• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含自旋軌道角動(dòng)量耦合的耦合簇理論研究Zn2和Cd2二聚物的結(jié)構(gòu)和光譜常數(shù)

    2015-12-29 02:33:00涂喆研王文亮
    物理化學(xué)學(xué)報(bào) 2015年6期
    關(guān)鍵詞:聚物角動(dòng)量常數(shù)

    涂喆研 王文亮

    (1陜西師范大學(xué)化學(xué)化工學(xué)院,陜西省大分子科學(xué)重點(diǎn)實(shí)驗(yàn)室,西安710062;2西安工程大學(xué)理學(xué)院,西安710048)

    含自旋軌道角動(dòng)量耦合的耦合簇理論研究Zn2和Cd2二聚物的結(jié)構(gòu)和光譜常數(shù)

    涂喆研1,2,*王文亮1

    (1陜西師范大學(xué)化學(xué)化工學(xué)院,陜西省大分子科學(xué)重點(diǎn)實(shí)驗(yàn)室,西安710062;2西安工程大學(xué)理學(xué)院,西安710048)

    在二分量相對(duì)論有效勢和與之匹配的基組aug-cc-pv n z-pp(n=Q,5)的基礎(chǔ)上,結(jié)合電子相關(guān)能的完備基組外推和四階多項(xiàng)式擬合,我們用含自旋軌道角動(dòng)量耦合的耦合簇方法研究了Zn2和Cd2的結(jié)構(gòu)和光譜常數(shù).盡管Zn2和Cd2的自旋軌道角動(dòng)量耦合效應(yīng)不及Hg2的明顯,但還是把自旋軌道角動(dòng)量耦合放在耦合簇迭代計(jì)算中,以獲得更加合理的理論結(jié)果.通過比較,理論結(jié)果與最新發(fā)表的實(shí)驗(yàn)結(jié)果或其他課題組的理論結(jié)果吻合得較好,因此我們的理論計(jì)算將有助于豐富對(duì)Zn2和Cd2光譜性質(zhì)的認(rèn)識(shí).

    光譜常數(shù);自旋軌道角動(dòng)量耦合;二聚物;耦合簇方法

    1 In troduction

    Both relativistic effects and electron correlation are critical to provide reliable theoreticalestimates for propertiesofmolecules containing heavy elements.1Coupled-cluster theory has been shown to providean efficientand accurate treatmentof electron correlation.2One of themostpopularmethods nowadays to treat relativistic effects in an approximatemanner is the use of relativistic effective core potentials(ECPs).The interaction of core electronsw ith the valence electrons is replaced by an effective potentialand the core electrons are not longer treated explicitly. Furthermore,when spin-orbitcoupling isneglected,it isstraightforward to implementscalar relativistic ECPs in the framework ofnon-relativistic calculations since relativity isaccounted for only through the parametersof the ECPs.However,spin-orbitcoupling has a visible influence on the properties of heavy-element coumpouds.3Spin-orbitcoupling can also be included using ECPs and such treatments result in two componentapproachesw ith the additional advantage that the spin-orbitoperator can be represented as a one-electron operator4which can reduce the computational costverymuch.

    A both efficientand high-precision treatment of spin-orbit coupling based on two componentECPs is to consider the spinorbit coupling only at coupled cluster level.By including spinorbit coupling only in the electron correlation part,the Hartree-Fock partand the integral transformationwillbeexactly the same as in nonrelativistic or scalar relativistic calculations.4It isworthy tomention thatcoupled cluster theory isable to account formost of the orbital relaxation effects via single excitations in the cluster operator.5The advantage of putting the spin-orbit coupling in the postHartree-Fock part is that themolecularorbitals(MOs)aswell as the two-electron integrals in theMO representation remain real and can be classified according to the irreducible representation of themolecular single pointgroup.4This issue can be explored to reduce the computational effort significantly w ith respect to fully relativistic four component coupled cluster calculations. Therefore,two component ECPs based coupled-cluster theory w ith spin-orbitcoupling isused to study Zn2and Cd2in thiswork.

    Diatomicmolecule formed from two closed shellatoms is van derWaalsmolecule,Zn2and Cd2should belong to this category though some authors think that they are notpure van derWaals molecules.6-8Theground statesof Zn2and Cd2areweakly bounded w ith a large equilibrium distances.

    Experimentally,Zn2and Cd2are lessextensively studied than Hg2due to theirhigher vaporization temperatures.9,10Though recent laser spectroscopies of Zn2and Cd2seem to give reliable values of harmonic frequency(ωe)and dissociation energy(De)of theelectronic ground states,the equilibrium distances(Re)of Zn2and Cd2are less certain.10

    Theoretically,statement such as“the full consistency w ith spectroscopic constants com ing from experimenthas been given up because of the computational demands”appeared in a relativistic calculation paper.11In recent three years,we find“accurate potentialenergy curves”calculatedwith relativistic effects,which considerably narrowed the gapsbetween theory and experiment,12but the discrepancies still remain.It isworthy tomention that Li etal.10provided the latest theoretical results,but their results relied on potential functionalw ithmany parameters.

