陳 曦,俞明珠,劉 劍,楊 柳,韓守法(廈門(mén)大學(xué)化學(xué)化工學(xué)院,福建廈門(mén)361005)
?
綠色化學(xué)方法合成兒茶酚-殼聚糖水凝膠的應(yīng)用
陳 曦,俞明珠,劉 劍,楊 柳*,韓守法*
(廈門(mén)大學(xué)化學(xué)化工學(xué)院,福建廈門(mén)361005)
摘要:水凝膠在生物醫(yī)學(xué)領(lǐng)域有重要應(yīng)用價(jià)值,如促進(jìn)傷口愈合等.利用殼聚糖與2,4,5-三羥基苯甲醛或2,3,4-三羥基苯甲醛通過(guò)一步環(huán)境友好、副產(chǎn)物為水的生成希夫(Schiff)堿的反應(yīng),得到一類殼聚糖-兒茶酚類的水凝膠應(yīng)用于傷口處理.2,4,5-三羥基苯甲醛修飾的殼聚糖水凝膠(CC-1)能有效抑制金黃色葡萄球菌生長(zhǎng),而2,3,4-三羥基苯甲醛修飾的殼聚糖水凝膠(CC-2)具有極強(qiáng)的黏附性.在小鼠模型上,CC-1促進(jìn)開(kāi)放性傷口愈合的效果與商品化藥膏(DuoDERM)相當(dāng).與文獻(xiàn)報(bào)道的以1-(3-二甲氨基丙基)-3-乙基二亞胺(EDC)縮合法合成的水凝膠相比,本研究在制備CC-1或CC-2的過(guò)程中不需要加入額外的化學(xué)試劑,終產(chǎn)物只有水凝膠和水,無(wú)需純化,安全無(wú)毒,即配即用.
關(guān)鍵詞:殼聚糖;兒茶酚;水凝膠;生物黏附
傷口的愈合過(guò)程經(jīng)歷4個(gè)階段:急性炎癥期、細(xì)胞增殖期、瘢痕形成期、表皮及其他組織再生期[1].在傷口愈合過(guò)程中,成纖維細(xì)胞大量增殖,在傷口底部及邊緣生長(zhǎng)出肉芽組織,通過(guò)分泌膠原蛋白和纖維連接蛋白來(lái)促進(jìn)傷口的收縮[2-3].傷口中的血液和滲出液中的纖維蛋白原很快凝固形成凝塊,有的凝塊表面干燥形成痂皮,起著保護(hù)傷口的作用[4].已有研究表明,水凝膠因其物理狀態(tài)及其含水量高的特性成為促進(jìn)傷口愈合的理想型生物材料,不僅有助于吸收傷口組織的滲出液,還可以防止傷口因蒸發(fā)和脫水產(chǎn)生水分損失,從而為促進(jìn)傷口愈合提供了一個(gè)理想的環(huán)境[5-6].雖然水凝膠被認(rèn)為是傷口處理的理想材料,但是目前所發(fā)展的水凝膠有諸多問(wèn)題,如機(jī)械強(qiáng)度差、溶解性不佳及細(xì)胞毒性高等,限制了它的應(yīng)用發(fā)展[7-9].
殼聚糖生物相容性高,可生物降解,具有止血和抗感染等特性[10-11],且可以刺激巨噬細(xì)胞產(chǎn)生生長(zhǎng)因子,產(chǎn)生傷口愈合所需的外環(huán)境[12-13],促進(jìn)成纖維細(xì)胞的增殖,從而使傷口加速愈合;然而在p H中性的水溶液中溶解度很差,這在一定程度上限制了它的應(yīng)用[2,14-17].目前提高殼聚糖水溶性的方法都有一些局限性:降低殼聚糖的分子質(zhì)量可以有效提高它的溶解性[18-19],但是會(huì)導(dǎo)致殼聚糖某些特性的喪失[20];另有研究報(bào)道[21-23],通過(guò)化學(xué)修飾可提高殼聚糖溶解性,主要是針對(duì)殼聚糖氨基這個(gè)反應(yīng)位點(diǎn)進(jìn)行化學(xué)修飾,通過(guò)接入親水性基團(tuán)如聚乙二醇(PEG),修飾過(guò)PEG的殼聚糖在水中的溶解性確實(shí)得到了很大的改善,但是由于PEG的空間位阻較大,會(huì)掩蓋殼聚糖的一些活性位點(diǎn),使殼聚糖失去一些固有特性,如抑菌性.
