• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    幾類圖的Merrifield-Simmons指標(biāo)及扇和輪的Hosoya指標(biāo)

    2016-01-05 05:15:30趙曉翠田雙亮田文文

    趙曉翠, 田雙亮, 田文文

    (西北民族大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院, 甘肅蘭州 730030)

    幾類圖的Merrifield-Simmons指標(biāo)及扇和輪的Hosoya指標(biāo)

    趙曉翠, 田雙亮, 田文文

    (西北民族大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院, 甘肅蘭州 730030)

    摘要:Merrifield-Simmons指標(biāo)和Hosoya指標(biāo)是化學(xué)圖論研究中兩個(gè)重要的拓?fù)渲笜?biāo).在已有結(jié)論的基礎(chǔ)上,主要研究了幾類圖的Merrifield-Simmons指標(biāo)及 n階的扇和輪的Hosoya指標(biāo),并給出了相應(yīng)的遞推公式,為以后研究化學(xué)分子結(jié)構(gòu)的性質(zhì)提供了重要的理論依據(jù).

    關(guān)鍵詞:Merrifield-Simmons指標(biāo); 扇; 輪; Hosoya指標(biāo)

    1預(yù)備知識(shí)

    令e和x分別為圖G=(V,E)的一條邊和一個(gè)頂點(diǎn),我們用G-e表示圖G刪去邊e得到的圖,用G-x表示圖G刪去頂點(diǎn)x(及關(guān)聯(lián)的邊)得到的圖.為計(jì)算方便,令 σ(G,0)=1,μ(G,0)=1.用NG(v)表示G中點(diǎn)v的鄰點(diǎn)集,且NG[v]={v}∪NG(v).

    在證明主要結(jié)論之前,我們先給出個(gè)相關(guān)引理如下.

    引理1[4]設(shè)G是一個(gè)簡(jiǎn)單圖,對(duì)任意的u,v∈V(G),uv∈E(G),則

    σ(G)=σ(G-V)+σ(G-NG[v])

    μ(G)=μ(G-uv)+μ(G-u-v).

    引理2[4]對(duì)于n階的路Pn,有σ(Pn)=fn+2且μ(Pn)=fn+1.

    引理3[4]若G1,G2,…,Gt是圖G的連通分支,其中t≥2,則

    引理4[4]對(duì)于n階的圈Cn,有

    σ(Cn)=fn+1+fn-1.

    引理5 對(duì)于n階的扇Fn(圖1),有

    μ(Fn)=μ(Fn-1)+μ(Fn-2)+fn-1.

    圖1 扇Fn

    圖2 輪Wn

    證明 根據(jù)引理1可得

    μ(Fn)=μ(Fn-u0un-1)+μ(Fn-u0-un-1)=

    μ(Fn-u0un-1-un-1un-2)+

    μ(Fn-u0un-1-un-1-un-2)+μ(Pn-2)=

    μ(P1)·μ(Fn-1)+μ(Fn-2)+fn-1=

    f2·μ(Fn-1)+μ(Fn-2)+fn-1=

    μ(Fn-1)+μ(Fn-2)+fn-1.

    2主要結(jié)論及其證明

    圖3 Ln

    證明由引理1、引理3可得

    σ(Ln)= σ(Ln-vn)+σ(Ln-NLn[vn])=

    σ(Ln-vn-un)+

    σ(Ln-vn-NLn-vn[un])σ(Ln-NLn[vn])=

    σ(Ln-1)+σ(Ln-1-un-1)+σ(Ln-1-vn-1)=

    σ(Ln-1)+2σ(Ln-1-vn-1)=

    (1)

    σ(Ln-vn)=σ(Ln-vn-un)+

    σ(Ln-vn-NLn-vn[un])=

    σ(Ln-1)+σ(Ln-1-un-1)=

    σ(Ln-1)+σ(Ln-1-vn-1)=

    (2)