    Most researchers think that the spin-orbitcoupling effectsof Zn and Cd elements are small13-16and the perturbationmethod is exact enough to treat the spin-orbit coupling effect of Zn2and Cd2.17-19However,if accurate valuesof spectroscopic constantsare wanted,one would better use iterativemethod instead of perturbation method to treat spin-orbit coupling.In fact,Kullie has already used a relativistic four-component Dirac-Coulomb Ham iltonian w ith spin-orbitcoupling in the framework of timedependent density functional theory and linear response approximation to calculate the electronic state of Zn220and Cd2.21However,it is w idely known that the results of spectroscopic constants are very dependent of the choice of functional.The more generaland high-precision ab initio calculations are desired and w illbe helpful to understand the spectral character of these two dimers.

    2 Basic equations

    The nonrelativistic one-component CCSD(coupled-cluster approachw ith singlesand doubles level)energy equation is then4and the amplitude equationsare22

    w ith the F and W intermediates defined as

    theτamplitudesare defined as

    the permutation operator P-isgiven by

    and theorbitalenergy denominatorsare defined as

    The two-componentCCSD equationsare exactly the same as theabove nonrelativistic one component counterpartsexcept that the Fockmatrix has contributions from the spin-orbitcoupling due to the use of two-componentECPs.

    Thus,in the above equations,EHFis the scalar relativisticHartree-Fock energy w ithoutspin-obitcoupling,i,j,k,…are the indices for occupied spin orbits,a,b,c,…denote virtue spin orbits,and p,q,r,…are for general spin orbits,fpqis the Fock matrix elementw ith the contribution of spin-orbit coupling included.The Fockmatrix elements can bew ritten as

    where F0is the Fock operatorwithoutspin-orbitcoupling and hSOCis the spin-orbit coupling operator which is reduced to oneelectron operator due to the use of two-componentECPs.4

    Furthermore,consideration of triple excitationshasbeen shown to be important in order to achieve highly accurate results in coupled cluster calculations.23The most popular noniteration scheme to account for triple excitations is the CCSD(T)approach.24Theenergy correction due to tripleexcitation correction is then given by25

    w ith the cyclic permutation operator

    Itshould be pointed out that the occupied-virtue block of the Fockmatrix in the second term on the righthand side of Eq.(13) solely comes from spin-orbit coupling.Spin-orbit coupling thus contributes directly to the triple excitation.With respect to the other denominators in Eqs.(1-16),one can find the details in the corresponding literature.

    3 Com pu tationaldetails

    CFOUR is a program package for perform ing high-level quantum chemical calculations on atoms and molecules.26Our coupled cluster calculations in thiswork are performed in CFOUR package.Both CCSD(T)w ithout spin-orbit coup ling and CCSD(T)including spin-orbit coupling(SOC-CCSD(T))27methodsare used to calculate the energiesof atomsaswellas9 single pointenergies of around equilibrium position of these two dimers.The intervalof the 9 points isdefined to be 0.005 nm.The two-componentECPs,ECP10MDF,andmatched basissets,augccpv n z-pp(n=Q,5)28,are used in the calculations.The electron correlation energies from CCSD(T)and SOC-CCSD(T)are extrapolated to the results of completed basis set(CBS).The formula of CBS forelectron correlation energy can bew ritten as

    In theabove equation,n is the same to the n in thebasisset,the valueof n can bedefined to be4,5 in thiswork;represents the calculated electronic correlation energies from aug-ccpv n z-pp basis sets;the values of c andcan be obtained through solving equation sets in Mathematica software package.The Hartree-Fock limit is taken from theaug-ccpv5z-pp basisset.The basis setsuperposition error(BSSE)isnotcorrected in thiswork because of the use of high level basis sets.And the four order polynomial fitting technique isused to calculate the bond lengths and spectroscopic constantsof these two dimersand the related fitting formula can be found in the reference29and references therein.

    Table1 Calculated bond lengthsand spectroscopic constantsof Zn2com pared to the latestexperimental and other group's theoretical resu lts

    4 Resu lts and d iscussion

    4.1Zn2

    The calculated bond lengthsand spectroscopic constants,the latestexperimental resultsand othergroup's theoretical results9,10,12are listed in Table 1.For thebond length,our result from CBS+SOCCCSD(T)is closest to the result from Pahl etal.12In Pahl etal.'s work,the spin-orbitcontributionwasobtained from Dirac-Fock calculations and the spin-orbitenergieswere then added to the scalarenergies.For Zn2whose spin-orbitcoupling effectisweakest, both Pahl etal.'s calculated method and our present calculated method are reasonable.With respect to Li etal.'s theoretical results,though theoptimized potential function isused to determine the structure and spectroscopic constants,the obtained bond length isabit longer than Pahl etal.'sand oursbond length,much shorter than theexperimentalvalue.9Perhaps,becauseof themultireference character in Zn2,both Pahl etal.'sand ours ab initio's resultsare smaller than the experimental value.9In otherwords,the noniterative triple excitation in single-reference coupledcluster procedure may not fully describe the multi-reference characterof Zn2.On the otherhand,from our calculated valuesof bond length,asone can expect,the spin-orbitcoupling effectdoes notchange bond length toomuch,about just0.001 nm.Forother spectroscopic constants in Table1,all the theoretical resultsagree with the corresponding experimental resultsverywell.Though the experimental rotational constantand vibrational-rotational coupling constantareabsent,all the theoreticalvaluesagreew ith each other verywell.

