• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      電子介體研究進(jìn)展

      2016-03-25 02:57:44丁阿強(qiáng)鄭平
      關(guān)鍵詞:介體腐殖質(zhì)類物質(zhì)

      丁阿強(qiáng),鄭平,張 萌

      (浙江大學(xué)環(huán)境與資源學(xué)院,杭州310058)

      電子介體研究進(jìn)展

      丁阿強(qiáng),鄭平*,張 萌

      (浙江大學(xué)環(huán)境與資源學(xué)院,杭州310058)

      電子介體不僅在胞內(nèi)生理過(guò)程中起著核心作用,也在胞外生態(tài)過(guò)程中起著重要作用.探明電子介體的生理生態(tài)功能,對(duì)于微生物電化學(xué)過(guò)程的研究和污染生物修復(fù)技術(shù)的研發(fā)具有重大的現(xiàn)實(shí)意義.電子介體可分為細(xì)胞合成的生理性電子介體和非細(xì)胞合成的非生理性電子介體.本文綜述了幾種典型的生理性電子介體和非生理性電子介體的化學(xué)結(jié)構(gòu)、氧化還原電位、電子傳遞機(jī)制及其在環(huán)境生物技術(shù)研發(fā)中的應(yīng)用.

      電子傳遞鏈;生理性電子介體;非生理性電子介體;生理生態(tài)意義

      SummaryElectron transport chain(ETC)consists of a series of compounds which is arranged according to electron affinity to transport electron.Respiratory process is the main source of energy in microbe,however,with many blind spots for restriction of in-situ research.It is generally acknowledged that,ETC possesses close relationship with respiratory process,which provides a possible way to further research of ETC and respiratory in microbe.

      In general,electron is considered to transfer from extracellular into intracellular through respiratory chain. However,recent studies have demonstrated that electron can also transfer through inverse way,i.e.from intracellular to extracellular.Three main mechanisms were hypothesized for electron transfer:1)through direct contact,2)through nanowire,3)utilizing electron transfer mediator(ETM).Among these researches,the ETM should be paid more attention,for which plays key roles in intracellular physiological as well as in extracellular ecological processes.It is reported that ETMs usually take part in many redox reactions in intracellular and act as a link between these reactions in the respiratory chain.Besides,they can also take electrons to the inside or outside of the cell,expanding cell's metabolic domain.

      ETM can be classified into cellular synthesized(physiological ETM,PETM)and extracellular synthesized(non-physiological ETM,nPETM)by the source.PETMs include many small molecules,such as phenazine andflavin.Phenazine is a kind of nitrogenous heterocyclic compound,and four main phenazine,i.e.phenazine-1-carboxylate,pyocyanin,phenazine-1-carboxamide and 1-hydroxyphenazine are common in microbe.Their redox potentials are between-40 to-174 m V,indicating NADH or coenzyme Q is the ideal position for the electron transfer from electron donor.Flavin is a kind of isoalloxazine derivative,and three main compounds are riboflavin,flavin adenine dinucleotide and flavin mononucleotide.They have similar redox potential to phenazine as well as the electron transfer pathway.n PETMs mainly include humus and AQDS.Both of them have benzoquinonyl,indicating that they can transfer electron through variation between benzoquinonyl and phenolic group.Besides,some humus,such as dimethyl sulfone and N-methylaniline,can transfer electron by nitrogen or sulfur containing group.

      The utilization of PETM and nPETM has raised more and more attention in environmental pollution control,for their effects in microorganism biodegradation.Recent research focused on microbial fuel cell and microbial electrolysis cell,has proved that the additions of PETM and n PETM can enhance contaminant removal in the control of dye,uranium and other metals pollution.Further research had demonstrated that the additional PETM and nPETM showed positive correlation with pollutant removal.

      Clarifying the physiological and ecological functions of ETM would benefit the comprehensive of microbial electrochemical process and the development of bioremediation technology,as well as the development of microbial fuel cell(MFC)and microbial electrolysis cell(MEC).In this paper,a review on the chemical construction,redox potential,electron transfer mechanism and application in environmental biotechnology of typical ETMs was presented.

      電子傳遞鏈(electron transport chain,ECT)是一系列電子傳遞體(electron transport complex)按電子親和力逐漸升高的順序組成的電子傳遞系統(tǒng)[1].其中,呼吸鏈(respiratory chain)是電子傳遞鏈的主要存在形態(tài)之一.呼吸鏈位于細(xì)胞膜上,是生物能量代謝的主要場(chǎng)所.呼吸鏈由氫載體(hydrogen carrier)和電子載體(electron carrier)組成.由于氫原子由質(zhì)子和電子組成,因此氫載體也是電子載體.盡管對(duì)于呼吸鏈的研究存在許多盲點(diǎn),學(xué)者一般認(rèn)為呼吸鏈上的電子可向胞內(nèi)傳遞(簡(jiǎn)稱胞內(nèi)電子傳遞).但近年來(lái)研究發(fā)現(xiàn),呼吸鏈上的電子也可向胞外傳遞(簡(jiǎn)稱胞外電子傳遞)[2].胞外電子傳遞是生物細(xì)胞進(jìn)行內(nèi)外物質(zhì)、能量、信息交換的重要方式.