    所以,由(1)、(2)可得

    圖4 Gn

    證明由引理1、2、3可得

    σ(Gn)=σ(Gn-vn-1)+σ(Gn-NGn[vn-1])=

    σ(Gn-vn-1-un)+

    σ(Gn-vn-1-NGn-vn-1[un])+

    σ(P1)·σ(Gn-2)=

    σ(Gn-1)+σ(Gn-vn-1-

    NGn-vn-1[un]-vn-2)+

    σ(Gn-vn-1-NGn-vn-1[un]-

    NGn-vn-1-NGn-vn-1[un][vn-2])+2σ(Gn-2)=

    σ(Gn-1)+σ(Gn-2)+σ(Gn-3)+2σ(Gn-2)=

    σ(Gn-1)+3σ(Gn-2)+σ(Gn-3)=

    其中

    σ(G3)=σ(G3-v2)+

    σ(G3-NG3[v2]=σ(P5)+[σ(P1)]3=

    f7+(f3)2=13+23=21.

    σ(G2)=σ(P4)=f6=8,

    σ(G1)=[σ(P1)]2=22=4.

    圖5 Zn

    證明由引理1、2、3及定理2可得

    σ(Zn)=σ(Zn-vn-1)+σ(Zn-NZn[vn-1])=

    σ(P1)·σ(Gn-1)+σ(Gn-2)=

    定理4 對(duì)于如圖6所示的圖Mn,有

    fn-1+fn+1

    其中n≥7.

    圖6 Mn

    證明由引理1、4、定理1及定理3可得

    σ(Mn)=σ(Mn-a)+σ(Mn-NMn[a])=

    σ(Mn-a-un)+

    σ(Mn-a-NMn-a[un])+σ(Cn)=

    σ(Mn-a-un-vn)+

    σ(Mn-a-un-NMn-a-un[vn])+

    σ(Mn-a-NMn-a[un])+fn-1+fn+1=

    σ(Ln-1)+σ(Zn-2)+

    σ(Zn-2)+fn-1+fn+1=

    σ(Ln-1)+2σ(Zn-2)+fn-1+fn+1=

    fn-1+fn+1.

    定理5 對(duì)于如圖1所示的扇圖Fn(n≥3),有

    μ(Fn)=fn-2F1+fn-1F2+fn-2f2+

    fn-3f3+…+fn-ifi+…+f1fn-1.

    其中n-i≥1,i=1,2,…,n-1且F1=1,F2=2.

    證明用第二數(shù)學(xué)歸納法證明k>3.

    (1)當(dāng)n=3時(shí),μ(F3)=4=f1F1+f2F2+f1f2=1×1+1×2+1×1,定理成立;

    (2)假設(shè)對(duì)一切n≤k,定理成立,則當(dāng)n=k+1時(shí),由引理5及假設(shè)可得

    μ(Fk+1)=μ(Fk)+μ(Fk-1)+fk=

    fk-2F1+fk-1F2+fk-2f2+

    fk-3f3+…+fk-ifi+…+

    f2fk-2+f1fk-1+fk-3F1+

    fk-2F2+fk-3f2+fk-4f3+…+

    fk-1-ifi+…+f1fk-2+fk=

    (fk-2+fk-3)F1+

    (fk-1+fk-2)F2+(fk-2+fk-3)f2+

    (fk-3+fk-4)f3+…+

    (fk-i+fk-1-i)fi+…+

    (f2+f1)fk-2+f1fk-1+fk=

    fk-1F1+fkF2+fk-1f2+

    fk-2f3+…+fk+1-ifi+…+

    f3fk-2+f1fk-1+fk=

    fk-1F1+fkF2+fk-1f2+

    fk-2f3+…+fk+1-ifi+…+

    f3fk-2+f2fk-1+f1fk

    注:f1=f2=1.

    定理6 對(duì)于如圖2所示的輪圖Wn(n≥4),有

    μ(Wn)=(fn-2+fn-4)F1+

    (fn-1+fn-3)F2+(fn-2+fn-4)f2+

    (fn-3+fn-5)f3+…+

    (fn-i+fn-2-i)fi+…+

    (f3+f1)fn-3+f2fn-2+f1fn-1.

    其中n-2-i≥1,i=1,2,…,n-3且F1=1,F2=2.