    Table2 Calcu lated bond lengthsand spectroscopic constantsof Cd2compared to the latest experim entaland other group's theoretical resu lts

    4.2Cd2

    The calculated bond lengthsand spectroscopic constants,the latest experimental results,and other group's theoretical results10,12,30for Cd2are listed in Table 2.For the bond length,our result from CBS+SOC-CCSD(T)is closest to the experimental result.The theoreticalbond length from Pahl etal.'swork isabit longer than the experimental value.The treatmentof spin-orbit coupling in Pahl etal.'sworkmentioned abovemay notbe the mostsuitable approach for Cd2whose spin-orbit coupling effect ismore visible than Zn2.With respect to Li et al.'s theoretical results,though theoptimized potential function isused to determine the structure and spectroscopic constants,the obtained bond length ismuch longer than the experimentalvalue.On the other hand,from our calculated values of bond length,the spin-orbit coupling effectmakes the bond length abitshorter,about0.002 nm.For other spectroscopic constants in Table 2,all the theoretical results agreew ith the corresponding experimental results very well.Though the experimental rotational constant and vibrational-rotational coupling constant are absent,all the theoreticalvaluesagreew ith each other very well.

    5 Summ ary

    In thiswork,the two-component coupled-cluster theory w ith spin-orbit coupling,the completed basis setsextrapolation,and the four-order polynomial fitting technique are used to study the structuresand spectroscopic constantsof Zn2and Cd2.The results from CBS+SOC-CCSD(T)calculations are themost reliable values in comparisonw ith the latestexperimentalorothergroup's theoretical results.The spin-orbitcouplingmainly affects thebond length of Cd2,and other valuesare almostnotaffected by spinorbit coupling.Our theoretical resultsw ill be helpful to understand the spectral characterof these two dimersand CBS+SOCCCSD(T)method is suitable for studying the electronic structures of these van derWaalsdimers containing heavy elements.

    With respect to Hg2whose spin-orbitcoupling ismostvisible, the results of Hg2w ill be reported in the near future due to its complexity.

    (1)Pyykko,P.Chem.Rev.1988,88,563.doi:10.1021/cr00085a006

    (2)Bartlett,R.J.;Musial,M.Rev.Mod.Phys.2007,79,291.doi: 10.1103/RevModPhys.79.291

    (3)Liu,W.;VanWullen,C.J.Chem.Phys.1999,110,3730.doi: 10.1063/1.478237

    (4)Wang,F.;Gauss,J.;vanWullen,C.J.Chem.Phys.2008,129, 064113.doi:10.1063/1.2968136

    (5)Christiansen,O.;Hattig,C.;Gauss,J.J.Chem.Phys.1998,109, 4745.doi:10.1063/1.477086

    (6)Yu,M.;Dolg,M.Chemical Physics Letters1997,273,329.doi: 10.1016/S0009-2614(97)00609-X

    (7)Schautz,F.;Flad,H.J.;Dolg,M.TheoreticalChemistry Accounts1998,99,231.doi:10.1007/s002140050331

    (8)Strojecki,M.;Ruszczak,M.;?ukomski,M.;Koperski,J. ChemicalPhysics2007,340,171.doi:10.1016/j. chemphys.2007.08.016

    (9)Strojecki,M.;Ruszczak,M.;Kro?nicki,M.;?ukomski,M.; Koperski,J.Chemical Physics2006,327,229.doi:10.1016/j. chemphys.2006.04.008

    (10)Wei,L.M.;Li,P.;Qiao,L.W.;Tang,K.T.J.Chem.Phys.2013, 139,154306.doi:10.1063/1.4824889

    (11)Bucinsky,L.;Biskupic,S.;Ilcin,M.;Lukes,V.;Laurinc,V. JournalofComputationalChemistry 2009,30,65.doi:10.1002/ jcc.v30:1

    (12)Pahl,E.;Figgen,D.;Borschevsky,A.;Peterson,K.A.; Schwerdtfeger,P.TheoreticalChemistry Accounts2011,129, 651.doi:10.1007/s00214-011-0912-1

    (13)Bera,N.C.;Das,A.K.Chemical Physics Letters2007,437,257.doi:10.1016/j.cplett.2007.02.010

    (14)Bender,C.F.;Rescigno,T.N.;Schaefer,H.F.,III;Orel,A.E. J.Chem.Phys.1979,71,1122.doi:10.1063/1.438456

    (15)Takewaki,H.;Tomonari,M.;Nakamura,T.J.Chem.Phys. 1985,82,5608.doi:10.1063/1.448596

    (16)Czuchaj,E.;Rebentrost,F.;Stoll,H.;Preuss,H.Chemical Physics Letters1996,255,203.doi:10.1016/0009-2614(96) 00336-3

    (17)Ellingsen,K.;Saue,T.;Pouchan,C.;Gropen,O.Chemical Physics2005,311,35.doi:10.1016/j.chemphys.2004.09.038

    (18)Hay,P.J.;Dunning,T.H.,Jr.;Raffenetti,R.C.J.Chem.Phys. 1976,65,2679.doi:10.1063/1.433411

    (19)Figgen,D.;Rauhut,G.;Dolg,M.;Stoll,H.Chemical Physics 2005,311,227.doi:10.1016/j.chemphys.2004.10.005

