Notch1對神經(jīng)膠質(zhì)瘤U251細胞干性及化療藥物敏感性的調(diào)節(jié)*
張麗柯,咸娜,林玲,龔雨晴,葉志強,鄭志竑△
(福建醫(yī)科大學基礎醫(yī)學院生物化學與分子生物學系,神經(jīng)生物學研究中心,福建 福州 350108)
[摘要]目的: 探討Notch1對人膠質(zhì)瘤U251細胞干性和藥物敏感性的影響。方法: 用高表達Notch1胞內(nèi)段(Notch1 intracellular domain, NICD1)和Notch1-shRNA慢病毒表達載體感染體外培養(yǎng)的人膠質(zhì)瘤U251細胞,Western blot和免疫熒光染色法鑒定高表達NICD和Notch1沉默細胞。通過流式細胞術(shù)檢測分析CD133+細胞的比例、免疫熒光染色法檢測nestin和GFAP的表達情況、檢測腫瘤細胞球的形成率和SCID小鼠體內(nèi)種植致瘤情況,分析Notch1對細胞干性的調(diào)節(jié)。并采用MTT法檢測各組細胞對化療藥物替尼泊苷(VM-26)和卡莫司汀(BCNU)的敏感性。結(jié)果: NICD表達增加的瘤細胞干性表型增強,如CD133+細胞的比例增加、nestin表達增強而GFAP表達減弱、腫瘤細胞球的形成率和SCID小鼠種植致瘤率增加,并伴有對VM-26和BCNU的敏感性降低。而Notch1基因表達下調(diào)的瘤細胞干性表型受到明顯抑制,而對VM-26和BCNU的敏感性增高。結(jié)論: Notch1高表達可增加人膠質(zhì)瘤U251細胞的干性,減弱U251細胞對化療藥物的敏感性。
[關(guān)鍵詞]膠質(zhì)瘤U251細胞; Notch1; 化療藥物敏感性
[中圖分類號]R392.12[文獻標志碼]A
doi:10.3969/j.issn.1000-4718.2015.11.004
[文章編號]1000-4718(2015)11-1950-06
[收稿日期]2015-07-07[修回日期] 2015-09-10
[基金項目]*廣東省醫(yī)學科研基金資助項目(No.B2013133)
通訊作者△陸 英 Tel: 020-85252526; E-mail: xiaolu1196@163.com; 林東軍 Tel:020-85252227; E-mail: lindongjun0168 @ 163.com
Notch1 regulates stemness and chemotherapeutic sensitivity of human glioma U251 cellsZHANG Li-ke, XIAN Na, LIN Ling, GONG Yu-qing, YE Zhi-qiang, ZHENG Zhi-hong
(ResearchCenterofNeurobiology,DepartmentofBiochemistryandMolecularBiology,SchoolofBasicMedicalSciences,FujianMedicalUniversity,Fuzhou350108,China.E-mail:zhzheng@fjmu.edu.cn)
ABSTRACT[]AIM: To investigate whether Notch1 changes stemness and chemotherapeutic sensitivity in human glioma U251 cells. METHODS: The lentiviral vectors, which expressed Notch1-shRNA or Notch1 intracellular domain (NICD), were transfected into U251 cells . Western blot and immunofluorescence staining were applied to monitor the validity of the cells, down-regulation of Notch1 expression or over-expression of NICD. The proportion of CD133+ cells was analyzed by flow cytometry. The expression of nestin and GFAP was identified by immunofluorescence staining. The formation rate of tumor cell spheres and the implanted tumor growth in SCID mice were observed. MTT assay was performed to evaluate the chemotherapeutic sensitivity to VM-26 and BCNU of the cells with different treatments. RESULTS: Stemness was significantly enhanced in the cells over-expressing NICD. For example, the proportion of CD133+ cells was increased, the expression of nestin was up-regulated, the expression of GFAP was down-regulated, and the formation rate of tumor cell spheres and implanted tumor growth were increased. The chemotherapeutic sensitivity to VM-26 and BCNU of the cells was decreased. In the cells with Notch1 gene down-regulation by RNAi, the stemness was inhibited and chemotherapeutic sensitivity was increased. CONCLUSION: Notch1, which leads to the change of stemness and chemotherapeutic sensitivity in human glioma U251 cells, is likely to be a potential molecular target for treatment of glioma.