海洋軟體動(dòng)物海虹(mussel)能夠表達(dá)一類具有強(qiáng)烈黏附性的蛋白,該類蛋白含有一種特殊的氨基酸(3,4-dihydroxytyrosine)[24],它能夠使得海虹在海水中緊緊吸附在巖石、木頭、輪船底部等不同的地方[25].有文獻(xiàn)報(bào)道,將這類鄰苯二酚(兒茶酚)類化合物修飾在殼聚糖上,能極大地增加殼聚糖的水溶性[26].與大分子(如PEG)修飾的區(qū)別是:兒茶酚類化合物體積小,可以降低其空間位阻效應(yīng),不阻擋殼聚糖與細(xì)胞或細(xì)菌的結(jié)合位點(diǎn);更重要的是,由于兒茶酚類化合物所特有的黏附性,能使修飾后的殼聚糖形成水凝膠[27].目前多數(shù)文獻(xiàn)報(bào)道,將兒茶酚類化合物修飾到高分子材料上主要是通過(guò)1-(3-二甲氨基丙基)-3-乙基二亞胺(EDC)縮合法[27-28],但該反應(yīng)時(shí)間較長(zhǎng),且反應(yīng)結(jié)束后需要對(duì)材料進(jìn)行純化.
基于水凝膠在生物醫(yī)學(xué)領(lǐng)域的重要應(yīng)用價(jià)值(如促進(jìn)傷口愈合)及殼聚糖本身所特有的止血與抑菌作用,本文利用殼聚糖與兒茶酚類衍生物(2,4,5-三羥基苯甲醛或2,3,4-三羥基苯甲醛)通過(guò)一步環(huán)境友好、副產(chǎn)物為水的生成希夫(Schiff)堿的反應(yīng),得到一類可用于傷口處理的殼聚糖-兒茶酚類的水凝膠.與基于EDC縮合法合成的水凝膠相比,我們?cè)谥苽涞倪^(guò)程中不需要加入額外的化學(xué)試劑,終產(chǎn)物只有水凝膠和水,無(wú)需純化,安全無(wú)毒,即配即用.
1.1試 劑
殼聚糖(Sigma試劑公司),2,3,4-三羥基苯甲醛(Keddia試劑公司),2,4,5-三羥基苯甲醛(TCI試劑公司),醋酸(CH3COOH)和二甲基亞砜(DMSO)(國(guó)藥集團(tuán)化學(xué)試劑有限公司),胰酶、小牛血清、雙抗、Dulbecco's modified eagle medium(DMEM)高糖培養(yǎng)基和噻唑藍(lán)(MTT)(Hyclone公司),蛋白胨、酵母提取物和瓊脂(BIO BASIC公司),所有試劑均為分析純,未經(jīng)特殊說(shuō)明均未經(jīng)過(guò)特別處理;金黃色葡萄球菌和Hela細(xì)胞為ATCC公司提供;測(cè)試所用水均為超純水(18.2 MΩ·cm).
1.2儀 器
傅里葉變換紅外光譜(FT-IR)儀:Nicolet Avatar 360;核磁共振(NMR)儀:Bruker AV 400;拉力測(cè)試儀: Instron 3343;酶標(biāo)儀(吸光度分析):SpectraMax M5.