    (20)Kullie,O.JournalofAtomic,Molecular,and OpticalPhysics 2012,2012,361974.doi:10.1155/2012/361947

    (21)Kullie,O.Chemical Physics2013,415,112.doi:10.1016/j. chemphys.2012.12.020

    (22)Stanton,J.F.;Gauss,J.;Watts,J.D.;Bartlett,R.J.J.Chem. Phys.1991,94,4334.doi:10.1063/1.460620

    (23)Kucharski,S.A.;Bartlett,R.J.J.Chem.Phys.1992,97, 4282.doi:10.1063/1.463930

    (24)Raghavachari,K.;Trucks,G.W.;Pople,J.A.;Head-Gordon,M. Chemical Physics Letters1989,157,479.doi:10.1016/S0009-2614(89)87395-6

    (25)Watts,J.D.;Gauss,J.;Bartlett,R.J.J.Chem.Phys.1993,98, 8718.doi:10.1063/1.464480

    (26)CFOUR,aquantum chem icalprogram packagew ritten by Stanton,J.F.;Gauss,J.;Harding,M.E.;Szalay,P.G.w ith contributions from Auer,A.A.;Bartlett,R.J.;Benedikt,U.; Berger,C.;Bernholdt,D.E.;Bomble,Y.J.;Cheng,L.; Christiansen,O.;Heckert,M.;Heun,O.;Huber,C.;Jagau,T. C.;Jonsson,D.;Jusélius,J.;K lein,K.;Lauderdale,W.J.; Matthews,D.A.;Metzroth,T.;Mück,L.A.;O'Neill,D.P.; Price,D.R.;Prochnow,E.;Puzzarini,C.;Ruud,K.; Schiffmann,F.;Schwalbach,W.;Simmons,C.;Stopkow icz,S.; Tajti,A.;Vázquez,J.;Wang,F.;Watts,J.D.and the integral packages MOLECULE(A lm l?f,J.;Taylor,P.R.),PROPS (Taylor,P.R.),ABACUS(Helgaker,T.;Jensen,H.J.A.; J?rgensen,P.;Olsen,J.),and ECP routinesby M itin,A.V.;van Wüllen,C.For the currentversion,seehttp://www.cfour.de.

    (27)Tu,Z.Y.;Yang,D.D.;Wang,F.;Guo,J.W.J.Chem.Phys. 2011,135,034115.doi:10.1063/1.3611052

    (28)Peterson,K.A.;Puzzarini,C.TheoreticalChemistry Accounts 2005,114,283.doi:10.1007/s00214-005-0681-9

    (29)Yang,D.D.;Wang,F.TheoreticalChemistry Accounts2012, 131,1117.doi:10.1007/s00214-012-1117-y

    (30)Strojecki,M.;Kro?nicki,M.;Zgoda,P.;Koperski,J.Chemical Physics Letters2010,489,20.doi:10.1016/j.cplett.2010.02.039

    Coup led-Cluster Theo retical Study o f Struc tu res and Spec troscop ic Constan ts o f Dim ers Zn2and Cd2w ith Sp in-Orbit Coup ling

    TU Zhe-Yan1,2,*WANGWen-Liang1
    (1Key Laboratory forMacromolecular Science ofShaanxiProvince,SchoolofChemistry and Chemical Engineering,Shaanxi NormalUniversity,Xi'an 710062,P.R.China;2SchoolofScience,Xi'an Polytechnic University,Xi'an 710048,P.R.China)

    The structures and spectroscopic constants of Zn2and Cd2were studied using the coup led-cluster theory w ith spin-orbitcoup ling based on the two-component relativistic effective core potentialandmatched basis sets aug-cc-pv n z-pp(n=Q,5),combining com p lete basis setextrapolation of the electronic correlation energy and fourth-order polynom ial fitting technique.Spin-orbitcoupling was included in the post-Hartree-Fock p rocedure,i.e.,in the coup led-cluster iteration,to obtainm ore reasonab le results,although the spin-orbit coup ling effectobserved in Zn2and Cd2is notvisible as it is in Hg2.Our theoretical results agree wellw ith the latestexperimentalvalues and othergroups'theoreticalresults,and willbe helpfulin understanding the spectral characteristics of these two dimers.

    Spectroscopic constant;Spin-orbitcoup ling;Dimer;Coup led-cluster theory

    O641

    icle]

    10.3866/PKU.WHXB201503261 www.whxb.pku.edu.cn

    Received:November 14,2014;Revised:March 24,2015;Published onWeb:March 26,2015.

    ?Corresponding author.Email:tuzheyan@126.com;Tel:+86-18392679232.

    The projectwassupported by the Start-up Fundsof Xi'an Polytechnic University,China(BS1211)and Scientific Research Program Funded by ShaanxiProvincial Education Department,China(2013JK0679).