[KEY WORDS]Glioma U251 cells; Notch1; Chemotherapeutic sensitivity
神經(jīng)膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)最常見的惡性腫瘤,手術(shù)結(jié)合放療或化療是膠質(zhì)瘤治療的重要手段[1]。目前,該腫瘤的常規(guī)治療預后仍不盡人意,其中化療效果欠佳的重要因素是化療后殘存的部分腫瘤細胞的繼發(fā)耐藥性逐漸形成,從而導致化療失效和腫瘤復發(fā)。而這一部分的細胞可能就是具有化療抵抗能力的腫瘤干細胞(cancer stem cells,CSCs),研究發(fā)現(xiàn),膠質(zhì)瘤內(nèi)CSCs的比例越高,膠質(zhì)瘤抵抗化療的能力就越強[2]。Notch信號通路參與了調(diào)節(jié)干細胞結(jié)構(gòu)和決定細胞命運,在多種癌癥存在Notch信號通路的異常[3],而且在結(jié)腸直腸癌、胰腺癌、乳腺癌均參與腫瘤干細胞群的調(diào)節(jié)。眾多研究已提示,Notch1及其配體在腦膠質(zhì)瘤中呈過度表達,將其敲除可抑制腦膠質(zhì)瘤細胞的增殖和生存。那么在與Notch1關(guān)系極為密切的神經(jīng)膠質(zhì)瘤,是否Notch1也是瘤細胞產(chǎn)生干細胞樣表型的重要因素?是否影響到細胞對化療藥物的敏感性?本研究利用Notch1基因修飾技術(shù),旨在對上述問題進行探討,為膠質(zhì)瘤的治療提供實驗依據(jù)。
材料和方法
1實驗材料
Notch 1 胞內(nèi)段(Notch1 intracellular domain,NICD)表達載體pLVX-IRES2-ZsGreen-NICD由本實驗室構(gòu)建和鑒定,簡稱pLVX-NICD,空對照載體稱為pLVX。攜帶ZsGreen的3質(zhì)粒慢病毒表達系統(tǒng)以及Notch1基因RNA干擾載體由上海交通大學郭亞博士惠贈,RNA干擾載體為pLKO.1-puro,干擾靶序列5’-CCGGGACATCACGGATCATAT-3’(簡稱pLKO-Notch1-ND),以無義干擾序列5’-CAACAAGATGAAGAGCACCAA-3’作為對照(簡稱pLKO-Notch1-NC)。
SCID小鼠購自上海斯萊克實驗動物公司,合格證編號為2007000579362、2007000574540。
高糖DMEM培養(yǎng)基、DMEM/F12培養(yǎng)基、胎牛血清、無血清細胞培養(yǎng)添加劑B27(Gibco);表皮生長因子(epidermal growth factor,EGF)、堿性成纖維細胞生長因子(basic fibroblast growth factor,bFGF)(PeproTech);脂質(zhì)體Lipofectamine 2000、MTT(Invitrogen);兔抗人NICD多克隆抗體、兔抗膠質(zhì)細胞原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)多克隆抗體、Rhodamine標記的抗兔IgG抗體、Rhodamine標記的抗小鼠IgG抗體(Millipore);小鼠抗CD133/1(AC133)-PE 抗體(Miltenyi Biotec);小鼠抗nestin單克隆抗體(R&D);兔抗GAPDH多克隆抗體(Santa Cruz);HRP-偶聯(lián)抗兔IgG抗體、HRP-偶聯(lián)抗小鼠IgG抗體(北京中杉金橋公司);質(zhì)粒抽提純化試劑盒(QIAGEN);ECL化學發(fā)光試劑盒(CST);卡莫司汀[carmustine;即1,3-雙(2-氯乙基)-1-亞硝基脲,1,3-bis(2-chloroethyl)-1-nitrosourea,BCNU]和替尼泊苷(VM-26)購自Enzo Life Science;嘌呤霉素(Amresco);其它試劑購于Sigma或碧云天公司。
2方法
