孟曉玲,王戰(zhàn)偉,毛北行
(鄭州航空工業(yè)管理學(xué)院數(shù)理系, 河南 鄭州 450015)
?
離散非線性系統(tǒng)的有限時(shí)間控制
孟曉玲,王戰(zhàn)偉,毛北行
(鄭州航空工業(yè)管理學(xué)院數(shù)理系, 河南鄭州450015)
[摘要]本文針對(duì)一類離散非線性系統(tǒng)的有限時(shí)間控制問(wèn)題,利用線性矩陣不等式以及有限時(shí)間有界的概念,給出了離散非線性系統(tǒng)有限時(shí)間有界的充分性條件.
[關(guān)鍵詞]有限時(shí)間;穩(wěn)定;有界
在實(shí)際工程中,常常要求控制系統(tǒng)的軌跡不超出一定的界限.該問(wèn)題引起了眾多學(xué)者的關(guān)注[1-6].文獻(xiàn)[7]討論了兩類不確定線性系統(tǒng)的有限時(shí)間控制問(wèn)題,并將問(wèn)題的可解性歸結(jié)為線性矩陣不等式.文獻(xiàn)[8]研究了離散奇異系統(tǒng)的有限時(shí)間控制問(wèn)題.文獻(xiàn)[9]研究了一類不確定線性離散系統(tǒng)有限時(shí)間觀測(cè)器設(shè)計(jì).本文針對(duì)一類離散非線性系統(tǒng)的有限時(shí)間控制問(wèn)題,給出了離散非線性系統(tǒng)有限時(shí)間有界的充分性條件.
1主要結(jié)果
考慮如下離散非線性系統(tǒng)
x(k+1)=Ax(k)+Bu(k)+f(x(k))
(1)
假設(shè)1非線性函數(shù)f(x(k))滿足條件:‖f(x(k))‖≤l‖x(k)‖,其中l(wèi)為大于零的常數(shù).
定義1給定正數(shù)δ,ε,且δ<ε,以及N∈N+,正定矩陣R,系統(tǒng)(1)關(guān)于(δ,ε,R,N)稱為有限時(shí)間穩(wěn)定的,若:
xT(0)Rx(0)≤δ2?xT(k)Rx(k)<ε2,
?k∈{1,2,…,N} .
考慮如下帶有擾動(dòng)的系統(tǒng)
x(k+1)=Ax(k)+Bu(k)+f(x(k))+ω(k)
(2)
ω(k+1)=Fω(k)
(3)
定義2給定正數(shù)δ、ε、d,且δ<ε以及N∈N+,正定矩陣R,系統(tǒng)(2)、(3)關(guān)于(δ,ε,R,N,d)稱為有限時(shí)間有界的,若:
xT(0)Rx(0)≤δ2?xT(k)Rx(k)<ε2,
?ω(k):ωT(k)ω(k)≤d,?k∈{1,2,…,N}
1)s<0;
定理1系統(tǒng)(1)關(guān)于(δ,ε,R,N)稱為有限時(shí)間穩(wěn)定的,若存在對(duì)稱正定矩陣P,及反饋控制律u(k)=Kx(k),使得下列不等式成立:
(A + BK)TP(A +BK) + (l2-1)P +
l[(A +BK)TP +P(A +BK)]≤0
(4)
(5)
證明構(gòu)造Lyapunov函數(shù)V(x(k))=xT(k)Px(k),則有:
V(x(k+1))-V(x(k))
=xT(k+1)Px(k+1)-xT(k)Px(k)
=[(A +BK)x(k) +f(x(k))]TP[(A +BK)×
x(k) +f(x(k))]-xT(k)Px(k)
≤xT(k){(A+BK)TP(A+BK)+(l2-1)P+
l[(A+BK)TP+P(A+BK)]}x(k)
由(4)可知
V(k+1)-V(k)≤0
(6)
對(duì)(6)從0到k-1求和,可得V(k)-V(0)≤0即:
xT(k)Px(k)≤xT(0)Px(0)?
xT(k)Rx(k)≤xT(k)Px(k)≤
若
xT(0)Rx(0)≤δ2?xT(k)Rx(k)<ε2,
從而系統(tǒng)(1)關(guān)于(δ,ε,R,N)稱為有限時(shí)間穩(wěn)定的.
定理2系統(tǒng)(1)是可解的,若存在對(duì)稱正定矩陣P,及反饋控制律u(k)=Kx(k),使得下列不等式成立:
(7)
其中:Q=l[(A+BK)TP+P(A+BK)].
證明由定理1可知系統(tǒng)(1)關(guān)于(δ,ε,R,N)稱為有限時(shí)間穩(wěn)定的充分條件為:
(A+BK)TP(A+BK)+(l2-1)P+
l[(A+BK)TP+P(A+BK)]≤0
(8)
對(duì)(8)利用引理1,得到(8)等價(jià)于如下矩陣不等式:
(9)
很容易得到(7).