    西安工程大學(xué)博士科研啟動(dòng)基金(BS1211)和陜西省教育廳專項(xiàng)科研計(jì)劃項(xiàng)目(2013JK0679)資助

    ?Editorialoffice of Acta Physico-Chimica Sinica

    猜你喜歡
    聚物角動(dòng)量常數(shù)
    對(duì)經(jīng)典力學(xué)中的軌道角動(dòng)量和自轉(zhuǎn)角動(dòng)量的探討
    丁二烯二聚物精制及脫氫制乙苯技術(shù)研究
    關(guān)于Landau常數(shù)和Euler-Mascheroni常數(shù)的漸近展開式以及Stirling級(jí)數(shù)的系數(shù)
    基于角動(dòng)量模型的流場渦旋提取方法
    用角動(dòng)量的方法解決并推廣一個(gè)功能關(guān)系問題
    夏季角動(dòng)量輸送變化與中國東部降水的關(guān)系
    含二苯并噻吩-S,S-二氧化物的給-受型齊聚噻吩衍生物的合成與表征
    幾個(gè)常數(shù)項(xiàng)級(jí)數(shù)的和
    萬有引力常數(shù)的測量
    丁二烯自聚物的危害、成因及防控措施
    国产 精品1| 亚洲七黄色美女视频| 午夜免费观看性视频| 最近2019中文字幕mv第一页| 欧美中文综合在线视频| 天天躁夜夜躁狠狠久久av| 两个人免费观看高清视频| 一级黄片播放器| 在线观看国产h片| 国产 一区精品| 久久久久精品人妻al黑| 极品少妇高潮喷水抽搐| 免费黄色在线免费观看| 免费av中文字幕在线| 伊人亚洲综合成人网| 人人妻人人爽人人添夜夜欢视频| 天堂俺去俺来也www色官网| 久久99热这里只频精品6学生| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成77777在线视频| 尾随美女入室| av在线老鸭窝| 国产深夜福利视频在线观看| 老司机影院成人| 天美传媒精品一区二区| 国产男人的电影天堂91| 久久精品亚洲av国产电影网| 欧美激情高清一区二区三区 | 精品少妇黑人巨大在线播放| 高清在线视频一区二区三区| 国产精品免费视频内射| 亚洲成人手机| 午夜激情久久久久久久| 又大又黄又爽视频免费| 国产熟女欧美一区二区| 国产成人午夜福利电影在线观看| 天天躁夜夜躁狠狠躁躁| 中文字幕精品免费在线观看视频| 国产精品免费大片| 国产精品国产三级专区第一集| 看十八女毛片水多多多| 午夜福利乱码中文字幕| 纯流量卡能插随身wifi吗| 激情视频va一区二区三区| 亚洲精品av麻豆狂野| 国产精品人妻久久久影院| 99热国产这里只有精品6| 1024视频免费在线观看| 久久久国产精品麻豆| 国产一区有黄有色的免费视频| 国产精品久久久久久久久免| 9191精品国产免费久久| 色综合欧美亚洲国产小说| 汤姆久久久久久久影院中文字幕| 啦啦啦 在线观看视频| 免费看不卡的av| 久久人人97超碰香蕉20202| 亚洲欧美一区二区三区国产| 日韩欧美精品免费久久| 久久综合国产亚洲精品| av一本久久久久| 成人国语在线视频| 国产熟女午夜一区二区三区| 免费高清在线观看日韩| 国产精品久久久人人做人人爽| 飞空精品影院首页| 热99国产精品久久久久久7| 青青草视频在线视频观看| 亚洲国产av影院在线观看| 国产成人精品久久二区二区91 | 男女午夜视频在线观看| 一边摸一边抽搐一进一出视频| 中国国产av一级| 可以免费在线观看a视频的电影网站 | 国产成人午夜福利电影在线观看| 日韩制服丝袜自拍偷拍| 侵犯人妻中文字幕一二三四区| 狂野欧美激情性bbbbbb| xxxhd国产人妻xxx| 久久人人爽av亚洲精品天堂| 国产精品免费大片| 日韩制服骚丝袜av| 美女主播在线视频| 欧美日韩成人在线一区二区| 国产精品 国内视频| 久久精品国产亚洲av高清一级| 国产免费现黄频在线看| 亚洲国产精品999| 99re6热这里在线精品视频| av视频免费观看在线观看| av在线老鸭窝| 老熟女久久久| 蜜桃国产av成人99| 欧美日韩av久久| 一级毛片我不卡| 中文字幕高清在线视频| 人人妻人人添人人爽欧美一区卜| 亚洲国产精品一区三区| 亚洲精品国产色婷婷电影| 午夜久久久在线观看| 国产成人欧美在线观看 | 精品少妇内射三级| 久久精品久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 菩萨蛮人人尽说江南好唐韦庄| 日韩不卡一区二区三区视频在线| 最黄视频免费看| 一区在线观看完整版| 日韩人妻精品一区2区三区| 叶爱在线成人免费视频播放| a级片在线免费高清观看视频| av在线老鸭窝| 国产野战对白在线观看| 九九爱精品视频在线观看| 欧美日韩亚洲高清精品| 亚洲精品在线美女| 