• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

      2016-02-15 11:28:16SHUYu
      關(guān)鍵詞:交換子積分算子安徽師范大學(xué)

      SHU Yu

      (Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

      Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

      SHU Yu

      (Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

      In this paper, we prove the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces.

      Marcinkiewicz integrals; commutator; Schr?dinger operator; variable exponent; Morrey spaces

      Classification code:O174.3 Document code: A Paper No:1001-2443(2016)06-0535-07

      0 Introduction

      In this paper, we consider the Schr?dinger differential operator onRn(n≥3).

      L=-△+V(x)

      AnonnegativelocallyLqintegrablefunctionV(x)onRnis said to belong toBq(q>1)ifthereexistsaconstantC>0suchthatthereverseH?lderinequality

      holdsforeveryballinRn, see [1].

      The commutator of Marcinkiewicz integral operatorμbisdefinedby

      Stein[2]firstintroducedtheoperatorμandprovedthatμisoftype(p,p)(1

      It is well known that function spaces with variable exponents were intensively studied during the past 20 years, due to their applications to PDE with non-standard growth conditions and so on, we mention e.g. ([8, 9]). A great deal of work has been done to extend the theory of maximal, potential, singular and Marcinkiewicz integrals operators on the classical spaces to the variable exponent case, see([10]-[15]). It will be an interesting problem whether we can establish the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces. The main purpose of this paper is to answer the above problem.

      To meet the requirements in the following sections, here, the basic elements of the theory of the Lebesgue spaces with variable exponent are briefly presented.

      Letp(·):Rn→[1,∞) be a measurable function. The variable exponent Lebesgue spaceLp(·)(Rn) is defined by

      Lp(·)(Rn)isaBanachspacewiththenormdefinedby

      Wedenote

      LetP(Rn)bethesetofmeasurablefunctionp(·)onRnwith value in [1,∞) such that 1

      andonedefines

      B(Rn)isthesetofp(·)∈P(Rn)satisfyingtheconditionthatMisboundedonLp(·)(Rn).

      Forx∈Rn,thefunctionmV(x)isdefinedby

      Forbrevity,inthispaper,Calwaysmeansapositiveconstantindependentofthemainparametersandmaychangefromoneoccurrencetoanother.B(x,r)={y∈Rn:|x-y|

      1 Results and Some Lemmas

      Definition 1.1[12]For anyp(·)∈B(Rn),letkp(·)denotethesupremumofthoseq>1suchthatp(·)/q∈B(Rn).Letep(·)betheconjugateofkp′(·).

      Definition 1.2[12]Letp(·)∈L∞(Rn)and10suchthatforanyx∈Rnandr>0,ufulfills

      (1)

      WedenotetheclassofMorreyweightfunctionsbyWp(·).

      NextwedefinetheMorreyspaceswithvariableexponentrelatedtothenonnegativepotentialV.

      Nowitisinthispositiontostateourresults.

      Theorem 1.1 SupposeV∈Bqwithq>1andp(x)∈B(Rn),then

      Theorem 1.2 SupposeV∈Bqwithq>1,b∈BMO,-∞<α<∞andp(x)∈B(Rn).If

      (2)

      then

      Remark 1 We can easily show thatufulfills(2)impliesu∈Wp(·),see[16].

      Inordertoproveourresult,weneedsomeconclusionsasfollows.

      Lemma 1.1[18]Letp(·)∈P(Rn):Thenthefollowingconditionsareequivalent:

      (1)p(·)∈B(Rn).

      (2)p′(·)∈B(Rn).

      (3) (p(·)/q∈B(Rn)forsome1

      (4) (p(·)/q)′∈B(Rn)forsome1

      Lemma1.1ensuresthatkp(·)iswell-definedandsatisfies1

      Lemma 1.2[19]Ifp(·)∈P(Rn),thenforallf∈Lp(·)(Rn)andallg∈Lp′(·)(Rn)wehave

      ∫Rn|f(x)g(x)|dx≤rp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

      whererp:=1+1/p--1/p+.