      胞外電子傳遞有3種途徑,一是直接傳遞,細(xì)胞直接貼合最終電子受體,通過(guò)細(xì)胞膜和細(xì)胞壁上的蛋白質(zhì)將電子從胞內(nèi)傳遞至胞外;二是納米導(dǎo)線傳遞,細(xì)胞通過(guò)1根從細(xì)胞膜伸出的“電線”(蛋白質(zhì))連接最終電子受體,將電子從胞內(nèi)傳遞至胞外;三是電子介體(electron transfer mediator,ETM)傳遞,細(xì)胞通過(guò)電子傳遞體將電子從胞內(nèi)傳遞至胞外[3].

      電子介體是一種具有氧化還原功能的小分子物質(zhì).在胞外電子傳遞過(guò)程中,電子介體可以先從細(xì)胞上接收電子,由氧化態(tài)轉(zhuǎn)化成還原態(tài);再將電子傳遞至電子受體(無(wú)機(jī)物、有機(jī)物或電極),自身從還原態(tài)恢復(fù)到氧化態(tài).本文擬對(duì)電子介體的種類、傳電機(jī)制和功能等逐一綜述,以供參考.

      1 呼吸鏈與電子載體

      呼吸鏈?zhǔn)怯梢幌盗袣鋫鬟f反應(yīng)(hydrogen transfer reactions)和電子傳遞反應(yīng)(electron transfer reactions)組成的連續(xù)反應(yīng)體系.它將基質(zhì)釋放的電子傳遞給氧(或其他電子受體),同時(shí)合成ATP.構(gòu)成呼吸鏈的電子傳遞體稱為電子載體.電子載體的本質(zhì)是酶、輔酶或輔基.由于電子載體一般附著于細(xì)胞膜上,遷移性較弱,因此可將呼吸鏈中的電子載體看成固定式電子傳遞體.在微生物中,典型的呼吸鏈由4種復(fù)合體構(gòu)成,分別為復(fù)合體Ⅰ、復(fù)合體Ⅱ、復(fù)合體Ⅲ與復(fù)合體Ⅳ.

      復(fù)合體Ⅰ又稱為NADH-輔酶Q還原酶,其功能是將還原態(tài)輔酶Ⅰ(NADH)中的電子傳遞給輔酶Q.該復(fù)合體可以將糖酵解、三羧酸(TCA)循環(huán)或脂肪酸氧化途徑連接至呼吸鏈,貫通細(xì)胞膜與細(xì)胞體內(nèi)的電子通路.復(fù)合體Ⅰ中的NADH將2個(gè)電子依次通過(guò)黃素單核苷酸(flavin mononucleotide,F(xiàn)MN)與鐵硫蛋白傳遞給輔酶Q,總反應(yīng)式為

      復(fù)合體Ⅱ又稱為琥珀酸-輔酶Q還原酶.在TCA循環(huán)中,琥珀酸氧化成延胡索酸,釋放的電子被黃素腺嘌呤二核苷酸(flavin adenine dinucleotide,F(xiàn)AD)捕獲.復(fù)合體Ⅱ?qū)㈢晁後尫诺?個(gè)電子分別通FAD與鐵硫蛋白傳遞給輔酶Q,總反應(yīng)方程式為

      復(fù)合體Ⅲ又稱為輔酶Q-細(xì)胞色素c還原酶.輔酶Q從上游接受電子,通過(guò)獨(dú)特的Q循環(huán)傳遞給細(xì)胞色素c,總反應(yīng)式為

      復(fù)合體Ⅳ又稱為細(xì)胞色素c氧化酶.它位于呼吸鏈末端,將從上游接受的電子傳遞給最終電子受體氧氣.主要電子傳遞環(huán)節(jié)有:細(xì)胞色素c→CuA中心→血紅色a→CuB中心/血紅色a3→氧氣,總反應(yīng)方程式為

      為保證呼吸鏈中電子流動(dòng)的暢通,各類電子載體按氧化還原電勢(shì)由低到高依次排列,構(gòu)成的電勢(shì)塔見(jiàn)圖1[4].

      圖1 不同物質(zhì)氧化還原電位組成的電勢(shì)塔[4]Fig.1 Potential tower composed of different redox potentials[4]

      從電勢(shì)塔可以看出,呼吸鏈中的幾個(gè)關(guān)鍵電子載體是NADH、輔酶Q、細(xì)胞色素c、細(xì)胞色素a和氧氣,它們的氧化還原電位分別為-320 m V、+110 m V、+250 m V、+390 m V和+900 m V.從NADH到氧氣的電子流動(dòng)驅(qū)動(dòng)氧化磷酸化合成ATP,這是生物能量代謝的核心.

      2 生理性電子介體

      除了構(gòu)成呼吸鏈的電子載體外,還有許多小分子有機(jī)物也具有接受電子和給出電子的能力,充當(dāng)著細(xì)胞內(nèi)、細(xì)胞間、細(xì)胞與固體表面之間的電子傳遞體[56],這些小分子有機(jī)物稱為電子介體.與呼吸鏈中的固定式電子傳遞體相反,電子介體遷移性較強(qiáng),故可將電子介體看成流動(dòng)式電子傳遞體.細(xì)胞自身合成的電子介體具有特定的生理功能,稱為生理性電子介體(physiological electron transfer mediator,PETM).根據(jù)其氧化還原電位高低,生理性電子介體可從呼吸鏈上的不同電子載體獲取電子,并傳遞給目標(biāo)電子受體[7].