欧美精品亚洲一区二区| 高清欧美精品videossex| 精品少妇内射三级| xxxhd国产人妻xxx| 观看美女的网站| 久久久久精品国产欧美久久久 | xxxhd国产人妻xxx| 制服人妻中文乱码| 日本wwww免费看| 91aial.com中文字幕在线观看| 亚洲第一区二区三区不卡| 久久久久久久久久久免费av| 精品少妇黑人巨大在线播放| 1024香蕉在线观看| 天天影视国产精品| 美女中出高潮动态图| 在线观看一区二区三区激情| 韩国精品一区二区三区| 国产亚洲一区二区精品| 又黄又粗又硬又大视频| 国产精品女同一区二区软件| 十分钟在线观看高清视频www| 亚洲av男天堂| 久久这里只有精品19| 免费观看a级毛片全部| 男的添女的下面高潮视频| 久久人妻熟女aⅴ| 欧美xxⅹ黑人| 一级片免费观看大全| 满18在线观看网站| 电影成人av| 一区福利在线观看| av在线app专区| 日本91视频免费播放| 久久韩国三级中文字幕| 2018国产大陆天天弄谢| 欧美精品一区二区大全| 国产高清不卡午夜福利| 国产一区二区激情短视频 | 国产精品成人在线| 日韩av在线免费看完整版不卡| 亚洲一码二码三码区别大吗| 人成视频在线观看免费观看| 亚洲一码二码三码区别大吗| 国产免费福利视频在线观看| 国产免费福利视频在线观看| 天堂中文最新版在线下载| 叶爱在线成人免费视频播放| 国产在线视频一区二区| 日韩,欧美,国产一区二区三区| 亚洲久久久国产精品| 日日摸夜夜添夜夜爱| 国产男女内射视频| 国产男女内射视频| 欧美另类一区| 可以免费在线观看a视频的电影网站 | av片东京热男人的天堂| 美女主播在线视频| 国产极品粉嫩免费观看在线| 美女主播在线视频| 别揉我奶头~嗯~啊~动态视频 | 97人妻天天添夜夜摸| 亚洲精品第二区| 久久人人爽人人片av| 秋霞在线观看毛片| 国产日韩欧美视频二区| 亚洲欧美日韩另类电影网站| 国产精品一二三区在线看| 久久久久国产精品人妻一区二区| 妹子高潮喷水视频| 国产乱来视频区| 在线 av 中文字幕| 久热爱精品视频在线9| 欧美成人午夜精品| 亚洲欧美一区二区三区国产| 老司机亚洲免费影院| 不卡av一区二区三区| 无限看片的www在线观看| 日本欧美国产在线视频| 午夜福利影视在线免费观看| 欧美乱码精品一区二区三区| 超碰成人久久| 狂野欧美激情性bbbbbb| 国产精品免费视频内射| 国产精品国产三级国产专区5o| 国产精品一二三区在线看| 国产精品久久久久久久久免| 黑人巨大精品欧美一区二区蜜桃| 丝瓜视频免费看黄片| 国产乱人偷精品视频| 十八禁高潮呻吟视频| 久久精品国产a三级三级三级| 乱人伦中国视频| 嫩草影视91久久| 女人高潮潮喷娇喘18禁视频| 少妇精品久久久久久久| 午夜福利乱码中文字幕| 久久亚洲国产成人精品v| 久久久久精品人妻al黑| 欧美最新免费一区二区三区| 丝袜美腿诱惑在线| 亚洲欧美一区二区三区黑人| 国产成人精品久久久久久| 亚洲av欧美aⅴ国产| 一级片免费观看大全| 欧美精品一区二区大全| 国产 一区精品| 操出白浆在线播放| 久久久久国产一级毛片高清牌| √禁漫天堂资源中文www| 国产99久久九九免费精品| 在线观看免费高清a一片| 曰老女人黄片| 欧美成人精品欧美一级黄| 日本欧美视频一区| 男女床上黄色一级片免费看| 国产伦人伦偷精品视频| 午夜av观看不卡| 亚洲综合色网址| 啦啦啦在线免费观看视频4| 一边亲一边摸免费视频| 亚洲精品久久午夜乱码| 自拍欧美九色日韩亚洲蝌蚪91| 久久影院123| 欧美人与性动交α欧美软件| 国产精品免费视频内射| 飞空精品影院首页| 美女中出高潮动态图| 亚洲国产精品999| 国产av码专区亚洲av| 一区二区三区精品91| 日本vs欧美在线观看视频| 青青草视频在线视频观看| 亚洲精品国产av成人精品| 亚洲精品成人av观看孕妇| videos熟女内射| 尾随美女入室| 高清黄色对白视频在线免费看| 又大又爽又粗| 国产成人免费观看mmmm| 国产人伦9x9x在线观看| 最近手机中文字幕大全| 欧美成人午夜精品| 精品亚洲成国产av| 久久久久精品人妻al黑| 国产成人精品无人区| 麻豆av在线久日| 亚洲伊人久久精品综合| 久久ye,这里只有精品| 久久精品国产综合久久久| 韩国高清视频一区二区三区| 搡老岳熟女国产| 不卡视频在线观看欧美| 亚洲精品aⅴ在线观看| 一级片免费观看大全| 久久久久精品久久久久真实原创| 一级片'在线观看视频| av在线播放精品| 中文字幕精品免费在线观看视频| 九色亚洲精品在线播放| 国产精品久久久久久精品古装| 在线观看人妻少妇| 午夜福利,免费看| 香蕉丝袜av| 如日韩欧美国产精品一区二区三区| 最新在线观看一区二区三区 | 亚洲人成网站在线观看播放| 最近中文字幕2019免费版| 成人黄色视频免费在线看| 一级片'在线观看视频| 观看美女的网站| 一级黄片播放器| 精品亚洲乱码少妇综合久久| 国产成人午夜福利电影在线观看| 欧美日韩综合久久久久久| 国产精品国产三级专区第一集| 一级毛片电影观看| 午夜福利影视在线免费观看| 又黄又粗又硬又大视频| 免费在线观看视频国产中文字幕亚洲 | 日日啪夜夜爽| 色94色欧美一区二区| 婷婷色综合大香蕉| 一区二区三区四区激情视频| 免费看av在线观看网站| h视频一区二区三区| av.