• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      兩類(lèi)雙單葉非Bazilevic函數(shù)族的系數(shù)估計(jì)

      2016-03-17 08:12:59王智剛
      關(guān)鍵詞:石磊單葉安陽(yáng)

      石 磊,王智剛

      (1.安陽(yáng)師范學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南 安陽(yáng) 455002;

      兩類(lèi)雙單葉非Bazilevic函數(shù)族的系數(shù)估計(jì)

      石磊1,王智剛2

      (1.安陽(yáng)師范學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,河南 安陽(yáng) 455002;

      用A表示形如

      (1)

      一個(gè)函數(shù)f∈A被稱(chēng)為是非Bazilevic函數(shù), 若其滿(mǎn)足不等式

      這類(lèi)函數(shù)由Obradovic[1]引入和研究, 討論的主要問(wèn)題是這類(lèi)函數(shù)能夠嵌入到單葉函數(shù)或其子類(lèi)的必要條件, 這個(gè)問(wèn)題至今尚未完全解決. Wang等[2]引入并研究了推廣的非Bazilevic函數(shù)族N(λ,μ,A,B), 將其定義為

      其中:0<μ<1,λ∈C,-1≤B≤1,A≠B,A∈R.

      其中

      (2)

      1主要結(jié)果

      (3)

      (4)

      其中

      (5)

      (6)

      其中

      (7)

      (8)

      均屬于正實(shí)部函數(shù). 注意到f∈σ的Maclaurin展開(kāi)式由(1)給出, 有

      (9)

      (10)

      由(9)和(10)式易得

      (11)

      類(lèi)似的計(jì)算可知

      (12)

      分別比較(5)和(6)式兩邊的系數(shù), 可以得到

      (13)

      (14)

      (15)

      (16)

      結(jié)合(13),(15)式可得

      (17)

      (18)

      再聯(lián)立(14),(16)和(17)式, 簡(jiǎn)單計(jì)算可知

      (19)

      將(18) 式中p12+q12的值代入(19), 易見(jiàn)

      (20)

      應(yīng)用Keogh等[14]中的結(jié)果, 對(duì)任意復(fù)數(shù)ν, 有

      (21)

      (22)

      將(17)、(18)代入(22)式, 則有

      (23)

      從而

      (24)

      另一方面, 將(17)、(19)代入(22)式, 則有

      (25)

      從而

      (26)

      類(lèi)似地, 結(jié)合(17),(20),(22)式可知

      (27)

      從而

      (28)

      注1令λ=-1, 即得雙單葉強(qiáng)非Bazilevic函數(shù)族起始項(xiàng)的系數(shù)估計(jì)

      (29)

      (30)

      其中:p和q分別形如(7),(8)式.

      由(29)和(30)式, 可得

      應(yīng)用類(lèi)似于定理1的技巧可得定理2的結(jié)果.

      參考文獻(xiàn):

      [1]OBRADOVIC M. A class of univalent functions[J]. Hokkaido Math J, 1998, 27(2): 329-335.

      [2]WANG Z G, GAO C Y, LIAO M X. On certain generalized class of Non-Bazilevic functions[J]. Acta Math Acad Paedagog Nyhazi, 2005, 21(1): 147-154.

      [3]TUNESKI N, DARUS M. Fekete-Szego functional for Non-Bazilevic functions[J]. Acta Math Acad Paedagog Nyhazi, 2002, 18(1): 63-65.

      [4]LEWIN M. On a coefficient problem for bi-univalent functions[J]. Proc Amer Math Soc, 1967, 18(1): 63-68.

      [5]KEDZIERAWSKI A W. Some remaks on bi-univalent functions[J]. Ann Univ Mariae Curiesklodowska Sect A, 1985, 39(1): 77-81.

      [7]ALI R M, LEE S K, RAVICHANDRAN V, et al. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions[J]. Appl Math Lett, 2012, 25(3): 344-351.

      [8]FRASIN B A, AOUF M K. New subclasses of bi-univalent functions[J]. Appl Math Lett, 2011, 24(9): 1569-1573.