      Lemma 1.3[10]Ifp(·)∈B(Rn),thenthereexistsC>0suchthatforallballsBinRn,

      C-1|B|≤‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn)≤C|B|.

      Lemma 1.4[12]Letp(x)∈B(Rn).Forany10suchthatforanyx0∈Rnandr>0,wehave

      Lemma 1.6[21]LetΩ∈Lipγ(Sn-1),b(x)∈BMOandp(·)∈B(Rn),wehave

      ‖μbf‖Lp(·)(Rn)≤C‖f‖Lp(·)(Rn).

      Lemma 1.7[1]For everyN>0thereexistsaconstantCsuchthat

      and

      Lemma 1.8[1]SupposeV∈Bqwithq≥n/2.ThenthereexistpositiveconstantsCandk0suchthat

      Lemma 1.9[22]Letkbeapositiveinteger.Thenwehavethatforallb∈BMO(Rn) and alli,j∈Zwithi>j,

      2 Proof of Theorems

      Proof of Theorem 1.1 Fixx∈Rnand letr=ρ(x).Usingthesameideain[5]and[4],wehave

      ForA1,byLemma1.7,wehave

      Obviously,

      ForA3,byLemma1.7,wehave

      ItremainstoestimateA4.FromLemma1.7,takeN=1,weobtain

      Thus,usingLemma1.5andLemma1.6,wearrivethefollowinginequality

      andhencetheproofofTheorem1.1iscomplete.

      wheref0=fχB(z,2r),fi=fχB(z,2i+1r)B(z,2ir)fori≥1.Hence,wehave

      ByTheorem1.1,weobtain

      Becauseinequality(1)andLemma1.4implythatu(x,r)≥Cu(x,2r).Therefore,weobtain

      Furthermore,foranyi≥1,x∈B(z,r)andy∈B(z,2i+1r)B(z,2ir),wenotethat|x-y|≥|y-z|-|x-z|>C2ir.ByLemma1.7andMinkowski'sinequality,wehave

      UsingLemma1.8,wederivetheestimate

      (3)

      ApplyingLemma1.2andinequality(3),wegetthat

      Subsequently,takingthenorm‖·‖Lp(·)(Rn)andusingLemma1.9,wehave

      ×‖b‖BMO‖fχB(z,2i+1r)‖Lp(·)(Rn)‖χB(z,r)‖Lp(·)(Rn)‖χB(z,2i+1r)‖Lp′(·)(Rn).

      ApplyingLemma1.3withB=B(z,2i+1),wehave

      TakingN=(-[α]+1)(k0+1),weobtain

      Asufulfills(2)andα<0,weobtain

      andhencetheproofofTheorem1.2iscomplete.

      [1] SHEN Z. Lp estimates for Schr?dinger operators with certain potentials[J]. Ann Inst Fourier(Grenoble), 1995,45(2):513-546.

      [2] STEIN E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz[J]. Transactions of the American Mathematical Society, 1958,88:430-466.

      [4] GAO W, TANG L. Boundedness for marcinkiewicz integrals associated with Schr?dinger operators[J]. Proceedings-Mathematical Sciences Indian Acad Sci, 2014,124(2):193-203.

      [5] CHEN D, ZOU D. The boundedness of Marcinkiewicz integral associated with Schr?dinger operator and its commutator[J]. Journal of Function Spaces, Article ID402713, 10pages, 2014.

      [6] TANG L, DONG J. Boundedness for some Schr?dinger type operators on Morrey spaces related to certain nonnegative potentials[J]. J Math Anal Appl, 2009,355(1):101-109.

      [7] CHEN D, JIN F. The Boundedness of Marcinkiewicz integrals associated with Schr?dinger operator on Mmorrey spaces[J]. J Fun Spaces, Article ID901267, 11pages, 2014.

      [8] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006,66(4):1383-1406.