在线天堂| 制服人妻中文乱码| 三上悠亚av全集在线观看| 亚洲人成77777在线视频| 亚洲国产av影院在线观看| 色播在线永久视频| 伊人久久大香线蕉亚洲五| 国产免费现黄频在线看| 69精品国产乱码久久久| 亚洲国产精品一区三区| 国产无遮挡羞羞视频在线观看| 中文字幕人妻丝袜一区二区 | 国产精品久久久久久精品电影小说| 男女无遮挡免费网站观看| 午夜av观看不卡| 免费观看性生交大片5| 午夜福利视频在线观看免费| 国产精品一区二区在线观看99| 99热国产这里只有精品6| 久久热在线av| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 亚洲一级一片aⅴ在线观看| 男女国产视频网站| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 国产精品成人在线| 99久久综合免费| 精品一品国产午夜福利视频| 男人操女人黄网站| 亚洲欧美一区二区三区久久| 午夜精品国产一区二区电影| 麻豆乱淫一区二区| 欧美日韩亚洲综合一区二区三区_| 久久久久精品国产欧美久久久 | 久久久久久久久久久久大奶| 91精品国产国语对白视频| 天天影视国产精品| 国产精品成人在线| 亚洲四区av| 久久鲁丝午夜福利片| www.精华液| 韩国精品一区二区三区| 中文天堂在线官网| 久久青草综合色| 在线观看一区二区三区激情| 亚洲精品视频女| 色播在线永久视频| 一区福利在线观看| bbb黄色大片| 亚洲欧美日韩另类电影网站| 欧美av亚洲av综合av国产av | 国产亚洲最大av| 嫩草影院入口| 丁香六月天网| 亚洲国产欧美一区二区综合| 国产麻豆69| 国产97色在线日韩免费| 精品少妇内射三级| 亚洲国产看品久久| 街头女战士在线观看网站| 丰满迷人的少妇在线观看| 亚洲熟女毛片儿| 亚洲在久久综合| 观看av在线不卡| 午夜福利视频精品| 乱人伦中国视频| 国产免费现黄频在线看| 国产欧美日韩综合在线一区二区| 99久久99久久久精品蜜桃| 日日啪夜夜爽| 母亲3免费完整高清在线观看| 中文精品一卡2卡3卡4更新| av女优亚洲男人天堂| 两个人免费观看高清视频| 汤姆久久久久久久影院中文字幕| 久久99热这里只频精品6学生| 天天躁夜夜躁狠狠躁躁| 肉色欧美久久久久久久蜜桃| 2018国产大陆天天弄谢| 最近的中文字幕免费完整| 国产伦理片在线播放av一区| 哪个播放器可以免费观看大片| 看免费av毛片| 国产亚洲精品第一综合不卡| 国产免费福利视频在线观看| 久久久久精品国产欧美久久久 | 国产精品麻豆人妻色哟哟久久| 天天躁狠狠躁夜夜躁狠狠躁| av.在线天堂| 国产精品免费大片| 妹子高潮喷水视频| 看十八女毛片水多多多| 精品久久蜜臀av无| 97精品久久久久久久久久精品| 99国产精品免费福利视频| 国产一区二区在线观看av| 在现免费观看毛片| 国产av一区二区精品久久| 黄片无遮挡物在线观看| 毛片一级片免费看久久久久| 亚洲第一av免费看| 18在线观看网站| 看免费av毛片| 精品亚洲成国产av| 久久天躁狠狠躁夜夜2o2o | 亚洲av男天堂| 免费日韩欧美在线观看| 蜜桃在线观看..| 别揉我奶头~嗯~啊~动态视频 | 最近中文字幕2019免费版| 啦啦啦在线观看免费高清www| 欧美成人午夜精品| 成人免费观看视频高清| 亚洲成国产人片在线观看| 18禁动态无遮挡网站| 高清黄色对白视频在线免费看| 亚洲精品av麻豆狂野| 亚洲欧美色中文字幕在线| 亚洲精品久久久久久婷婷小说| 国产1区2区3区精品| 国产xxxxx性猛交| 制服诱惑二区| 国语对白做爰xxxⅹ性视频网站| 亚洲国产看品久久| 国产一区二区三区av在线| 热re99久久国产66热| 精品国产一区二区三区四区第35| 18在线观看网站| 国产成人a∨麻豆精品| av在线老鸭窝| 亚洲精品,欧美精品| 国产免费视频播放在线视频| 免费少妇av软件| 青草久久国产| 一本大道久久a久久精品| 国产淫语在线视频| 国产 一区精品| 国产在视频线精品| 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 一区二区三区激情视频| 精品国产露脸久久av麻豆| 久久影院123| 久久国产精品男人的天堂亚洲| 99久久精品国产亚洲精品| 国产 精品1| 天天添夜夜摸| 国产视频首页在线观看| 天天躁夜夜躁狠狠躁躁| 又大又爽又粗| 精品少妇内射三级| 亚洲在久久综合| 多毛熟女@视频| 国产乱人偷精品视频| 午夜av观看不卡| 97人妻天天添夜夜摸| av.