1.3材料的合成
稱取10.0 g殼聚糖置于50 m L圓底燒瓶中,然后向反應(yīng)瓶中加入含有0.3%(體積分?jǐn)?shù))醋酸的水溶液10 m L,攪拌使殼聚糖充分溶解,再向反應(yīng)瓶中分別加入33.33 mg的2,4,5-三羥基苯甲醛和2,3,4-三羥基苯甲醛,反應(yīng)體系在室溫(RT)下攪拌1 h,反應(yīng)完成得到淡黃色黏稠液體,即為產(chǎn)物2,4,5-三羥基苯甲醛-殼聚糖(CC-1)和2,3,4-三羥基苯甲醛-殼聚糖(CC-2)(圖1).
1.4分析測(cè)試
FT-IR表征:使用Nicolet Avatar 360 FT-IR儀.
NMR表征:使用Bruker AV400 NMR儀,以氘水(D2O)為溶劑,四甲基硅烷(TMS)為內(nèi)標(biāo)進(jìn)行NMR一維氫譜(1H-NMR)表征.
黏接強(qiáng)度的測(cè)定:使用Instron 3343拉力測(cè)試儀,被黏材料為新鮮豬皮,黏接區(qū)域約為25 mm×25 mm(以實(shí)際黏接面積為準(zhǔn)),涂膠厚度約為0.5 mm.
細(xì)胞毒性實(shí)驗(yàn)(MTT實(shí)驗(yàn)):HeLa細(xì)胞用DMEM高糖培養(yǎng)液進(jìn)行培養(yǎng),其中加入10%(體積分?jǐn)?shù))的牛胎血清(FBS)和1% (體積分?jǐn)?shù))的抗生素(青霉素和鏈霉素各100 U/m L).將細(xì)胞消化后分別分到96孔板中,過(guò)夜培養(yǎng)后分別用小分子2,3,4-三羥基苯甲醛及2,4,5-三羥基苯甲醛培養(yǎng)48 h.接著用0.25 mg/m L的MTT孵育細(xì)胞4 h以生成藍(lán)紫色結(jié)晶甲臜,輕輕吸去孔中液體后每孔用100μL DMSO溶解結(jié)晶物,震搖5 min后用Spectra Max M5酶標(biāo)儀測(cè)定490 nm處的吸光度.
圖1 CC-1(a)和CC-2(b)的合成路線Fig.1 The synthetic process of CC-1(a)and CC-2(b)
抑菌實(shí)驗(yàn):金黃色葡萄球菌的單克隆體用Luria-Bertani(LB)液體培養(yǎng)基過(guò)夜培養(yǎng)后,離心收集菌體,稀釋至在600 nm處的吸光度為1;空白組為細(xì)菌在不加任何試劑的LB液體培養(yǎng)基培養(yǎng)8 h,3個(gè)對(duì)照組分別為細(xì)菌在含有殼聚糖、CC-1和CC-2的LB液體培養(yǎng)基培養(yǎng)8 h后,將菌液稀釋1×104倍,分別涂布在LB固體培養(yǎng)基上過(guò)夜培養(yǎng).
小鼠實(shí)驗(yàn):取12只昆明白小鼠分為4組,每組3 只,在所有小鼠左側(cè)背部用打孔器(直徑1 cm)造傷口模型,傷口每日分別涂CC-1、CC-2、商品藥(DuoDERM,美國(guó)施貴寶公司)、磷酸鹽緩沖液(PBS),觀察傷口愈合情況.
