• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含自旋軌道角動(dòng)量耦合的耦合簇理論研究Zn2和Cd2二聚物的結(jié)構(gòu)和光譜常數(shù)

    2015-12-29 02:33:00涂喆研王文亮
    物理化學(xué)學(xué)報(bào) 2015年6期
    關(guān)鍵詞:聚物角動(dòng)量常數(shù)

    涂喆研 王文亮

    (1陜西師范大學(xué)化學(xué)化工學(xué)院,陜西省大分子科學(xué)重點(diǎn)實(shí)驗(yàn)室,西安710062;2西安工程大學(xué)理學(xué)院,西安710048)

    含自旋軌道角動(dòng)量耦合的耦合簇理論研究Zn2和Cd2二聚物的結(jié)構(gòu)和光譜常數(shù)

    涂喆研1,2,*王文亮1

    (1陜西師范大學(xué)化學(xué)化工學(xué)院,陜西省大分子科學(xué)重點(diǎn)實(shí)驗(yàn)室,西安710062;2西安工程大學(xué)理學(xué)院,西安710048)

    在二分量相對(duì)論有效勢和與之匹配的基組aug-cc-pv n z-pp(n=Q,5)的基礎(chǔ)上,結(jié)合電子相關(guān)能的完備基組外推和四階多項(xiàng)式擬合,我們用含自旋軌道角動(dòng)量耦合的耦合簇方法研究了Zn2和Cd2的結(jié)構(gòu)和光譜常數(shù).盡管Zn2和Cd2的自旋軌道角動(dòng)量耦合效應(yīng)不及Hg2的明顯,但還是把自旋軌道角動(dòng)量耦合放在耦合簇迭代計(jì)算中,以獲得更加合理的理論結(jié)果.通過比較,理論結(jié)果與最新發(fā)表的實(shí)驗(yàn)結(jié)果或其他課題組的理論結(jié)果吻合得較好,因此我們的理論計(jì)算將有助于豐富對(duì)Zn2和Cd2光譜性質(zhì)的認(rèn)識(shí).

    光譜常數(shù);自旋軌道角動(dòng)量耦合;二聚物;耦合簇方法

    1 In troduction

    Both relativistic effects and electron correlation are critical to provide reliable theoreticalestimates for propertiesofmolecules containing heavy elements.1Coupled-cluster theory has been shown to providean efficientand accurate treatmentof electron correlation.2One of themostpopularmethods nowadays to treat relativistic effects in an approximatemanner is the use of relativistic effective core potentials(ECPs).The interaction of core electronsw ith the valence electrons is replaced by an effective potentialand the core electrons are not longer treated explicitly. Furthermore,when spin-orbitcoupling isneglected,it isstraightforward to implementscalar relativistic ECPs in the framework ofnon-relativistic calculations since relativity isaccounted for only through the parametersof the ECPs.However,spin-orbitcoupling has a visible influence on the properties of heavy-element coumpouds.3Spin-orbitcoupling can also be included using ECPs and such treatments result in two componentapproachesw ith the additional advantage that the spin-orbitoperator can be represented as a one-electron operator4which can reduce the computational costverymuch.

    A both efficientand high-precision treatment of spin-orbit coupling based on two componentECPs is to consider the spinorbit coupling only at coupled cluster level.By including spinorbit coupling only in the electron correlation part,the Hartree-Fock partand the integral transformationwillbeexactly the same as in nonrelativistic or scalar relativistic calculations.4It isworthy tomention thatcoupled cluster theory isable to account formost of the orbital relaxation effects via single excitations in the cluster operator.5The advantage of putting the spin-orbit coupling in the postHartree-Fock part is that themolecularorbitals(MOs)aswell as the two-electron integrals in theMO representation remain real and can be classified according to the irreducible representation of themolecular single pointgroup.4This issue can be explored to reduce the computational effort significantly w ith respect to fully relativistic four component coupled cluster calculations. Therefore,two component ECPs based coupled-cluster theory w ith spin-orbitcoupling isused to study Zn2and Cd2in thiswork.