      2.1 吩嗪類PETM

      吩嗪是一種含氮雜環(huán)化合物,許多微生物能合成吩嗪類物質(zhì).迄今為止,文獻(xiàn)記載的吩嗪類物質(zhì)已近100種.吩嗪類PETM主要有4種:1-羧酸吩嗪(phenazine-1-carboxylate,PCA)、綠膿菌素(pyocyanin,PYO)、1-甲酰胺吩嗪(phenazine-1-carboxamide,PCN)和1-羥基吩嗪(1-hydroxyphenazine,1-OHPHZ).其中,PCA是合成其他吩嗪類物質(zhì)的前體,PYO則在吩嗪類化合物中豐度最高[8].

      在銅綠假單胞菌(Pseudomonas aeruginosa)中,吩嗪類物質(zhì)的合成過(guò)程為莽草酸途徑→分支酸途徑→吩嗪修飾途徑[9].莽草酸途徑是芳香族氨基酸合成的共同途徑[10].糖酵解途徑產(chǎn)生的磷酸烯醇式丙酮酸(PEP)和磷酸戊糖途徑產(chǎn)生的赤蘚糖-4-磷酸(E4P),可合成3-脫氧-阿拉伯庚酮糖酸-7-磷酸(DAHP)進(jìn)入莽草酸途徑.在正常的分支酸途徑中,分支酸轉(zhuǎn)化成芳香族氨基酸(酪氨酸、色氨酸和苯丙氨酸).然而在吩嗪類物質(zhì)合成過(guò)程中,分支酸由PhzE酶轉(zhuǎn)化成2-氨基-2-脫氧異分枝酸(ADIC),再依次由PhzD酶、PhzD酶、Phz A酶、PhzB酶、PhzG酶等酶轉(zhuǎn)化成2,3-二氫-3-羥基氨基苯甲酸(DH HA)等中間產(chǎn)物,并最終產(chǎn)生PCA[11].作為吩嗪類物質(zhì)的前體,PCA進(jìn)一步由PhzS酶和PhzO酶轉(zhuǎn)化成PYO和1-OHPHZ[12-13].

      4種吩嗪類物質(zhì)的化學(xué)式及氧化還原電位見(jiàn)表1[14].吩嗪類PETM的氧化還原電位大多在-200~0 mV范圍,正好介于電子傳遞鏈復(fù)合體Ⅰ中的NADH(-320 m V)和復(fù)合體Ⅰ/Ⅱ/Ⅲ中的輔酶Q(+110 m V)之間.這意味著吩嗪類物質(zhì)可從呼吸鏈的NADH獲取電子,再將其傳遞給目標(biāo)電子受體;也可從其他電子供體獲得的電子,再將其傳遞給輔酶Q.換言之,吩嗪類物質(zhì)可以中介呼吸鏈和細(xì)胞內(nèi)的生理過(guò)程和細(xì)胞外的非生理過(guò)程(生態(tài)過(guò)程).

      表1 吩嗪類物質(zhì)化學(xué)式及氧化還原電位[14]Table 1_Chemical formula and redox potential of phenazine[14]

      吩嗪類物質(zhì)的電子傳遞過(guò)程見(jiàn)圖2[15].其中,R1和R2指吩嗪類物質(zhì)碳1位和2位上的取代基.氧化態(tài)吩嗪(Phz)可獲得1個(gè)電子產(chǎn)生Phz·-(Step 1);再獲得1個(gè)電子產(chǎn)生Phz2-(Step 5);接著獲得1個(gè)質(zhì)子產(chǎn)生Phz H-(Step 6);也可以獲得1個(gè)質(zhì)子產(chǎn)生PhzH·(Step 2),再獲得1個(gè)電子產(chǎn)生Phz H-(Step 3);最終Phz H-獲得1個(gè)質(zhì)子產(chǎn)生Phz H2(Step 4).接受電子時(shí),吩嗪類物質(zhì)獲得2個(gè)電子同時(shí)吸收2個(gè)質(zhì)子;給出電子時(shí),吩嗪類物質(zhì)給出2個(gè)電子同時(shí)釋放2個(gè)質(zhì)子.

      吩嗪類PETM有著廣泛的應(yīng)用,尤其是在目前研究較熱的微生物燃料電池(microbial fuel cell,MFC)或微生物電解池(microbial electrolysis cell,MEC)中.RABAEY,等[16]發(fā)現(xiàn),將吩嗪類物質(zhì)PYO添加到以P.aeruginosa為生物催化劑的MFC中,輸出功率可提高5倍以上;反之,將生物催化劑換成突變株時(shí),輸出功率降低到對(duì)照的5%;將PYO添加到以突變株為生物催化劑的MFC中,輸出功率恢復(fù)到對(duì)照的50%.ZHANG,等[17]和COURNET,等[18]也發(fā)現(xiàn),以P.aeruginosa為生物催化劑的MFC輸出電流和電流密度均遠(yuǎn)高于對(duì)照,通過(guò)循環(huán)伏安法和氣質(zhì)聯(lián)用等方法確定,發(fā)揮關(guān)鍵作用的是P.aeruginosa分泌的吩嗪類物質(zhì).除PYO以外,PCA、PCN等許多吩嗪類物質(zhì)也已證明對(duì)MFC的輸出功率具有明顯的提升作用[19].但是,各種吩嗪類物質(zhì)的產(chǎn)生量及其電子傳遞效率也不盡相同[20].在MFC中,一般PYO濃度比PCA、PCN和1-OHPHZ高20~30倍;添加等量PYO、PCA、PCN和1-OHPHZ,輸出電流密度分別較對(duì)照提高20、3、8和2倍.P.aeruginosa產(chǎn)生的吩嗪類物質(zhì)除了可以自己利用,也可供其他微生物(如Brevibacillus)利用,促進(jìn)產(chǎn)電活性[21].