      [9]HAYAMI T, OWA S. Coefficient bounds for bi-univalent functions[J]. Panamer Math J, 2012, 22(4): 15-26.

      [10]XU Q H, SRIVASTAVA H M, LI Z. A certain subclass of analytic and close-to-convex functions[J]. Appl Math Lett, 2011, 24(3): 396-401.

      [11]XU Q H, XIAO H G, SRIVASTAVA H M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems[J]. Appl Math Comput, 2012, 218(23): 1461-1465.

      [12]SRIVASTAVA H M, BULUT S, CAGLAR M, et al. Coefficient estimates for a general subclass of analytic and bi-univalent functions[J]. Filomat, 2013, 27(5): 831-842.

      [13]SRIVASTAVA H M, MISHRA A K, GOCHHHAYAT P. Certain subclasses of analytic and bi-univalent functions[J]. Appl Math Lett, 2010, 23(10): 1188-1192.

      [14]KEOGH F R, MERKES E P. A coefficient inequality for certain classes of analytic functions[J]. Proc Amer Math Soc, 1969, 20(1): 8-12.

      (責(zé)任編輯朱夜明)

      doi:10.3969/j.issn.1000-2162.2016.03.004

      收稿日期:2015-03-27

      基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(11301008, 11426035);河南省高等學(xué)校重點(diǎn)科研基金資助項(xiàng)目(15A110006)

      作者簡(jiǎn)介:石磊(1982-), 男, 河南信陽(yáng)人, 安陽(yáng)師范學(xué)院講師.

      中圖分類(lèi)號(hào):O174

      文獻(xiàn)標(biāo)志碼:A

      文章編號(hào):1000-2162(2016)03-0017-05

      2.湖南第一師范學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 長(zhǎng)沙 410205)

      Coefficient estimates for two subclasses of bi-univalent non-Bazilevic type functions

      SHI Lei1, WANG Zhigang2

      (1.School of Mathematical Science and Statistics, Anyang Normal University, Anyang 455002, China;2.School of Mathematics and Computing Science, Hunan First Normal University, Changsha 410205, China)

      Key words:bi-univalent; non-Bazilevic functions; coefficient estimates; differential subordination

      Abstract:The class of non-Bazilevic functions was introduced and studied by obradovic and has attracted many researchers’ interest. In the present paper, we introduced and investigated two subclasses of bi-univalent functions with non-Bazilevic type. For functions belonging to these subclasses, we obtained estimates for the initial coefficients a2and a3by using the coefficient estimates for analytic functions with positive real part and differential subordination. These results generalized some earlier works.

      關(guān)鍵詞:雙單葉函數(shù);非Bazilevic函數(shù);系數(shù)估計(jì);微分從屬

      猜你喜歡
      石磊單葉安陽(yáng)
      Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
      Adaptive protograph-based BICM-ID relying on the RJ-MCMC algorithm: a reliable and efficient transmission solution for plasma sheath channels
      PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT*
      安陽(yáng)之旅
      亞純函數(shù)關(guān)于單葉離散值的正規(guī)定理
      算子作用下調(diào)和函數(shù)類(lèi)的單葉半徑
      不同因素對(duì)單葉蔓荊無(wú)性繁殖育苗的影響
      安陽(yáng):以最嚴(yán)密的法治向大氣污染宣戰(zhàn)
      安陽(yáng)有個(gè)“花木蘭”
      石磊作品
      勃利县| 玛纳斯县| 贺州市| 珠海市| 德令哈市| 天台县| 金沙县| 三穗县| 黑山县| 绥中县| 犍为县| 临城县| 安溪县| 丹棱县| 九龙城区| 正蓝旗| 婺源县| 江门市| 清河县| 湘阴县| 龙泉市| 武鸣县| 柘荣县| 舞阳县| 靖安县| 平阴县| 松溪县| 芦溪县| 太仓市| 阜新市| 崇礼县| 杭锦后旗| 京山县| 宽甸| 镇康县| 遂平县| 博客| 康乐县| 淮北市| 临海市| 张北县|