    Diatomicmolecule formed from two closed shellatoms is van derWaalsmolecule,Zn2and Cd2should belong to this category though some authors think that they are notpure van derWaals molecules.6-8Theground statesof Zn2and Cd2areweakly bounded w ith a large equilibrium distances.

    Experimentally,Zn2and Cd2are lessextensively studied than Hg2due to theirhigher vaporization temperatures.9,10Though recent laser spectroscopies of Zn2and Cd2seem to give reliable values of harmonic frequency(ωe)and dissociation energy(De)of theelectronic ground states,the equilibrium distances(Re)of Zn2and Cd2are less certain.10

    Theoretically,statement such as“the full consistency w ith spectroscopic constants com ing from experimenthas been given up because of the computational demands”appeared in a relativistic calculation paper.11In recent three years,we find“accurate potentialenergy curves”calculatedwith relativistic effects,which considerably narrowed the gapsbetween theory and experiment,12but the discrepancies still remain.It isworthy tomention that Li etal.10provided the latest theoretical results,but their results relied on potential functionalw ithmany parameters.

    Most researchers think that the spin-orbitcoupling effectsof Zn and Cd elements are small13-16and the perturbationmethod is exact enough to treat the spin-orbit coupling effect of Zn2and Cd2.17-19However,if accurate valuesof spectroscopic constantsare wanted,one would better use iterativemethod instead of perturbation method to treat spin-orbit coupling.In fact,Kullie has already used a relativistic four-component Dirac-Coulomb Ham iltonian w ith spin-orbitcoupling in the framework of timedependent density functional theory and linear response approximation to calculate the electronic state of Zn220and Cd2.21However,it is w idely known that the results of spectroscopic constants are very dependent of the choice of functional.The more generaland high-precision ab initio calculations are desired and w illbe helpful to understand the spectral character of these two dimers.

    2 Basic equations

    The nonrelativistic one-component CCSD(coupled-cluster approachw ith singlesand doubles level)energy equation is then4and the amplitude equationsare22

    w ith the F and W intermediates defined as

    theτamplitudesare defined as

    the permutation operator P-isgiven by

    and theorbitalenergy denominatorsare defined as

    The two-componentCCSD equationsare exactly the same as theabove nonrelativistic one component counterpartsexcept that the Fockmatrix has contributions from the spin-orbitcoupling due to the use of two-componentECPs.

    Thus,in the above equations,EHFis the scalar relativisticHartree-Fock energy w ithoutspin-obitcoupling,i,j,k,…are the indices for occupied spin orbits,a,b,c,…denote virtue spin orbits,and p,q,r,…are for general spin orbits,fpqis the Fock matrix elementw ith the contribution of spin-orbit coupling included.The Fockmatrix elements can bew ritten as

    where F0is the Fock operatorwithoutspin-orbitcoupling and hSOCis the spin-orbit coupling operator which is reduced to oneelectron operator due to the use of two-componentECPs.4

    Furthermore,consideration of triple excitationshasbeen shown to be important in order to achieve highly accurate results in coupled cluster calculations.23The most popular noniteration scheme to account for triple excitations is the CCSD(T)approach.24Theenergy correction due to tripleexcitation correction is then given by25

    w ith the cyclic permutation operator

    Itshould be pointed out that the occupied-virtue block of the Fockmatrix in the second term on the righthand side of Eq.(13) solely comes from spin-orbit coupling.Spin-orbit coupling thus contributes directly to the triple excitation.With respect to the other denominators in Eqs.(1-16),one can find the details in the corresponding literature.