      圖2 吩嗪類物質(zhì)的電子傳遞過(guò)程[15]Fig.2 Electron transfer process of phenazine[15]

      2.2 黃素類PETM

      黃素類物質(zhì)是一類異咯嗪衍生物.核黃素(riboflavin,RF)是大部分黃素類物質(zhì)的前體,1879年首次從牛乳中分離獲得[22].在細(xì)胞電子傳遞中,F(xiàn)AD和FMN起著重要作用.在p H為7的標(biāo)準(zhǔn)條件下,F(xiàn)AD和FMN的氧化還原電位分別為-219 m V和-205 m V[23].類似吩嗪類物質(zhì),黃素類物質(zhì)的氧化還原電勢(shì)也介于復(fù)合體Ⅰ/Ⅱ/Ⅲ中的NADH與輔酶Q之間,可將其電子傳給輔酶Q,也可從FADH/FMNH獲得電子.氧化態(tài)黃素類物質(zhì)可通過(guò)異咯嗪環(huán)獲得電子和質(zhì)子;反之,還原態(tài)黃素類物質(zhì)則可通過(guò)異咯嗪環(huán)給出電子和質(zhì)子[2425].

      VON CANSTEIN,等[26]和MARSILI,等[27]2個(gè)課題組同時(shí)證明,Shewanella oneidensis可分泌黃素類物質(zhì)作為電子傳遞體.據(jù)VON CANSTEIN報(bào)道,在厭氧與好氧條件下均可從S.oneidensis培養(yǎng)液中分餾獲得RF與FMN.MARSILI發(fā)現(xiàn),將MFC的培養(yǎng)液換成新鮮培養(yǎng)基后,輸出電流大幅下降;換回原來(lái)的培養(yǎng)液后,輸出電流立刻回升.進(jìn)一步研究發(fā)現(xiàn),添加黃素類物質(zhì)可促進(jìn)鐵(Ⅲ)氧化物的還原;當(dāng)鐵(Ⅲ)氧化物為唯一電子受體時(shí),還可促進(jìn)S.oneidensis的生長(zhǎng)[2829].上述事例證明,黃素類PETM在電子傳遞中具有重要作用[30].黃素類PETM也可將電子從胞內(nèi)向胞外傳遞給偶氮染料、鈾(Ⅵ)和電極,從而強(qiáng)化化學(xué)還原和產(chǎn)電過(guò)程[3133].據(jù)文獻(xiàn)報(bào)道,添加RF與FMN時(shí),莧菜紅降解速率提高3倍,鈾(Ⅵ)還原速率提高2倍,MFC輸出電流提高4倍.值得注意的是,并不是所有黃素類物質(zhì)都可充當(dāng)電子介體.MASUDA,等[34]發(fā)現(xiàn),Lactococcus lactis并不能像S.oneidensis一樣利用FAD作為電子介體.

      3 非生理性電子介體

      除了生理性電子介體外,還有一些電子介體存在于自然界中,但并非由細(xì)胞直接合成.這些不是由細(xì)胞直接合成的電子介體稱為非生理性電子介體(non-physiological electron transfer mediator,nPETM),主要包括腐殖質(zhì)和2,6-蒽醌二磺酸(anthraquione-2,6-disulfonate,AQDS)等.

      3.1 腐殖質(zhì)

      腐殖質(zhì)是自然界廣泛存在的有機(jī)物,在土壤和水底沉積物中,腐殖質(zhì)的質(zhì)量百分比可達(dá)10%[35].腐殖質(zhì)的碳骨架由烷基和芳香族基團(tuán)交聯(lián)而成,主要官能團(tuán)有羧基、羥基、醇羥基、酮基和含醌基團(tuán)[3536].TRATNYEK,等[37]和DUNNIVANT,等[38]首次證明,含醌基團(tuán)是腐殖質(zhì)充當(dāng)電子介體的功能基團(tuán)[3738].此后HERNáNDEZ-MONTOYA,等[39]、AESCHBACHER,等[40]和RATASUK,等[41]進(jìn)一步證明,含醌基團(tuán)數(shù)量與電子傳遞速率/反應(yīng)速率呈線性相關(guān)關(guān)系.近年來(lái)的研究表明,腐殖質(zhì)中的非醌類官能團(tuán)在電子傳遞中也發(fā)揮重要作用,其貢獻(xiàn)率可達(dá)44%~58%[39].非醌類官能團(tuán)的電子傳遞過(guò)程可能與一些含氮及含硫基團(tuán)接受和釋放電子有關(guān),這類電子介體有二甲基砜、3-甲硫基丙酸和N-甲基苯胺等[42-43].

      腐殖質(zhì)可促進(jìn)環(huán)境中Fe(Ⅲ)還原.HOBBIE,等[44]和BHUSHAN,等[45]證明,腐殖質(zhì)可明顯提高Fe(Ⅲ)的生物還原速率.不同來(lái)源的腐殖質(zhì)對(duì)Fe(Ⅲ)還原的強(qiáng)化作用也不盡相同,來(lái)源于自然界的腐殖質(zhì)電子傳遞效果顯著優(yōu)于人工合成的腐殖質(zhì).這表明,一方面微生物可借助天然電子介體作用拓展微域;另一方面腐殖質(zhì)在自然界生態(tài)過(guò)程中可能發(fā)揮著重要作用[46].除了促進(jìn)Fe(Ⅲ)等無(wú)機(jī)物的生物還原,在生物修復(fù)方面,腐殖質(zhì)可促進(jìn)五氯苯酚等有機(jī)污染物的生物降解[47].在進(jìn)一步的研究中發(fā)現(xiàn),將腐殖質(zhì)固化在固相上,通過(guò)生物電化學(xué)手段可以進(jìn)一步提高五氯苯酚降解效率[48].

