121.
[19]BROWN J M.Tumor microenvironment and the response to anticancertherapy[J].Cancer Biol Ther,2002,1 ( 5) : 453-458.
[20]JOYCE J A.Therapeutic targeting of the tumor microenvironment[J].Cancer Cell,2005,7( 6) : 513-520.
[21]GALMARINI C M,GALMARINI F C.Multidrug resistance in cancer therapy: role of the microenvironment[J].CurrOpin Investig Drugs,2003,4( 12) : 1416-1421.
[22]張志,王閣,陳川,等.改進(jìn)性DEN誘發(fā)大鼠肝癌模型的建立與病理形態(tài)學(xué)研究[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2007,29( 12) : 1164-1167.
[23]LOTAN R,RAZ A.Lectins in cancer cells[J].Ann N Y Acad Sci,1988,551: 385-398.
[24]SZABLEWSKI L.Expression of glucose transporters in cancers[J].Biochimica et Biophysica Acta,2013,1835 ( 2) : 164-169.
[25]WHEELER T J,HINKLE P C.The glucose transporter of mammalian cells[J].Annu Rev Physiol,1985,47( 1) : 503-517.
[26]MEDINA R A,OWEN G I.Glucose transporters: expression,regulation and cancer[J].Biol Res,2002,35 ( 1) : 9-26.
[27]HAMA Y,URANO Y,KOYAMA Y,et al.Targeted optical imaging of cancer cells using lectin-binding BODIPY conjugated avidin[J].Biochem Biophys Res Commun,2006,348 ( 3) : 807-813.
[28]RAZ A,LOTAN R.Lectin-like activities associated with human and murine neoplastic cells[J].Cancer Res,1981,41( 2) : 3642-3647.
[29]NAUTA A J,RAASCHOU-JENSEN N,ROOS A,et al.Mannose-binding lectin engagement with late apoptotic and necrotic cells[J].Eur J Immunol,2003,33( 10) : 2853-2863.
[30]國(guó)家科學(xué)技術(shù)委員會(huì).實(shí)驗(yàn)動(dòng)物管理?xiàng)l例[EB/OL].[2015-03-30].http:∥www.gov.cn/gongbao/content/2011/ content_1860757.htm.
Imaging of Primary Hepatocellular Carcinoma with Glycosylated Micelles in a Rat Model
LIU Da1,ZHANG Kang1,WU Xuanjun2,HAN Shoufa2*,LIU Pingguo1*
( 1.Medical College,Xiamen University,Xiamen 361102,China; 2.College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China)
Abstract:The tumor microenvironment and pathological conditions of animal xenograft tumor models employed for surgerical evaluation are significantly different from those of the primary hepatocellular carcinoma models.As such,diethylnitrosamine ( DEN)-induced primary hepatocellular carcinoma models are superior to evaluate the efficacy of tumor targeting drugs compared to xenograft tumor models.Herein,we report the development of an improved method for DEN-induced tumor in mice with 100% cancer rate and zero mortality.We have evaluated the fluorogenic micelles consisting of cores of rhodamine-sultam ( RST) and a corona of poly[styrene-alter-( maleic acid)]glycosylated with glucosamine,galactosamine or mannosamine in the primary tumor model.The results have revealed that the galactosylated micelles ( RST@ PGal) can detect the tumor foci with diameters of 0.5-5 mm.The high tumor to background fluorescence ratio and high tumor-targeting displayed by RST@ P-Gal have validated its utility for diagnosis of early hepatocellular carcinoma in an intraoperative setting.
Key words:primary hepatocellular carcinoma; fluorescence imaging; diethylnitrosamine( DEN) ; glyco-micelles
*通信作者:pgliu@ xmu.edu.cn
基金項(xiàng)目:國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃( 973計(jì)劃) ( 2013CB93390) ;國(guó)家自然科學(xué)基金( 21272196,21072162)
收稿日期:2015-03-30錄用日期: 2015-05-11
doi:10.6043/j.issn.0438-0479.2016.01.005
中圖分類號(hào):Q 599
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0438-0479( 2016) 01-0016-06
引文格式:劉達(dá),張康,吳選俊,等.基于原發(fā)性大鼠肝癌模型的糖修飾熒光膠束腫瘤成像診斷評(píng)價(jià)[J].廈門大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,55( 1) : 16-21.
Citation: LIU D,ZHANG K,WU X J,et al.Imaging of primary hepatocellular carcinoma with glycosylated micelles in a rat model[J].Journal of Xiamen University( Natural Science),2016,55( 1) : 16-21.( in Chinese)