    3 Com pu tationaldetails

    CFOUR is a program package for perform ing high-level quantum chemical calculations on atoms and molecules.26Our coupled cluster calculations in thiswork are performed in CFOUR package.Both CCSD(T)w ithout spin-orbit coup ling and CCSD(T)including spin-orbit coupling(SOC-CCSD(T))27methodsare used to calculate the energiesof atomsaswellas9 single pointenergies of around equilibrium position of these two dimers.The intervalof the 9 points isdefined to be 0.005 nm.The two-componentECPs,ECP10MDF,andmatched basissets,augccpv n z-pp(n=Q,5)28,are used in the calculations.The electron correlation energies from CCSD(T)and SOC-CCSD(T)are extrapolated to the results of completed basis set(CBS).The formula of CBS forelectron correlation energy can bew ritten as

    In theabove equation,n is the same to the n in thebasisset,the valueof n can bedefined to be4,5 in thiswork;represents the calculated electronic correlation energies from aug-ccpv n z-pp basis sets;the values of c andcan be obtained through solving equation sets in Mathematica software package.The Hartree-Fock limit is taken from theaug-ccpv5z-pp basisset.The basis setsuperposition error(BSSE)isnotcorrected in thiswork because of the use of high level basis sets.And the four order polynomial fitting technique isused to calculate the bond lengths and spectroscopic constantsof these two dimersand the related fitting formula can be found in the reference29and references therein.

    Table1 Calculated bond lengthsand spectroscopic constantsof Zn2com pared to the latestexperimental and other group's theoretical resu lts

    4 Resu lts and d iscussion

    4.1Zn2

    The calculated bond lengthsand spectroscopic constants,the latestexperimental resultsand othergroup's theoretical results9,10,12are listed in Table 1.For thebond length,our result from CBS+SOCCCSD(T)is closest to the result from Pahl etal.12In Pahl etal.'s work,the spin-orbitcontributionwasobtained from Dirac-Fock calculations and the spin-orbitenergieswere then added to the scalarenergies.For Zn2whose spin-orbitcoupling effectisweakest, both Pahl etal.'s calculated method and our present calculated method are reasonable.With respect to Li etal.'s theoretical results,though theoptimized potential function isused to determine the structure and spectroscopic constants,the obtained bond length isabit longer than Pahl etal.'sand oursbond length,much shorter than theexperimentalvalue.9Perhaps,becauseof themultireference character in Zn2,both Pahl etal.'sand ours ab initio's resultsare smaller than the experimental value.9In otherwords,the noniterative triple excitation in single-reference coupledcluster procedure may not fully describe the multi-reference characterof Zn2.On the otherhand,from our calculated valuesof bond length,asone can expect,the spin-orbitcoupling effectdoes notchange bond length toomuch,about just0.001 nm.Forother spectroscopic constants in Table1,all the theoretical resultsagree with the corresponding experimental resultsverywell.Though the experimental rotational constantand vibrational-rotational coupling constantareabsent,all the theoreticalvaluesagreew ith each other verywell.

    Table2 Calcu lated bond lengthsand spectroscopic constantsof Cd2compared to the latest experim entaland other group's theoretical resu lts

    4.2Cd2

    The calculated bond lengthsand spectroscopic constants,the latest experimental results,and other group's theoretical results10,12,30for Cd2are listed in Table 2.For the bond length,our result from CBS+SOC-CCSD(T)is closest to the experimental result.The theoreticalbond length from Pahl etal.'swork isabit longer than the experimental value.The treatmentof spin-orbit coupling in Pahl etal.'sworkmentioned abovemay notbe the mostsuitable approach for Cd2whose spin-orbit coupling effect ismore visible than Zn2.With respect to Li et al.'s theoretical results,though theoptimized potential function isused to determine the structure and spectroscopic constants,the obtained bond length ismuch longer than the experimentalvalue.On the other hand,from our calculated values of bond length,the spin-orbit coupling effectmakes the bond length abitshorter,about0.002 nm.For other spectroscopic constants in Table 2,all the theoretical results agreew ith the corresponding experimental results very well.Though the experimental rotational constant and vibrational-rotational coupling constant are absent,all the theoreticalvaluesagreew ith each other very well.

    5 Summ ary

    In thiswork,the two-component coupled-cluster theory w ith spin-orbit coupling,the completed basis setsextrapolation,and the four-order polynomial fitting technique are used to study the structuresand spectroscopic constantsof Zn2and Cd2.The results from CBS+SOC-CCSD(T)calculations are themost reliable values in comparisonw ith the latestexperimentalorothergroup's theoretical results.The spin-orbitcouplingmainly affects thebond length of Cd2,and other valuesare almostnotaffected by spinorbit coupling.Our theoretical resultsw ill be helpful to understand the spectral characterof these two dimersand CBS+SOCCCSD(T)method is suitable for studying the electronic structures of these van derWaalsdimers containing heavy elements.