2.1高表達NICD 的U251細胞和Notch1敲低U251細胞的獲得按本實驗室常規(guī)方法將pLVX-NICD、pLVX、pLKO-Notch1-ND、pLKO-Notch1-NC質(zhì)粒,分別加用包裝質(zhì)粒pMD2.G和psPAX2,以及Lipo- fectamine 2000轉(zhuǎn)染293T細胞,進行病毒包裝。轉(zhuǎn)染48~72 h收集和濃縮含病毒培養(yǎng)上清。
膠質(zhì)瘤細胞U251常規(guī)培養(yǎng)于含10%胎牛血清的DMEM培養(yǎng)液,每2~3 d用0.25%胰酶+0.03% EDTA消化傳代1次,感染前1 d接種細胞于6孔板,每孔約5×104細胞,第2天大約30% 融合時,除去培養(yǎng)液,每孔加入含血清培養(yǎng)液600 μL,慢病毒液10 μL,polybreen(1 g/L)4.8 μL,置于培養(yǎng)箱中培養(yǎng),12 h后吸去含病毒的培養(yǎng)液,更換新鮮的培養(yǎng)液2 mL,置于37 ℃、5% CO2、飽和濕度下繼續(xù)培養(yǎng)48 h。高表達NICD 的U251細胞及其相應的對照細胞,病毒感染48 h后熒光顯微鏡下判定感染成功率。Notch1基因RNA干擾細胞及其相應對照細胞,用嘌呤霉素篩選出感染成功的細胞株。
2.2Notch1表達水平的鑒定Western blot檢測按下列步驟進行: 用RIPA細胞裂解液提取細胞總蛋白,BCA法測定蛋白濃度。取40 μg蛋白樣品行SDS-PAGE電泳后轉(zhuǎn)膜印跡,經(jīng)封閉液4 ℃作用過夜后,用兔抗人NICD抗體或GAPDH抗體與膜上抗原結(jié)合,用羊抗兔HRP偶聯(lián)的II抗與其反應后,加ECL化學發(fā)光試劑,在凝膠成像系統(tǒng)(Bio-Rad)下獲取圖像,用ImageJ 2x軟件計算蛋白條帶的灰度值,以目的條帶/內(nèi)參照條帶灰度比值作為Notch1的相對表達量。
免疫熒光染色檢測按下列步驟進行: 將細胞培養(yǎng)于置入蓋玻片的12孔板,取對數(shù)生長期的細胞,調(diào)整密度后接種,常規(guī)培養(yǎng)48 h。吸除培養(yǎng)液,用預冷的PBS洗滌3次后,4% 多聚甲醛室溫固定30 min,PBS洗滌后,0.1% Triton X-100細胞透化處理30 min,按常規(guī)方法用相應的抗體進行免疫熒光染色,然后再用DAPI(5 mg/L)復染10 min。抗熒光猝滅液封片,激光共聚焦顯微鏡(Leica)下觀察、拍照。
2.3各組細胞干性的檢測和比較
2.3.1各組細胞中CD133+細胞比例的檢測胰酶消化并收集各組細胞,計數(shù)并調(diào)整細胞濃度為1×109/L。設空白對照組及同型對照組。各組細胞吸取100 μL至1.5 mL EP管,300×g離心10 min,用100 μL預冷PBA重懸。實驗組加入1 μL PE標記的CD133抗體,同型對照組加入1 μL PE標記的同型對照抗體,空白對照組加入1 μL PBA?;靹?,置4 ℃冰箱避光孵育1 h。加入1 mL PBA洗滌細胞,300×g離心10 min,完全吸棄上清。500 μL PBA重懸各組細胞,流式細胞儀檢測。
2.3.2各組細胞nestin和GFAP表達的檢測分析免疫熒光染色方法同上述,將細胞培養(yǎng)于置入蓋玻片的12孔板,培養(yǎng)48 h后。用預冷的PBS洗滌3次后,用4% 多聚甲醛固定,PBS洗滌后,0.1% Triton X-100細胞透化處理,用抗nestin和GFAP抗體及相應的 II抗進行免疫熒光染色,再用DAPI復染。于激光共聚焦顯微鏡下觀察、拍照。
2.3.3各組腫瘤球的形成率實驗取對數(shù)生長期的各組細胞,胰酶消化,收集細胞,PBS洗滌細胞2次,1 000 r/min離心4 min。用干細胞培養(yǎng)液(DMEM/F12培養(yǎng)液含2% B27、20 μg/L EGF和20 μg/L bFGF)重懸各組細胞,計數(shù)并調(diào)整細胞密度為107/L。接種于24孔板,每孔1 mL,即每孔細胞數(shù)為104個, 每組細胞接種3孔。37 ℃、5% CO2中培養(yǎng),隔天半量更換干細胞培養(yǎng)液,觀察細胞變化及腫瘤球形成。培養(yǎng)10 d后,顯微鏡下計數(shù)直徑大于75 μm的腫瘤球個數(shù),腫瘤球球形成率(%)=每孔中直徑大于75 μm的腫瘤球的個數(shù)/每孔中原始接種細胞的總數(shù)×100%。