      3.2 AQDS

      AQDS是醌類物質(zhì),它與輔酶Q具有相似的醌類結(jié)構(gòu),可充當(dāng)電子介體,在氧化態(tài)(醌)、半氧化態(tài)(半醌)、還原態(tài)(酚)之間變化[49].2,6-蒽醌二磺酸3種狀態(tài)的氧化還原電勢(shì)分別為-250 m V、-210 m V和-170 m V,在電勢(shì)塔中同樣介于呼吸鏈復(fù)合體Ⅰ/Ⅱ/Ⅲ中的NADH與輔酶Q之間[50].

      AQDS已應(yīng)用于染料廢水脫色、含氮污染物脫氮和難降解有機(jī)物降解等方面.VAN DER ZEE,等[51]和DOS SANTOS,等[52]同時(shí)證明,在染料活性紅2(RR2)生物處理系統(tǒng)中添加AQDS,可明顯提高脫色效果和降解速率,染料降解的一級(jí)反應(yīng)速率常數(shù)可提高一個(gè)數(shù)量級(jí)以上;常溫下添加AQDS的效果遠(yuǎn)遠(yuǎn)優(yōu)于高溫下添加.這個(gè)結(jié)論在單級(jí)與二級(jí)厭氧反應(yīng)器中也得到了驗(yàn)證[53].SUN,等[54]采用MFC進(jìn)行剛果紅染料脫色試驗(yàn),發(fā)現(xiàn)添加AQDS后不僅加快了剛果紅降解,還提高了MFC的最大能量密度36%以上.AMEZQUITA-GARCIA,等[55]將AQDS固定在活性炭纖維上,用于處理對(duì)硝基苯酚廢水,添加AQDS可促進(jìn)其向?qū)Π被椒愚D(zhuǎn)化.XI,等[56]在反硝化過(guò)程中添加抑制劑(魚(yú)藤酮、雙香豆素、疊氮化鈉)發(fā)現(xiàn),添加AQDS可顯著緩解抑制劑的抑制作用;并由此推測(cè),AQDS的作用機(jī)制是增強(qiáng)NADH與硝酸鹽還原酶之間的電子傳遞.據(jù)報(bào)道[50,57],添加AQDS也可提高DDT、四氯化碳等有機(jī)污染物的降解效果.同時(shí)AQDS可以促進(jìn)Bacillus sp.對(duì)于鉻酸鹽的降解,在環(huán)境生物修復(fù)方面有著良好的應(yīng)用前景[58].

      4 電子介體的工作機(jī)制與生理生態(tài)意義

      電子是原子的基本結(jié)構(gòu)成分之一,在電子傳遞過(guò)程中需要各類電子傳遞體牽線搭橋.對(duì)于吩嗪類和黃素類生理性電子介體以及腐殖質(zhì)和AQDS類非生理性電子介體,參與電子傳遞的分子結(jié)構(gòu)主要為含氮雜環(huán)與苯環(huán),其共同點(diǎn)是具有共軛π鍵結(jié)構(gòu).在一般分子中,電子只出現(xiàn)在原子內(nèi)的軌道上,而在形成共軛π鍵的分子中,電子可以擴(kuò)大到整個(gè)共軛π鍵.這樣可使分子中相關(guān)鍵的鍵長(zhǎng)趨于平均,提高分子的穩(wěn)定性,另外也可增大分子中電子活動(dòng)范圍,促進(jìn)分子之間的電子傳遞[59].

      2個(gè)具有共軛π鍵的分子可以發(fā)生邊對(duì)邊或者面對(duì)面的π-π堆積.這是一種共軛π鍵之間的弱相互作用,可發(fā)生分子之間的電子傳遞.由于電子介體的分子尺寸較大,面對(duì)面的π-π堆積更利于電子的直接傳遞.吩嗪類、黃素類、腐殖質(zhì)和AQDS均可從呼吸鏈上的NADH獲取電子,也可從其他電子供體獲取電子,再將其傳遞給呼吸鏈上的輔酶Q. NADH和輔酶Q的電子傳遞結(jié)構(gòu)即具有共軛π鍵的含氮雜環(huán)和苯環(huán),它們是這些電子介體進(jìn)行高效電子傳遞的結(jié)構(gòu)基礎(chǔ)[60-61].

      細(xì)胞是生物的結(jié)構(gòu)單元和功能單元,呼吸鏈?zhǔn)羌?xì)胞能量代謝的核心.通過(guò)生理性電子介體的作用,可將糖酵解、三羧酸循環(huán)或脂肪酸氧化途徑連接至呼吸鏈,貫通細(xì)胞膜與細(xì)胞體內(nèi)的電子通路;通過(guò)生理性和非生理性電子介體的作用,則可將胞外的電子傳遞過(guò)程連接至呼吸鏈,貫通細(xì)胞膜與細(xì)胞體外的電子通路.長(zhǎng)期以來(lái),生物學(xué)研究只限于胞內(nèi)電子傳遞所致的生理效應(yīng),沒(méi)有涉及胞外電子傳遞所致的生態(tài)效應(yīng).胞外電子傳遞拓展了細(xì)胞功能,對(duì)研發(fā)生物電化學(xué)過(guò)程和認(rèn)識(shí)地球物質(zhì)生物循環(huán)具有重大的理論意義和實(shí)用價(jià)值.