      [10] CRUZ-URIBE D, FIORENZA A, MARTELL J M, et al. The boundedness of classical operatorson variableLpspaces[J]. Annales Academiae Scientiarum Fennicae Math., 2006,31(1):239-264.

      [11] NEKVINDA A. Hardy-Littlewood maximal operator onLp(x)(Rn) [J]. Math Inequal Appl, 2004,7:255-265.

      [12] HO K-P. The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J]. Math Inequal Appl, 2013,16:363-373.

      [13] XUAN Z, SHU L. Boundedness for commutators of Calderón-Zygmund operator on Morrey spaces with variable exponent[J]. Anal Theory Appl, 2013,29(2):128-134.

      [14] ALMEIDA A, HASANOV J, SAMKO S. Maximal and potential operators in variable exponent Morrey spaces[J]. Georgian Math J, 2008,15:195-208.

      [15] KOKILASHVILI V, MESKHI A. Boundedness of maxmial and singular operators in Morrey spaces with variable exponent[J]. Armenian Math J, 2008,1:18-28.

      [16] BONGIOANNI B, HARBOURE E, SALINAS O. Class of weights related to Schr?dinger operators[J]. J Math Anal Appl, 2011,373:563-579.

      [17] TANG L. Weighted norm inequalities for commutators of Littlewood-Paley functionsrelated to Schr?dinger operators[J]. Archive der Mathematik, 2014,102:215-236.

      [18] DIENING L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J]. Bulletin des Sciences Mathématiques, 2005,129(8):657-700.

      [20] ZHANG P, WU J. Commutators of the fractional maximal function on variable exponent Lebesgue spaces[J]. Czechoslovak Mathematical Journal, 2014,64(139):183C197.

      [21] WANG H, FU Z, LIU Z. Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces[J]. Acta Math Scientia(Ser A), 2012,32(6):1092-1101.

      [22] IZUKI M. Boundedness of commutators on Herz spaces with variable exponent[J]. Rend Circ Mat Palermo, 2010,59(2):199-213.

      2016-03-10

      SupportedbyNSFC(11201003)andEducationCommitteeofAnhuiProvince(KJ2016A253;SKSM201602).

      SHU Yu(1985-), male, born in Wuhu, Anhui Province, Lecture, M.S.D.

      束宇.變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewica積分算子交換子[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,39(6):535-541.

      變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewicz積分算子交換子

      束 宇

      (安徽商貿(mào)職業(yè)技術(shù)學(xué)院 經(jīng)濟(jì)貿(mào)易系,安徽 蕪湖 241002)

      在本文中,我們主要證明了變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewicz積分算子交換子的有界性.

      Marcinkiewicz積分;交換子;Schr?dinger算子;變指數(shù);Morrey空間

      10.14182/J.cnki.1001-2443.2016.06.006

      猜你喜歡
      交換子積分算子安徽師范大學(xué)
      齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
      Ap(φ)權(quán),擬微分算子及其交換子
      《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
      一類振蕩積分算子在Wiener共合空間上的有界性
      Hemingway’s Marriage in Cat in the Rain
      平均振蕩和相關(guān)于具有非光滑核的奇異積分算子的Toeplitz型算子的有界性
      變指標(biāo)Morrey空間上的Marcinkiewicz積分及交換子的有界性
      與Schr?dinger算子相關(guān)的交換子的L~p-有界性
      《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
      一類具有準(zhǔn)齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
      贵港市| 正阳县| 临桂县| 南澳县| 合山市| 蒲江县| 米林县| 绥滨县| 化德县| 永靖县| 安岳县| 渝中区| 吴堡县| 洛隆县| 铜梁县| 济阳县| 金华市| 霍林郭勒市| 理塘县| 田林县| 涿鹿县| 宾川县| 江门市| 新安县| 额尔古纳市| 龙里县| 当涂县| 花莲市| 揭西县| 扶余县| 尼玛县| 金寨县| 长治县| 吴桥县| 茌平县| 阿克陶县| 红原县| 哈密市| 宁都县| 云龙县| 睢宁县|