2.3.4SCID小鼠皮下種植致瘤實驗SCID小鼠恒溫(25~27 ℃)、恒溫和SPF條件下飼養(yǎng)。取對數(shù)生長期的NICD高表達組細胞和其對照組細胞,制備成單細胞懸液,每0.2 mL的細胞數(shù)為1×103、1×105或5×105。小鼠分為6組,每組5只,以碘伏消毒SCID鼠腋窩皮膚,用無菌注射器(6號針頭)抽吸0.2 mL細胞接種于腋窩區(qū)皮下,繼續(xù)飼養(yǎng)。共觀察10周,然后采用頸髓離斷法處死。完整地剝出瘤體、去除表面脂肪組織、稱重,取游標卡尺分別測量腫瘤長徑和短徑(mm),按公式計算腫瘤體積,體積(mm3)=4/3×π×(長徑/2)×(短徑/2)2。
2.4MTT法檢測各組細胞的多藥耐藥性選用2種化療藥物VM-26和BCNU,參考其它文獻及本實驗室經(jīng)驗,分別用1.5 μmol/L VM-26和150 μmol/L BCNU處理細胞。取對數(shù)生長期的細胞,以每孔7 000個細胞接種于96孔板。37 ℃、5%CO2中培養(yǎng)12 h后,按確定濃度加入藥物,每組細胞做6個復孔。細胞加入藥物培養(yǎng)48 h后,每孔加入20 μL 5 g/L的MTT溶液,培養(yǎng)4 h后小心吸棄孔內(nèi)培養(yǎng)上清液,每孔加入150 μL DMSO,搖床上振蕩10 min,使結(jié)晶充分溶解。490 nm波長測吸光度(A)值,計算4組細胞的生存率。細胞生存率(%)=(給藥組-空白對照組)/(陰性對照組-空白對照組)×100%。
3統(tǒng)計學處理
采用SPSS 17.0統(tǒng)計分析軟件,計量數(shù)據(jù)檢驗正態(tài)性和方差齊性后,以均數(shù)±標準差(mean±SD)表示,各組間均數(shù)采用多樣本單因素方差分析,兩兩組間比較采用SNK-q檢驗,以P<0.05為差異有統(tǒng)計學意義。
結(jié)果
1獲得NICD高表達和Notch1基因敲低的U251細胞
按照前述轉(zhuǎn)染和篩選方法,共獲得4組細胞:NICD高表達U251細胞(pLVX-NICD)、高表達對照空載細胞(pLVX)、Notch1基因敲低的U251細胞(pLKO-Notch1-ND)和RNA干擾對照細胞(pLKO-Notch1-NC)。采用Western blot和免疫熒光染色法檢測結(jié)果均顯示,NICD高表達和Notch1基因敲低的U251細胞中Notch1的表達出現(xiàn)明顯變化,見圖1、2。
Figure 1.The protein expression of Notch1 in each group detected by Western blot. Mean±SD.n=3.**P<0.01vspLVX;##P<0.01vspLKO-Notch1-NC.
圖1Western blot檢測各組細胞Notch1蛋白的表達水平
2Notch1表達對U251細胞干性表型的調(diào)節(jié)
2.1Notch1表達影響U251細胞CD133+表型流式細胞術(shù)檢測結(jié)果顯示NICD高表達的U251細胞中CD133+細胞百分率明顯高于對照組;而Notch1基因RNA干擾的U251細胞CD133+細胞百分率與對照組相比則降低,見圖3。
Figure 2.The expression of NICD (red) in each group detected by immunofluorescence staining.
圖2免疫熒光染色法鑒定各組細胞NICD的表達
Figure 3.The percentage of CD133+cells in each group. Mean±SD.n=3.**P<0.01vspLVX;##P<0.01vspLKO-Notch1-NC.