      5 小結(jié)與展望

      近年來(lái),電子介體已成為研究者關(guān)注的焦點(diǎn)之一.一方面電子介體在胞內(nèi)生理過(guò)程中起著重要作用,它們是聯(lián)系各類生物氧化還原反應(yīng)之間以及這些生物氧化還原反應(yīng)與呼吸鏈之間聯(lián)系的紐帶;另一方面電子介體可將胞內(nèi)電子帶到胞外,也可將胞外電子帶到胞內(nèi),拓展了細(xì)胞代謝功能.電子介體所致的胞內(nèi)外電子傳遞,不僅有助于生物電化學(xué)過(guò)程(MFC和MEC)的研發(fā),也有助于土壤和水底沉積物等污染環(huán)境的生物修復(fù).今后還可進(jìn)一步深入研究:1)探明各類電子介體的生理功能,雖然目前多種電子介體均被證明在電子傳遞方面有著良好的促進(jìn)作用,但是對(duì)于電子介體本身生理功能的研究偏薄弱,電子介體如何從細(xì)胞上得到電子又如何將電子傳遞至細(xì)胞外,電子介體的存在對(duì)于細(xì)胞本身的生長(zhǎng)與代謝有何影響仍需探明;2)探尋胞內(nèi)外傳遞效率更高的電子介體,目前發(fā)現(xiàn)的電子介體仍以自然界中廣泛存在或微生物本身分泌的為主,對(duì)于新型材料方面的借鑒較少(如碳納米管),綜合各學(xué)科領(lǐng)域的成果可能會(huì)在尋找高效電子介體方面有所突破;3)探索新的電子介體應(yīng)用方式,電子介體的應(yīng)用方式主要集中在污染物的強(qiáng)化去除與提高微生物電化學(xué)體系產(chǎn)電性能方面,然而微生物的生長(zhǎng)代謝均與電子傳遞鏈相關(guān),可以在利用電子介體開(kāi)發(fā)菌種資源、獲取目標(biāo)代謝產(chǎn)物等方面進(jìn)行探索.

      (References):

      [1] SOTTOCASA G L,KUYLENSTIERNA B,ERNSTER L,et al.An electron-transport system associated with the outer membrane of liver mitochondria a biochemical and morphological study.Journal of Cell Biology,1967,23(2): 415-438.

      [2] LOGAN B E.Exoelectrogenic bacteria that power microbial fuel cells.Nature Reviews Microbiology,2009,7(5):375-381.

      [3] GRALNICK J A,NEWMAN D K.Extracellular respiration. Molecular Microbiology,2007,65(1):1-11.

      [4] HE Z,LARGUS T A.Application of bacterial biocathode in microbial fuel cells.Electroanalysis,2006,18(19):2009-2015.

      [5] STAMS A J M,DE BOK F A M,PLUGGE C M,et al. Exocellular electron transfer in anaerobic microbial communities. Environmental Microbiology,2006,8(3):371-382.

      [6] ROSENBAUM M,AULENTA F,VILLANO M,et al. Cathodes as electron donors for microbial metabolism:which extracellular electron transfer mechanisms are involved?. Bioresource Technology,2011,102(1):324-333.

      [7] KAZARINOV I A,IGNATOVA A A,NAUMOVA M N. Kinetics of the electrocatalytic oxidation of glucose by Escherichia coli bacterial cells in the presence of exogenous mediators.Russian Journal of Electrochemistry,2014,50(1):97-101.

      [8] VAN DER Z F P,CERVANTES F J.Impact and application of electron shuttles on the redox(bio)transformation of contaminants:a review.Biotechnology Advances,2009,27(3):256-277.

      [9] 屈麗,劉宏志,胡洪波,等.天然吩嗪化合物的生物合成.中國(guó)抗生素雜志,2010(3):168-174.

      QU L,LIU H Z,HU H B,et al.The biosynthesis of natural phenazine.Chinese Journal of Antibiotics,2010(3): 168-174.(in Chinese with English abstract)

      [10] 汪華,崔志峰.莽草酸生物合成途徑的調(diào)控.生物技術(shù)通報(bào),2009(3):50-53.

      WANG H,CUI Z F.Regulation of shikimic acid biosynthesis pathway.Biotechnology Bulletin,2009(3):50-53.(in Chinese with English abstract)

      [11] MAVRODI D V,BLANKENFELDT W,THOMASHOW L S.Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation.Annual Review of Phytopathology,2006,44:417-445.

      [12] MAVRODI D V,BONSALL F R,DELANEY S M,et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1.Journal of Bacteriology,2001,183(21):6454-6465.

      [13] DELANEY S M,MAVRODI D V,BONSALL R F,et al. phzO,a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens.Journal of Bacteriology,2001,183(1):318-327.

      [14] WANG Y,KERN S E,NEWMAN D K.Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. Journal of Bacteriology,2009,192(1):365-369.

      [15] CHEN J,CHEN W,HE H,et al.Manipulation of microbial extracellular electron transfer by changing molecular structure of phenazine-type redox mediators. Environmental Science&Technology,2013,47(2):1033-1039.

      [16] RABAEY K,BOON N,H?FTE M,et al.Microbial phenazine production enhances electron transfer in biofuel cells.Environmental Science&Technology,2005,39(9): 3401-3408.

      [17] ZHANG T,ZH ANG L,SU W,et al.The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells.Bioresource Technology,2011,102(14):7099-7102.

      [18] COURNET A,BERGéM,ROQUES C,et al. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa.Electrochimica Acta,2010,55(17):4902-4908.