2.1反應(yīng)物量比例的優(yōu)化
為探索生成水凝膠時(shí)殼聚糖與2,4,5-三羥基苯甲醛或2,3,4-三羥基苯甲醛反應(yīng)量的最合適比例,分別按質(zhì)量比為6∶5,6∶4,6∶3.5,6∶3,6∶2.5,6∶2在上述條件中進(jìn)行反應(yīng).如圖2(a)所示,以任一比例修飾的2,3,4-三羥基苯甲醛的殼聚糖在4 h后均形成水凝膠. 圖2(b)中,2,4,5-三羥基苯甲醛修飾的殼聚糖成膠速度較慢,在相同時(shí)間內(nèi)只有質(zhì)量比為6∶5和6∶4的成水凝膠狀,但過(guò)夜后,任一比例修飾的2,4,5-三羥基苯甲醛的殼聚糖均形成水凝膠.該課題設(shè)計(jì)的最終目的是希望將其用于傷口的處理,所以原則上希望該水凝膠含有盡可能多的殼聚糖且始終使其殼聚糖能有更多裸露的氨基使其帶正電(殼聚糖的正電性是其抑制細(xì)菌生長(zhǎng)的原理[29]),因此我們選用質(zhì)量比為6∶2來(lái)反應(yīng)生成水凝膠CC-1和CC-2,后續(xù)實(shí)驗(yàn)所用的水凝膠均以該比例合成得到.
2.2合成產(chǎn)物表征
2.2.1FT-IR表征
將合成的CC-1和CC-2凍干,使用溴化鉀壓片法進(jìn)行FT-IR測(cè)定.圖3所示分別為CC-1和CC-2的譜圖.根據(jù)紅外光譜學(xué)的波峰分布,烯胺鍵在1 630~ 1 690 cm-1有較強(qiáng)吸收,CC-1和CC-2分別在1 650 cm-1和1 659 cm-1有吸收峰,因此可以初步斷定反應(yīng)生成了殼聚糖水凝膠CC-1和CC-2.
2.2.2NMR表征
圖4(a)為殼聚糖的1H-NMR譜圖,圖4(b)和圖4(c)分別為所合成殼聚糖水凝膠CC-1和CC-2 的1H-NMR譜圖及其各質(zhì)子的譜峰歸屬.圖4(b)中, δ=9.44左右的峰表示反應(yīng)生成了烯胺鍵上的質(zhì)子峰,δ=6.5~7.5的峰對(duì)應(yīng)2,4,5-三羥基苯甲醛的苯環(huán)上的2個(gè)質(zhì)子峰.圖4(c)中,δ=9.76左右的峰表示反應(yīng)生成了烯胺鍵上的質(zhì)子峰,δ=9.57左右的峰表示2,3,4-三羥基苯甲醛2位處的羥基與氮形成氫鍵的峰,說(shuō)明所形成的殼聚糖水凝膠具有一定的穩(wěn)定性;δ=6.5~7.5的峰對(duì)應(yīng)2,3,4-三羥基苯甲醛的苯環(huán)上的2個(gè)氫和2個(gè)羥基氫的質(zhì)子峰.通過(guò)1H-NMR譜圖分析,證明殼聚糖與2,4,5-三羥基苯甲醛和2,3,4-三羥基苯甲醛反應(yīng)生成了殼聚糖水凝膠高分子.
圖2 反應(yīng)物量比例的優(yōu)化Fig.2 The optimization of amount of reactant proportion
圖3 CC-1和CC-2的FT-IR譜圖Fig.3 FT-IR spectra of CC-1 and CC-2
2.3黏附性實(shí)驗(yàn)
將2塊一樣大小的豬皮(25 cm×40 cm),均勻涂抹上CC-2(10 mg/m L),厚約為0.5 mm,黏貼在一起4 h后測(cè)其拉力,最大值可達(dá)70 k Pa,證明CC-2具有一定的黏附性.根據(jù)相同的方法測(cè)CC-1的黏附力,發(fā)現(xiàn)其在4 h內(nèi)不能將兩塊豬皮黏合到一起,黏合性能較差.由此可見(jiàn),CC-1與CC-2中羥基位置的細(xì)微差別會(huì)導(dǎo)致二者在黏附性能上的巨大差異.