在线天堂| 男男h啪啪无遮挡| 亚洲精品久久成人aⅴ小说| 亚洲国产最新在线播放| 国产乱人偷精品视频| 欧美精品人与动牲交sv欧美| 日韩成人av中文字幕在线观看| 午夜福利视频在线观看免费| 十八禁人妻一区二区| 久久 成人 亚洲| 久久婷婷青草| 操出白浆在线播放| 亚洲一区中文字幕在线| 精品少妇黑人巨大在线播放| 亚洲免费av在线视频| 国产亚洲av高清不卡| 免费高清在线观看日韩| 男女高潮啪啪啪动态图| 亚洲av综合色区一区| 久久久精品免费免费高清| 中文字幕人妻熟女乱码| 久久 成人 亚洲| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| 中文字幕最新亚洲高清| 99久久人妻综合| 久久天躁狠狠躁夜夜2o2o | 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 男女之事视频高清在线观看 | 在线看a的网站| 亚洲 欧美一区二区三区| 午夜影院在线不卡| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久成人av| 欧美人与善性xxx| 七月丁香在线播放| 在线观看www视频免费| 男女之事视频高清在线观看 | 亚洲一区二区三区欧美精品| 精品卡一卡二卡四卡免费| 日韩电影二区| 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 国产有黄有色有爽视频| xxxhd国产人妻xxx| 午夜福利乱码中文字幕| 国产麻豆69| 激情视频va一区二区三区| 国产有黄有色有爽视频| 日本av手机在线免费观看| 免费少妇av软件| 色婷婷av一区二区三区视频| 啦啦啦啦在线视频资源| 国产福利在线免费观看视频| 久久韩国三级中文字幕| 久久天堂一区二区三区四区| 亚洲一级一片aⅴ在线观看| 欧美成人精品欧美一级黄| 肉色欧美久久久久久久蜜桃| 久久久久人妻精品一区果冻| 国产日韩欧美在线精品| av福利片在线| 久久人人爽人人片av| 中文字幕人妻丝袜制服| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| 在线观看三级黄色| av线在线观看网站| 亚洲天堂av无毛| 日韩中文字幕欧美一区二区 | 亚洲人成77777在线视频| 中文精品一卡2卡3卡4更新| 国产乱人偷精品视频| 日本wwww免费看| 国产精品蜜桃在线观看| 国产精品国产三级专区第一集| 亚洲四区av| 90打野战视频偷拍视频| 亚洲情色 制服丝袜| 久久婷婷青草| 一级毛片 在线播放| 老司机靠b影院| 国产黄色免费在线视频| 亚洲精品国产av成人精品| 19禁男女啪啪无遮挡网站| 国产视频首页在线观看| 国产日韩欧美在线精品| 免费在线观看黄色视频的| 国产乱来视频区| 交换朋友夫妻互换小说| 美国免费a级毛片| 国产精品.久久久| 天堂8中文在线网| 一本一本久久a久久精品综合妖精| xxx大片免费视频| 欧美日韩亚洲高清精品| 看非洲黑人一级黄片| 天堂俺去俺来也www色官网| 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 精品少妇黑人巨大在线播放| 成人影院久久| 一区福利在线观看| 777米奇影视久久| 在线观看人妻少妇| 日韩大片免费观看网站| 精品亚洲成国产av| 亚洲av男天堂| 亚洲伊人色综图| 操出白浆在线播放| 另类精品久久| 老鸭窝网址在线观看| 五月天丁香电影| 国产有黄有色有爽视频| 精品国产国语对白av| 国产一区二区激情短视频 | 91成人精品电影| 久久这里只有精品19| 女的被弄到高潮叫床怎么办| 亚洲美女黄色视频免费看| 一二三四在线观看免费中文在| 国产黄色免费在线视频| 男人爽女人下面视频在线观看| 色网站视频免费| 午夜福利视频精品| 精品少妇黑人巨大在线播放| 丰满迷人的少妇在线观看| 18禁国产床啪视频网站| 欧美国产精品一级二级三级| 青春草视频在线免费观看| 一级片'在线观看视频| 青春草视频在线免费观看| 又粗又硬又长又爽又黄的视频| 91成人精品电影| 一本—道久久a久久精品蜜桃钙片| 十八禁高潮呻吟视频| 日本一区二区免费在线视频| 久久久久久人人人人人| 日韩制服骚丝袜av| 久久婷婷青草| 国产亚洲午夜精品一区二区久久| 亚洲在久久综合| 午夜福利视频精品| 永久免费av网站大全| 男人爽女人下面视频在线观看| 国产成人精品久久二区二区91 | 精品一区二区三卡| √禁漫天堂资源中文www| 国产不卡av网站在线观看| 人人澡人人妻人| 在线天堂中文资源库| 大片免费播放器 马上看| 国产av精品麻豆| 在线 av 中文字幕| 亚洲国产精品一区二区三区在线|