      [19] JAYAPRIYA J,RAMAMURTH Y V.Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells.Bioresource Technology,2012,124:23-28.

      [20] VENKATARAMAN A,ROSENBAUM M A,PERKINS SD,et al.Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems.Energy& Environmental Science,2011(4):4550-4559.

      [21] PH AM T H,BOON N,AELTERMAN P,et al. Metabolites produced by Pseudomonas sp.enable a grampositive bacterium to achieve extracellular electron transfer. Applied Microbiology and Biotechnology,2008,77(5): 1119-1129.

      [22] WYNTER B A.The composition of cows'milk in health and disease.Journal of the Chemical Society,F(xiàn)araday Transactions,1879,35:530-538.

      [23] WEBER S,SCHLEICHER E.Flavins and Flavoproteins Methods and Protocols.London:Humana Press,2014:18.[24] MASSEY V.The chemical and biological versatility of riboflavin.Biochemical Society,2000,28(4):283-296.

      [25] MIURA R.Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity.The Chemical Record,2001(1):183-194.

      [26] VON CANSTEIN H,OGAWA J,SHIMIZU S,et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer.Applied and Environmental Microbiology,2008,74(3):615-623.

      [27] MARSILI E,BARON D B,SHIKH ARE I D,et al. Shewanella secretes flavins that mediate extracellular electron transfer.Proceedings of the National Academy of Sciences,2008,105(10):3968-3973.

      [28] ROSS D E,BRANTLEY S L,TIEN M.Kinetic characterization of omc A and mtr C,terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1.Applied and Environmental Microbiology,2009,75(16):5218-5226.

      [29] COURSOLLE D,BARON D B,BOND D R,et al.The MTR respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis.Journal of Bacteriology,2009,192(2):467-474.

      [30] BRUTINEL E D,GRALNICK J A.Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella.Applied Microbiology and Biotechnology,2012,93(1):41-48.

      [31] LE LAZ S,KPEBE A,LORQUIN J,et al.H2-dependent azoreduction by Shewanella oneidensis MR-1:involvement of secreted flavins and both[Ni—Fe]and[Fe—Fe]hydrogenases.Applied Microbiology and Biotechnology,2014,98(6):2699-2707.

      [32] SUZUKI Y,KITATSUJI Y,OHNUKI T,et al.Flavin mononucleotide mediated electron pathway for microbial U(Ⅳ)reduction.Physical Chemistry Chemical Physics,2010,12(34):10081.

      [33] VELASQUEZ-ORTA S B,HEAD I M,CURTIS T P,et al.The effect of flavin electron shuttles in microbial fuel cells current production.Applied Microbiology and Biotechnology, 2010,85(5):1373-1381.

      [34] MASUDA M,F(xiàn)REGUIA S,WANG Y,et al.Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.Bioelectrochemistry,2010,78(2):173-175.

      [35] VAN TRUMP J,SUN Y,COATES J D.Microbial interactions with humic substances.Advanced Applied Microbiology,2006,60:55-96.

      [36] WATANABE K,MANEFIELD M,LEE M,et al.Electron shuttles in biotechnology.Current Opinion in Biotechnology,2009,20:633-641.

      [37] TRATNYEK P G,MACALADY D L.Abiotic reduction of nitro aromatic pesticides in anaerobic laboratory systems. Journal of Agricultural and Food Chemistry,1989,37(1): 248-254.

      [38] DUNNIVAN F M,SCHWARRENBACH R P.Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter.Environmental Science&Technology,1992,26:2133-2141.

      [39] HERNáNDEZ-MONTOYA V,ALVAREZ L H,MONTESMORáN M A,et al.Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens.Geoderma,2012,183:25-31.

      [40] AESCHBACHER M,SANDER M,SCHWARZENBACH R P.Novel electrochemical approach to assess the redox properties of humic substances.Environmental Science& Technology,2010,44(1):87-93.

      [41] RATASUK N,NANNY M A.Characterization and quantification of reversible redox sites in humic substances. Environmental Science&Technology,2007,41(22):7844-7850.

      [42] FIMMEN R L,CORY R M,CHIN Y,et al.Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter.Geochimica et Cosmochimica Acta,2007,71(12):3003-3015.

      [43] MARTINEZ C M,ALVAREZ L H,CELIS L B,et al. Humus-reducing microorganisms and their valuable contribution in environmental processes.Applied Microbiology and Biotechnology,2013,97(24):10293-10308.

      [44] HOBBIE S N,LI X,BASEN M,et al.Humic substancemediated Fe(Ⅲ)reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva. Systematic and Applied Microbiology,2012,35(4):226-232.

      [45] BHUSHAN B,HALASZ A,HAWARI J.Effect of iron(Ⅲ),humic acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2.Journal of Applied Microbiology,2006,100(3): 555-563.

      [46] XIE L,SHANG C,ZHOU Q.Effect of Fe(Ⅲ)on the bromate reduction by humic substances in aqueous solution.Journal Environment Science(China),2008,20(3):257-261.

      [47] ZHANG C,KATAYAMA A.Humin as an electron mediator for microbial reductive dehalogenation.Environmental Science& Technology,2012,46(12):6575-6583.

      [48] ZHANG D D,ZHANG C F,LI Z L,et al.Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator(humin)immobilization.Bioresource Technology,2014,164:232-240.

      [49] ROSSO K M,SMITH D M A,WANG Z,et al.Selfexchange electron transfer kinetics and reduction potentials for anthraquinone disulfonate.The Journal of Physical Chemistry A,2004,108(16):3292-3303.