圖3各組細胞中CD133+細胞的百分率
2.2Notch1表達影響U251細胞中nestin和GFAP的表達免疫熒光強度檢測結(jié)果顯示,NICD高表達細胞的nestin蛋白表達明顯強于其對照組,而GFAP表達則明顯減弱;Notch1基因RNA干擾組細胞的nestin表達明顯減弱,而GFAP表達則明顯增強,見圖4、5及表1。
2.3Notch1表達影響U251細胞腫瘤球的形成率NICD高表達組的腫瘤球形成率,明顯高于其對照組,為對照組2.05倍。而Notch1基因RNA干擾組的腫瘤球形成率則明顯低于對照組,見圖6。
2.4NICD高表達的U251細胞在SCID小鼠中的成瘤能力增加觀察移植的SCID小鼠10周,發(fā)現(xiàn)接種1×103和1×105個細胞的NICD高表達組和對照組均未長瘤;接種5×105個細胞的NICD高表達組5只SCID小鼠全部長瘤,瘤大小為(120.64±42.51)mm3,瘤重(0.21±0.11) g,而對照組5只SCID小鼠中只有1只長瘤,瘤大小為78 mm3,瘤重0.10 g,見圖7。
Figure 4.The expression of nestin (red) in each group detected by immunofluorescence staining.
圖4各組細胞nestin的表達情況
Figure 5.The expression of GFAP (red) in each group detected by immunofluorescence staining.
圖5各組細胞GFAP的表達情況
表1各組細胞中Nestin及GFAP的表達情況
Table 1.The expression of Nestin and GFAP in each group (Mean±SD.n=3)
GroupValueofimmunofluorescenceNestinGFAPpLVX36.23±7.8425.55±3.73pLVX-NICD60.75±11.98**12.06±1.79**pLKO-Notch1-NC34.40±6.5631.36±5.64pLKO-Notch1-ND22.40±6.48##89.00±15.28##
**P<0.01vspLVX;##P<0.01vspLKO-Notch1-NC
3Notch1表達影響U251細胞對化療藥物的敏感性
MTT法實驗結(jié)果顯示,在相同濃度VM-26或BCNU作用下NICD高表達組細胞生存率明顯高于其對照組;而Notch1基因RNA干擾組細胞生存率則明顯低于干擾對照組,見圖8。
Figure 6.The formation rate of tumor spheres in each goup cultured with stem cell medium. Mean±SD.n=3.*P<0.05vspLVX;#P<0.05vspLKO-Notch1-NC.
圖6各組細胞在干細胞培養(yǎng)液培養(yǎng)后腫瘤球形成率的比較
討論
已有研究表明,Notch信號通路與膠質(zhì)瘤發(fā)生和發(fā)展有關(guān),在膠質(zhì)瘤中發(fā)現(xiàn)Notch信號呈過表達,它在膠質(zhì)瘤細胞增殖分化及凋亡等中起著重要作用。本研究通過轉(zhuǎn)基因調(diào)節(jié)Notch1信號的方式,探討了Notch1表達對膠質(zhì)瘤U251細胞的干細胞樣特性和對化療藥物VM-26、BCNU的敏感性的調(diào)節(jié),結(jié)果顯示:當Notch1信號增強時,U251細胞表現(xiàn)較強的腫瘤干細胞的特征,如CD133+瘤細胞增多、細胞中nestin表達增加而GFAP表達減弱、腫瘤球形成率增加、SCID小鼠皮下移植成瘤性增強,而且對VM-26和BCNU的抗性也都明顯增強。這表明在膠質(zhì)瘤研究和治療中應重視Notch1表達水平的檢測,它可望作為調(diào)節(jié)膠質(zhì)瘤化療敏感性的潛在靶點。
克服腫瘤細胞對化療藥物的耐藥性是提高腫瘤療效的重要內(nèi)容,CSCs概念的提出為腫瘤細胞耐藥研究拓展出一片新的空間,CSCs被認為在藥物抵抗及腫瘤的轉(zhuǎn)移過程中發(fā)揮了重要的作用,因為CSCs能表達藥物轉(zhuǎn)運蛋白及增強DNA修復系統(tǒng)從而使CSCs產(chǎn)生耐藥性[4]。有證據(jù)表明Notch信號通路與CSCs相關(guān),例如,該通路參與調(diào)節(jié)結(jié)直腸癌的干細胞群[5],也在維持胰腺癌CSCs樣表型中發(fā)揮重要作用[6]。Farnie等[7]證明了Notch表達上調(diào)與乳腺癌干細胞相關(guān)的證據(jù),說明Notch和乳腺癌干細胞樣特征有關(guān)。