圖4 殼聚糖(a)及其水凝膠CC-1(b)和CC-2(c)的1H-NMR譜圖Fig.41H-NMR spectra of chitosan(a), CC-1(b)and CC-2(c)
2.4MTT實(shí)驗(yàn)
殼聚糖水凝膠最終希望能夠用于對(duì)活體傷口的處理,因此對(duì)材料的毒性進(jìn)行評(píng)估是必要的.將He La細(xì)胞在不同質(zhì)量濃度(10,50,100μg/m L)的2,4,5-三羥基苯甲醛或2,3,4-三羥基苯甲醛中孵育48 h,用MTT實(shí)驗(yàn)檢測(cè)細(xì)胞存活情況.如圖5(a)所示,2,4,5-三羥基苯甲醛與細(xì)胞的生物相容性好,即使在100 μg/m L的條件下細(xì)胞存活率也能達(dá)到65%,說(shuō)明該分子沒(méi)有特別明顯的細(xì)胞毒性;如圖5(b)所示,2,3,4-三羥基苯甲醛毒性較大,在50μg/m L時(shí),細(xì)胞存活率僅有30%.所以,由2,4,5-三羥基苯甲醛所修飾的殼聚糖水凝膠(CC-1)更適用于活體的傷口處理.
2.5對(duì)金黃色葡萄球菌的抑制作用
金黃色葡萄球菌是常見(jiàn)的容易引起傷口感染的
細(xì)菌,為考察CC-1和CC-2對(duì)其的抑制作用,將用LB液體培養(yǎng)基培養(yǎng)的金黃色葡萄球菌分為4組:空白組只加PBS,實(shí)驗(yàn)組分別加入殼聚糖、CC-1和CC-2,終質(zhì)量濃度為1 mg/m L.各組在37℃、220 r/min搖床搖菌8 h后,稀釋1×104倍涂板,在培養(yǎng)箱培養(yǎng)過(guò)夜.從圖7可以看出,CC-1組的細(xì)菌明顯少于其余3組,說(shuō)明CC-1具有一定的抑制金黃色葡萄球菌生長(zhǎng)的作用.
圖5 細(xì)胞毒性試驗(yàn)Fig.5 Cytotoxicity test
圖6 在金黃色葡萄球菌的生長(zhǎng)液中分別加入PBS(a)、殼聚糖(b)、CC-1(c)、CC-2(d)對(duì)其生長(zhǎng)狀況的影響Fig.6 Influence of the growth of Staphylococcus aureus treated with PBS(a),chitosan(b),CC-1(c)and CC-2(d)
2.6活體實(shí)驗(yàn)
為驗(yàn)證水凝膠對(duì)傷口的愈合作用,創(chuàng)建了4組小鼠傷口模型.將4組小鼠的左側(cè)背部用打孔機(jī)各打出直徑1 cm的圓形傷口,之后每天分別在4組小鼠的傷口上涂抹CC-1、CC-2、商品藥(DuoDERM)以及PBS,觀察小鼠傷口愈合的的情況,并在0,3,7,14 d拍照.如圖7所示,涂抹CC-1的小鼠切口皮膚愈合與涂抹商品藥的小鼠皮膚愈合速度最快,涂抹PBS的對(duì)照組小鼠傷口愈合最慢.4組小鼠均沒(méi)有傷口感染的情況.實(shí)驗(yàn)證明CC-1對(duì)傷口的治療具有較好的療效.
圖7 分別涂抹CC-1、CC-2、DuoDERM以及PBS的傷口圖片F(xiàn)ig.7 Photographs of wounds treated with CC-1,CC-2,DuoDERM and PBS
本文設(shè)計(jì)并合成了一類具有黏附性的兒茶酚類修飾的殼聚糖水凝膠CC-1和CC-2,可以用于傷口處理.2,3,4-三羥基苯甲醛或2,4,5-三羥基苯甲醛與殼聚糖上的氨基反應(yīng)形成烯胺鍵,合成原料易得,僅需一步反應(yīng),反應(yīng)時(shí)間快,且反應(yīng)副產(chǎn)物僅有水,可以即配即用.CC-2具有較強(qiáng)黏附性;而CC-1對(duì)金黃色葡萄球菌的生長(zhǎng)有一定抑制作用.在小鼠的傷口模型中,使用CC-1處理傷口與用商品化藥膏處理效果相當(dāng),證明CC-1對(duì)傷口有較好的治療作用.