定理3系統(tǒng)(2)、(3)關(guān)于(δ,ε,R,N,d)稱為有限時(shí)間有界的,若存在對(duì)稱正定矩陣P、Q及反饋控制律u(k)=Kx(k),使得下列不等式成立:
(10)
P≤R
(11)
δ2+λmax(Q)d<ε2
(12)
Ω1=(A+BK)TP(A+BK)+(l2-1)P+
l[(A+BK)TP+P(A+BK)]
Ω2=FTQF-Q+P,I為適當(dāng)維數(shù)的單位矩陣.
證明構(gòu)造Lyapunov函數(shù)
V(x(k))=xT(k)Px(k)+ωT(k)Qω(k),
則
V(x(k+1))-V(x(k))
=xT(k+1)Px(k+1)+
ωT(k+1)Qω(k+1)-xT(k)Px(k)-ωT(k)Qω(k)
≤[(A +BK)x(k) +f(x(k)) + ω(k)]T
P[(A+BK)x(k) +f(x(k)) +ω(k)]
-xT(k)Px(k) +ωT(k)(FTQF-Q)ω(k)
≤0
由(10)可知
V(k+1)-V(k)≤0
(13)
對(duì)(13)從0到k-1求和,可得V(k)-V(0)≤0,即:
xT(k)Px(k) + ωT(k)Qω(k)
≤xT(k)Rx(k) + ωT(k)Qω(k)
≤xT(0)Rx(0) + ωT(0)Qω(0)
≤δ2+λmax(Q)d
若
xT(0)Rx(0)≤δ2?
xT(k)Rx(k)≤δ2+λmax(Q)d<ε2,
從而滿足定義2.
2結(jié)論
本文針對(duì)一類離散非線性系統(tǒng)的有限時(shí)間控制問(wèn)題,得到了系統(tǒng)有限時(shí)間有界的條件,結(jié)論以線性矩陣不等式形式給出,便于利用Matlab求解.該問(wèn)題的有限時(shí)間混沌同步是需要進(jìn)一步研究的課題.
[參考文獻(xiàn)]
[1]AmatoF,AriolaM,CosentinoC,eta1.Necessaryandsufficientconditionsforfinite-timestabilityoflinearsystems[C].2003AmericanControlConference,IEEEPress:2003(5):4452-4456.
[2]AmatoF,AriolaM,Cosentino.Controloflineardiscrete-timesystemsoverafinite-timeinterval[C].43rdIEEEConferenceonDecisionandControl,Atlantis:IEEEPress:2004(2):1284-1288.
[3]AmatoF.Finite-timecontrolofdiscrete-timelinearsystem[J].IEEETransAutomatControl,2005,50(5):724-729.
[4]DoratoP.Shorttimestabilityinlineartimevaryingsystem[C].IRElnternationalConventionRecordPart4,1961:83-87.
[5]AmatoF,AriolaM,AbdallahCT,etal.Dynamicoutputfeedbackfinite-timecontrolofLTIsystemssubjecttoparametricuncertaintiesanddisturbances[C].EuropeanControlConference,Kals-mhe,1999:1176-1180.
[6]AmatoF,AroliaM,DoratoP.Statefeedbackstabilizationoverafinite-timeintervaloflinearsystemssubjecttonormboundedparametricuncertainties[C].The36thAllertonConference,Monticello:1998.
[7]AmatoF,AroliaM,DobatoP.Finite-timecontroloflinearsystemssubjecttoparametricuncertaintiesanddisturbance[J].Automatic,2001,37:1459-1463.
[8]黃發(fā),吳保衛(wèi).離散奇異系統(tǒng)的有限時(shí)間控制[J].重慶師范大學(xué)學(xué)報(bào):自然科學(xué)版,2012,29(2):51-54.
[9]朱琳,沈艷軍. 一類不確定線性離散系統(tǒng)有限時(shí)間觀測(cè)器設(shè)計(jì)[J].電機(jī)與控制學(xué)報(bào),2008,12(1):99-108.
[10]俞立. 魯棒控制——線性矩陣不等式處理方法[M].北京:清華大學(xué)出版社,2002.
(責(zé)任編輯穆剛)
Finite-time control of discrete-time nonlinear system
MENG Xiaoling, WANG Zhanwei, MAO Beixing
(Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou He’nan 450015, China)
Abstract:The paper deals with the problem of finite-time control for one kind of nonlinear discrete systems. Using LMI and finite-time bounded conception the sufficient conditions of finite-time control were obtained.
Key words:finite-time; stable; bounded
[中圖分類號(hào)]O482.4
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]1673-8004(2015)05-0030-03
[作者簡(jiǎn)介]孟曉玲 (1976—),女,安徽安慶人,講師,碩士,主要從事復(fù)雜網(wǎng)絡(luò)與混沌同步方面的研究.
[基金項(xiàng)目]國(guó)家自然科學(xué)基金項(xiàng)目(51072184);國(guó)家自然科學(xué)基金數(shù)學(xué)天元基金項(xiàng)目(11226337);航空基金項(xiàng)目(2013ZD55006);河南省高等學(xué)校青年骨干教師資助計(jì)劃項(xiàng)目(2013GGJS-142);鄭州航空工業(yè)管理學(xué)院青年基金項(xiàng)目(2014113002);河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(15B110011).
[收稿日期]2014-11-05