Zhang等[8]的研究發(fā)現(xiàn),Notch1的激活形式NICD在SHG-44和U87細胞系中可被檢測到,并且這2種腦膠質(zhì)瘤細胞株的增殖快于未檢測到NICD的膠質(zhì)瘤細胞株;SHG-44細胞中NICD的過度表達促進了SHG-44細胞的生長和集落形成;這些集落表達巢蛋白,為具有神經(jīng)干細胞表型的細胞。Hulleman等[9]發(fā)現(xiàn)轉(zhuǎn)錄因子HEY1作為Notch信號通路的一個下游靶分子,在膠質(zhì)瘤中顯著上調(diào),且多形性膠質(zhì)母細胞瘤中HEY1的表達與腫瘤分級和生存相關(guān),而通過RNA干擾技術(shù)沉默HEY1,將使組織培養(yǎng)中的膠質(zhì)母細胞瘤增殖減弱。在膠質(zhì)瘤干細胞中,干擾素調(diào)節(jié)因子7可抑制白細胞介素6-Janus激酶信號轉(zhuǎn)導與Jagged-Notch信號通路活化,導致膠質(zhì)瘤干細胞標志物表達下降,腫瘤細胞球形成能力及致瘤性降低[10]。本實驗通過轉(zhuǎn)基因過表達NICD進一步證實了Notch1信號高表達能夠使膠質(zhì)瘤細胞呈干細胞樣的表型。
Figure 7.Over-expression of NICD enhanced the formation of xenograft tumor in SCID mice.
圖7高表達NICD增加U251細胞在SCID小鼠移植成瘤
Figure 8.The effects of chemotherapeutics on the survival rate of the cells with different treatments. Mean±SD.n=3.**P<0.01vsplvx;##P<0.01vspLKO-Notch1-NC.
圖8各組瘤細胞在化療藥物作用下的生存率
化療是癌癥治療中重要的治療手段。然而,因為藥物抗性的作用,化療不能消滅所有的腫瘤細胞,這也是腫瘤復發(fā)最主要的原因。最近,有研究報道Notch信號通路與藥物抗性有關(guān)。更重要的是,Notch調(diào)節(jié)腫瘤干細胞的形成,促進細胞獲得上皮-間質(zhì)轉(zhuǎn)變表型,它和藥物抗性顯著相關(guān)[11-12]。許多研究發(fā)現(xiàn),在乳腺癌、胰腺癌、結(jié)腸癌等許多腫瘤中,抑制Notch1的表達,會提高腫瘤細胞對化療藥物的敏感性[13-15]。沉默Notch1基因可通過激活JNK1信號通路活化p53,促進PUMA和NOXA蛋白表達,進而通過線粒體途徑導致人乳腺癌MCF-7細胞凋亡[16]。在膠質(zhì)瘤中,抑制Notch信號通路可增強CD133+膠質(zhì)瘤細胞對化療藥物替莫唑胺的敏感性[17]。本實驗結(jié)果也提示,當Notch1信號增強時,U251細胞表現(xiàn)較強的腫瘤干細胞的特征,而且對VM-26和BCNU的抗性也明顯增強。據(jù)研究報道腫瘤耐藥最常見的原因是表達一種或更多種能量依賴的轉(zhuǎn)運蛋白(它可以發(fā)現(xiàn)細胞中的化療藥物并將它排出)、藥物誘導的凋亡及藥物誘導的解毒功能失常[18]。例如,ABC藥物轉(zhuǎn)運蛋白可以保護腫瘤細胞免受化療藥物的傷害。ABC轉(zhuǎn)運蛋白將毒性藥物排出癌細胞,使藥物殺死腫瘤細胞的作用下降。ABCC1(多藥耐藥相關(guān)蛋白1,multidrug resistance-associated protein 1.MRP1)、ABCB1(P-糖蛋白)和ABCG2(乳腺癌耐藥蛋白)3種ABC轉(zhuǎn)運蛋白已被鑒定[19]。已有研究發(fā)現(xiàn),MRP1與神經(jīng)膠質(zhì)瘤的耐藥性有關(guān)。在神經(jīng)膠質(zhì)瘤組織和膠質(zhì)瘤細胞株中均檢測到MRP1的表達[20]。Calatozzolo等[21]發(fā)現(xiàn)在人腦膠質(zhì)瘤組織切片中,MRP1的陽性率達70%,且膠質(zhì)瘤Ⅱ、Ⅲ、Ⅳ級沒有明顯的等級差異性,在原發(fā)性和復發(fā)性膠質(zhì)瘤中也沒有顯著區(qū)別。Spiegl-Kreinecker等[22]的研究表明隨著膠質(zhì)瘤惡性級別的增加,MRP1表現(xiàn)出陽性率逐漸增加的趨勢。
本實驗研究表明Notch1信號的增強可以促進腫瘤干細胞樣細胞的形成與增殖,而且也影響神經(jīng)膠質(zhì)瘤細胞對化療藥物的敏感性。因此,Notch1表達水平可作為研判膠質(zhì)瘤的干細胞性和預測化療敏感性的指標,干預Notch1信號可望成為膠質(zhì)瘤治療的干預靶點,以克服其藥物抗性作用和殺死膠質(zhì)瘤干細胞樣細胞,提高對膠質(zhì)瘤的化療效果。
[參考文獻]
[1]Haar CP, Hebbar P, Wallace GC 4th, et al. Drug resistance in glioblastoma: a mini review[J]. Neurochem Res, 2012, 37(6):1192-1200.