參考文獻(xiàn):
[1] GURTNER G C,WERNER S,BARRANDON Y,et al. Wound repair and regeneration[J].Nature,2008,453 (7193):314-321.
[2] CHEN R N,WANG G M,CHEN C H,et al. Development of N,O-(carboxymethyl)chitosan/collagen matrixes as a wound dressing[J].Biomacromolecules, 2006,7(4):1058-1064.
[3] UENO H,MORI T,FUJINAGA T.Topical formulations and wound healing applications of chitosan[J].Advanced Drug Delivery Reviews,2001,52(2):105-115.
[4] MCGANN C,KIICK K.Heparin-functionalized materials in tissue engineering applications[M]∥SUJATA K B. Engineering biomaterials for regenerative medicine.New York:Springer,2012:225-250.
[5] BAO P,KODRA A,TOMICCANIC M,et al.The role of vascular endothelial growth factor in wound healing[J]. Journal of Surgical Research,2009,153(2):347-358.
[6] MURAKAMI K,AOKI H,NAKAMURA S,et al.Hydrogel blends of chitin/chitosan,fucoidan and alginate as healing-impaired wound dressings [J].Biomaterials, 2010,31(1):83-90.
[7] JIN R,HIEMSTRA C,ZHONG Z,et al.Enzymemediated fast in situ formation of hydrogels from dextran-tyramine conjugates[J].Biomaterials,2007,28 (18):2791-2800.
[8] JABBARI E.Bioconjugation of hydrogels for tissue engineering[J].Current Opinion in Biotechnology,2011,22 (5):655-660.
[9] PARK K M,SHIN Y M,JOUNG Y K,et al.In situ forming hydrogels based on tyramine conjugated 4-Arm-PPO-PEO via enzymatic oxidative reaction[J].Biomacromolecules,2010,11(3):706-712.
[10] KIM I Y,SEO S J,MOON H S,et al.Chitosan and its derivatives for tissue engineering applications[J].Biotechnology Advances,2008,26(1):1-21.
[11] NOEL S P,COURTNEY H,BUMGARDNER J D,et al.Chitosan films:a potential local drug delivery system for antibiotics[J].Clinical Orthopaedics and Related Research,2008,466(6):1377-1382.
[12] GOODAY G W.Physiology of microbial degradation of chitin and chitosan[M]∥RATLEDGE C.Biochemistry of microbial degradation.Netherlands:Kluwer Academic Publishers,1994:279-312.
[13] UENO H,NAKAMURA F,MURAKAMI M,et al.E-valuation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages[J].Biomaterials,2001,22(15): 2125-2130.
[14] RIBEIRO M P,ESPIGA A,SILVA D,et al. Development of a new chitosan hydrogel for wound dressing[J].Wound Repair and Regeneration,2009,17 (6):817-824.
[15] KEAN T,THANOU M.Biodegradation,biodistribution and toxicity of chitosan[J].Advanced Drug Delivery Reviews,2010,62(1):3-11.
[16] ZAHAROFF D A,ROGERS C J,HANCE K W,et al. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination[J]. Vaccine,2007,25(11):2085-2094.
[17] LI P,POON Y F,LI W,et al.A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability[J].Nature Materials, 2011,10(2):149-156.
[18] LU S,SONG X,CAO D,et al.Preparation of water-soluble chitosan[J].Journal of Applied Polymer Science, 2004,91(6):3497-3503.
[19] PILLAI C,PAUL W,SHARMA C P.Chitin and chitosan polymers:chemistry,solubility and fiber formation[J].Progress in Polymer Science,2009,34(7): 641-678.
[20] NO H K,PARK N Y,LEE S H,et al.Antibacterial activity of chitosans and chitosan oligomers with different molecular weights[J].International Journal of Food Microbiology,2002,74(1):65-72.