    證明由引理1、2、3、5及定理5可得

    μ(Wn)=μ(Wn-uvn-1)+μ(Wn-u-vn-1)=

    μ(Wn-uvn-1-v1vn-1)+

    μ(Wn-uvn-1-v1-vn-1)+μ(Pn-2)=

    μ(Wn-uvn-1-v1vn-1-vn-1vn-2+

    μ(Wn-uvn-1-v1vn-1-vn-1-vn-2)+

    μ(Fn-2)+fn-1=

    μ(P1)·μ(Fn-1)+μ(Fn-2)+

    μ(Fn-2)+fn-1=

    μ(Fn-1)+2μ(Fn-2)+fn-1=

    μ(Fn)+μ(Fn-2)=

    fn-2F1+fn-1F2+fn-2f2+

    fn-3f3+…+fn-ifi+…+

    f3fn-3+f2fn-2+f1fn-1=

    fn-4F1+fn-3F2+fn-4f2+

    fn-5f3+…+fn-2-ifi+…+f1fn-3=

    (fn-2+fn-4)F1+

    (fn-1+fn-3)F2+(fn-2+fn-4)f2+

    (fn-3+fn-5)f3+…+

    (fn-i+fn-2-i)fi+…+

    (f3+f1)fn-3+f2fn-2+f1fn-1.

    參考文獻(xiàn):

    [1] Merrfield R E,Simmons H E.Topological methods in chemistry[M].New York:Wiley,1989.

    [2] Hosoya H.Topological index[J].Bull Chem Soc Japan,1971,44:2 332-2 339.

    [3] Gutman I.Acyclic systems with extremal Hückelπ-electron energy [J].Theor.Chim,Acta,1997,45:79-87.

    [4] Gutman I,Polansky O E.Mathematical concepts in organic chemistry[M].Berlin:Springer,1986.

    [5] Gutman I,Cyvin S J.Introduction to the theory of benzenoid hydrocarbons[M].Berlin:Springer,1989.

    [6] 張蓮珠.兩類四角系統(tǒng)的匹配數(shù)與點(diǎn)獨(dú)立集數(shù)[J].?dāng)?shù)學(xué)研究,1999,32(3):310-315.

    [7] Wagner S,Gutman I.Maxima and minima of the Hosoya Index and the Merrifield-Simmons index[J].Acta Appl Math.2010,112:323-346.

    [8] Chen X L,Zhao B,Zhao P Y.Six-membered ring spiro chains with extremal Merrifield-Simmons index and Hosoya index[J].Math Comput Chem,2009,62(3):657-665.

    (編輯:姚佳良)

    收稿日期:2014-05-19

    基金項(xiàng)目:西北民族大學(xué)中央高校科研專項(xiàng)資金資助研究生項(xiàng)目(ycx14029)

    作者簡(jiǎn)介:趙曉翠,女,397355370@qq.com; 通信作者: 田雙亮,男,sl_tian @163.com.

    文章編號(hào):1672-6197(2015)01-0027-05

    中圖分類號(hào):O157.5

    文獻(xiàn)標(biāo)志碼:A

    The Merrifield-Simmons index of several graphs
    and the Hosoya index of fan and wheel

    ZHAO Xiao-cui, TIAN Shuang-liang, TIAN Wen-wen

    (School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730030, China)

    Abstract:Merrifield-Simmonsindex and Hosoyaindex are the valuable topological indices in chemical graph theory.On the basis of the existing conclusions,this paper presents the Merrifield-Simmonsindex of several graphsand Hosoyaindex of fans and wheels with n vertices,and the recurrence formulas are given.Thisprovides an important theoretical basis for the further study of the nature of the chemical molecular structure.

    Key words:Merrifield-Simmonsindex; fan; wheel; Hosoya index

    舞阳县| 南川市| 项城市| 新安县| 临武县| 高尔夫| 泌阳县| 泗洪县| 本溪市| 阿巴嘎旗| 涟源市| 平潭县| 巴楚县| 白银市| 杭锦旗| 阿拉善左旗| 子长县| 米脂县| 安多县| 始兴县| 阿瓦提县| 泰安市| 清丰县| 左权县| 综艺| 安仁县| 富裕县| 庆云县| 昭觉县| 泌阳县| 永寿县| 鞍山市| 广宗县| 塘沽区| 固始县| 芷江| 陵川县| 顺平县| 特克斯县| 额济纳旗| 昭苏县|