[2]Lamszus K, Günther HS. Glioma stem cells as a target for treatment[J]. Target Oncol, 2010, 5(3):211-215.
[3]Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents[J]. Oncogene, 2003, 22(42): 6598-6608.
[4]Styczynski J, Drewa T. Leukemic stem cells: from metabolic pathways and signaling to a new concept of drug resistance targeting[J]. Acta Biochim Pol, 2007, 54(4):717-726.
[5]Neradugomma NK, Subramaniam D, Tawfik OW, et al. Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner[J]. Carcinogenesis, 2014, 35(4):795-806.
[6]Phillips TM, Kim K, Vlashi E, et al. Effects of recombinant erythropoietin on breast cancer-initiating cells[J]. Neoplasia, 2007, 9(12):1122-1129.
[7]Farnie G, Clarke RB. Mammary stem cells and breast cancer: role of Notch signalling[J]. Stem Cell Rev, 2007, 3(2):169-175.
[8]Zhang XP, Zheng G, Zou L, et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells[J]. Mol Cell Biochem, 2008, 307(1-2):101-108.
[9]Hulleman E,Quarto M,Vernell R, et al. A role for the transcription factor HEY1 in glioblastoma[J]. J Cell Mol Med, 2009, 13(1):136-146.
[10]Jin X, Kim SH, Jeon HM, et al. Interferon regulatory factor 7 regulates glioma stem cells via interleukin-6 and Notch signalling[J]. Brain, 2012, 135((Pt 4):1055-1069.
[11]Wang Z, Li Y, Kong D, et al. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression[J]. Cancer Lett, 2010, 292(2):141-148.
[12]Wang Z, Li Y, Banerjee S, et al. Emerging role of Notch in stem cells and cancer[J]. Cancer Lett, 2009, 279(1):8-12.
[13]Zang S, Chen F, Dai J, et al. RNAi-mediated knockdown of Notch-1 leads to cell growth inhibition and enhanced chemosensitivity in human breast cancer[J]. Oncol Rep, 2010, 23(4):893-899.
[14]Yeh TS, Hsieh RH, Shen SC, et al. Nuclear βII-tubulin associates with the activated Notch receptor to modulate notch signaling[J]. Cancer Res, 2004, 64(22):8334-8340.
[15]Akiyoshi T, Nakamura M, Yanai K, et al. Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells[J]. Gastroenterology, 2008, 134(1):131-144.
[16]袁磊,陳旭東,范文娟,等. 沉默Notch1基因促進人乳腺癌MCF-7細胞JNK1和p53磷酸化[J]. 中國病理生理雜志,2013, 29(6):1014-1020.
[17]Ulasov IV, Nandi S, Dey M, et al. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133+glioma stem cells to temozolomide therapy[J]. Mol Med, 2011, 17(1-2):103-112.
[18]Gottesman MM. Mechanisms of cancer drug resistance[J]. Annu Rev Med, 2002, 53:615-627.
[19]Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer[J]. Nat Rev Drug Discov, 2006, 5(3):219-234.
[20]Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research[J]. Cell Mol Life Sci, 2004, 61(6):682-699.
[21]Calatozzolo C, Gelati M, Ciusani E, et al. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-π in human glioma[J]. J Neurooncol, 2005, 74(2):113-121.
[22]Spiegl-Kreinecker S, Buchroithner J, Elbling L, et al. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes[J]. J Neurooncol, 2002, 57(1):27-36.
(責任編輯: 盧萍, 羅森)