[21] DU J,HSIEH Y L.PEGylation of chitosan for improved solubility and fiber formation via electrospinning[J]. Cellulose,2007,14(6):543-552.
[22] JEONG Y I,KIM D G,JANG M K,et al.Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan[J].Carbohydrate Research,2008,343(2):282-289.
[23] MAO S,SHUAI X,UNGER F,et al.Synthesis,characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers[J].Biomaterials,2005,26(32):6343-6356.
[24] LEE H,DELLATORE S M,MILLER W M,et al. Mussel-inspired surface chemistry for multifunctional coatings[J].Science,2007,318(5849):426-430.
[25] WAITE J H,TANZER M L.Polyphenolic substance of Mytilus edulis:novel adhesive containing L-dopa and hydroxyproline [J].Science,1981,212 (4498): 1038-1040.
[26] CHUNG Y C,KUO C L,CHEN C C.Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction [J].Bioresource Technology,2005,96(13):1473-1482.
[27] KIM K,RYU J H,LEE D Y,et al.Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble,adhesive chitosan derivative for hydrogels and Lb L assembly[J].Biomaterials Science, 2013,1(7):783.
[28] HONG S,YANG K,KANG B,et al.Hyaluronic acid catechol:a biopolymer exhibiting a p H-dependent adhesive or cohesive property for human neural ctem cell engineering[J].Advanced Functional Materials,2013, 23(14):1774-1780.
[29] HARISH PRASHANTH K V,THARANATHAN R N.Chitin/chitosan:modifications and their unlimited application potential—an overview[J].Trends in Food Science& Technology,2007,18(3):117-131.
A Green and Mix-to-use Approach for Mussel Inspired Chitasan-Catechol Hydrogel
CHEN Xi,YU Mingzhu,LIU Jian,YANG Liu*,HAN Shoufa*
(College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China)
Abstract:Hydrogels have important applications in biomedical fields,such as promoting wound healing.Herein we tried to develop chitosan based adhesive hydrogels as tissue adhesives.We developed a green and mix-to-use approach for generation of mussel inspired chitasan-catechol hydrogel.An in situ gel-forming system composed of 2,4,5-three hydroxy benzaldehyde or 2,3,4-three hydroxy benzaldehyde conjugated chitosan derivatives was easily prepared,producing the hydrogels CC-1 and CC-2 respectively.In vitro study demonstrated that CC-1 could inhibit the growth of Staphylococcus aureus whereas CC-2 was a superior adhesive.In vivo wound healing study was performed by smearing hydrogels on rat dorsal wounds with a diameter of 10 mm and keeping them on for 14 days.Histological results demonstrated that CC-1 hydrogel was of high performance and comparable to commercialized wound dressing(DuoDERM)on wound healing.This approach is advantageous as no toxic byproducts are generated during making CC-1 and CC-2 hydrogels and only water is produced following formation of Schiff-base promoted hydrogels.The mix-to-use technique is of significance for commercial application.
Key words:chitosan;catechol;hydrogel;bioadhesive
*通信作者:shoufa@xmu.edu.cn(韓守法);liuyang@xmu.edu.cn(楊柳)
基金項(xiàng)目:國(guó)家自然科學(xué)基金(21305116);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20130121120003);福建省自然科學(xué)基金(2014J01059, 2011J06004);湖南大學(xué)化學(xué)生物傳感與計(jì)量學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室基金(2012002)
收稿日期:2015-05-13 錄用日期:2015-08-19
doi:10.6043/j.issn.0438-0479.2016.02.006
中圖分類號(hào):O 631.3
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0438-0479(2016)02-0178-06
引文格式:陳曦,俞明珠,劉劍,等.綠色化學(xué)方法合成兒茶酚-殼聚糖水凝膠的應(yīng)用[J].廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,55 (2):178-183.
Citation:CHEN X,YU M Z,LIU J,et al.A green and mix-to-use approach for mussel inspired chitasan-catechol hydrogel[J]. Journal of Xiamen University(Natural Science),2016,55(2):178-183.(in Chinese)