      [50] DOONG R,CHIANG H.Transformation of carbon tetrachloride by thiol reductants in the presence of quinone compounds.Environmental Science&Technology,2005,39(19):7460-7468.

      [51] VAN DER ZEE F P,BOUWMAN R H M,STRIK D P B T,et al.Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering,2001,75(6):691-701.

      [52] DOSSANTOS A B,TRAVERSE J,CERVANTES F J,et al.Enhancing the electron transfer capacity and subsequent color removal in bioreactors by applying thermophilic anaerobic treatment and redox mediators.Biotechnology and Bioengineering,2005,89(1):42-52.

      [53] RODRIGUES DA SILVA M E,F(xiàn)IRMINO P I M,DOS SANTOS A B.Impact of the redox mediator sodium anthraquinone-2,6-disulphonate(AQDS)on the reductive decolourisation of the azo dye reactive red 2(RR2)in oneand two-stage anaerobic systems.Bioresource Technology,2012,121:1-7.

      [54] SUN J,LI W,LI Y,et al.Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell.Bioresource Technology,2013,142:407-414.

      [55] AMEZQUITA-GARCIA H J,RAZO-FLORES E,CERVANTES F J,et al.Anchorage of anthraquinone molecules onto activated carbon fibers to enhance the reduction of 4-nitrophenol.Journal of Chemical Technology &Biotechnology,2015,90(9):1685-1691.

      [56] XI Z,GUO J,LIAN J,et al.Study the catalyzing mechanism of dissolved redox mediators on bio-denitrification by metabolic inhibitors.Bioresource Technology,2013,140: 22-27.

      [57] LIU C,XU X,F(xiàn)AN J.Accelerated anaerobic dechlorination of DDT in slurry with hydragric acrisols using citric acid and anthraquinone-2,6-disulfonate(AQDS).Journal of Environmental Sciences,2015,38:87-94.

      [58] HONG Y G,WU P,LI W R,et al.Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp.strain 3C3.Environmental Biotechnology,2012,93:2661-2668.

      [59] INGOLD C K.Structure and Mechanism in Organic Chemistry.Ithaca:Cornell University Press,1696:660.

      [60] PADHI S K,KOBAYASHI K,MASUNO S,et al.Protoninduced dynamic equilibrium between cyclometalated ruthenium r NHC(remote N-heterocyclic carbene)tautomers with an NAD+/NADH function.Inorganic Chemistry,2011,50(12):5321-5323.

      [61] LENAZ G,GENOVA M L.Mobility and function of coenzyme Q(ubiquinone)in the mitochondrial respiratory chain.Biochimica et Biophysica Acta(BBA)-Bioenergetics,2009,1787(6):563-573.

      Progress in research of electron transfer mediator(ETM).Journal of Zhejiang University(Agric.& Life Sci.),2016,42(5):573- 581

      DING Aqiang,ZHENG Ping*,ZHANG Meng
      (College of Environmental and Resource Sciences,Zhejiang University,Hangzhou 310058,China)

      electron transport chain;physiological ETM;non-physiological ETM;physiological and ecological significance

      X 172

      A

      10.3785/j.issn.1008-9209.2016.05.251

      浙江省自然科學(xué)基金(Z15E080001);浙江省創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2013 TD12).

      *通信作者(Corresponding author):鄭平(http://orcid.org/0000-0002-7686-3019),Tel:+86- 571- 88982339,E-mail:pzheng@zju. edu.cn

      聯(lián)系方式:丁阿強(qiáng)(http://orcid.org/0000-0001-6151-4775),E-mail:lsylbrian@163.com

      (Received):2016- 02- 25;接受日期(Accepted):2016- 06- 13;

      日期(Published online):2016- 09- 18

      URL:http://www.cnki.net/kcms/detail/33.1247.S.20160918.1543.016.html

      猜你喜歡
      介體腐殖質(zhì)類物質(zhì)
      落葉
      介體不同投加方式強(qiáng)化低溫污水生物反硝化脫氮
      不同來(lái)源堆肥腐殖質(zhì)還原菌異化鐵還原能力評(píng)估與調(diào)控
      在線富集-膠束電動(dòng)毛細(xì)管色譜用于烷基酚類物質(zhì)的檢測(cè)
      漆酶介體催化的研究進(jìn)展
      無(wú)介體微生物燃料電池陽(yáng)極生物膜傳質(zhì)分析
      一種基于電荷轉(zhuǎn)移的電催化氧化還原系統(tǒng)
      石油化工(2015年11期)2015-08-15 00:43:05
      不同恢復(fù)階段人工沙棘林土壤腐殖質(zhì)組成及性質(zhì)
      煙草潛香類物質(zhì)果糖嗪的合成
      低分子量有機(jī)酸類物質(zhì)對(duì)紅壤和黑土磷有效性的影響
      正阳县| 锡林郭勒盟| 乐山市| 新丰县| 锡林郭勒盟| 化德县| 罗山县| 会理县| 镇赉县| 都江堰市| 肃南| 浪卡子县| 砚山县| 寻甸| 腾冲县| 丘北县| 乌拉特后旗| 图片| 密云县| 木里| 泸溪县| 大宁县| 原阳县| 临夏市| 西乌| 大安市| 镶黄旗| 甘洛县| 团风县| 黎平县| 五指山市| 思茅市| 拜泉县| 获嘉县| 汝州市| 唐海县| 天柱县| 苗栗县| 镇远县| 平江县| 无极县|