    With respect to Hg2whose spin-orbitcoupling ismostvisible, the results of Hg2w ill be reported in the near future due to its complexity.

    (1)Pyykko,P.Chem.Rev.1988,88,563.doi:10.1021/cr00085a006

    (2)Bartlett,R.J.;Musial,M.Rev.Mod.Phys.2007,79,291.doi: 10.1103/RevModPhys.79.291

    (3)Liu,W.;VanWullen,C.J.Chem.Phys.1999,110,3730.doi: 10.1063/1.478237

    (4)Wang,F.;Gauss,J.;vanWullen,C.J.Chem.Phys.2008,129, 064113.doi:10.1063/1.2968136

    (5)Christiansen,O.;Hattig,C.;Gauss,J.J.Chem.Phys.1998,109, 4745.doi:10.1063/1.477086

    (6)Yu,M.;Dolg,M.Chemical Physics Letters1997,273,329.doi: 10.1016/S0009-2614(97)00609-X

    (7)Schautz,F.;Flad,H.J.;Dolg,M.TheoreticalChemistry Accounts1998,99,231.doi:10.1007/s002140050331

    (8)Strojecki,M.;Ruszczak,M.;?ukomski,M.;Koperski,J. ChemicalPhysics2007,340,171.doi:10.1016/j. chemphys.2007.08.016

    (9)Strojecki,M.;Ruszczak,M.;Kro?nicki,M.;?ukomski,M.; Koperski,J.Chemical Physics2006,327,229.doi:10.1016/j. chemphys.2006.04.008

    (10)Wei,L.M.;Li,P.;Qiao,L.W.;Tang,K.T.J.Chem.Phys.2013, 139,154306.doi:10.1063/1.4824889

    (11)Bucinsky,L.;Biskupic,S.;Ilcin,M.;Lukes,V.;Laurinc,V. JournalofComputationalChemistry 2009,30,65.doi:10.1002/ jcc.v30:1

    (12)Pahl,E.;Figgen,D.;Borschevsky,A.;Peterson,K.A.; Schwerdtfeger,P.TheoreticalChemistry Accounts2011,129, 651.doi:10.1007/s00214-011-0912-1

    (13)Bera,N.C.;Das,A.K.Chemical Physics Letters2007,437,257.doi:10.1016/j.cplett.2007.02.010

    (14)Bender,C.F.;Rescigno,T.N.;Schaefer,H.F.,III;Orel,A.E. J.Chem.Phys.1979,71,1122.doi:10.1063/1.438456

    (15)Takewaki,H.;Tomonari,M.;Nakamura,T.J.Chem.Phys. 1985,82,5608.doi:10.1063/1.448596

    (16)Czuchaj,E.;Rebentrost,F.;Stoll,H.;Preuss,H.Chemical Physics Letters1996,255,203.doi:10.1016/0009-2614(96) 00336-3

    (17)Ellingsen,K.;Saue,T.;Pouchan,C.;Gropen,O.Chemical Physics2005,311,35.doi:10.1016/j.chemphys.2004.09.038

    (18)Hay,P.J.;Dunning,T.H.,Jr.;Raffenetti,R.C.J.Chem.Phys. 1976,65,2679.doi:10.1063/1.433411

    (19)Figgen,D.;Rauhut,G.;Dolg,M.;Stoll,H.Chemical Physics 2005,311,227.doi:10.1016/j.chemphys.2004.10.005

    (20)Kullie,O.JournalofAtomic,Molecular,and OpticalPhysics 2012,2012,361974.doi:10.1155/2012/361947

    (21)Kullie,O.Chemical Physics2013,415,112.doi:10.1016/j. chemphys.2012.12.020

    (22)Stanton,J.F.;Gauss,J.;Watts,J.D.;Bartlett,R.J.J.Chem. Phys.1991,94,4334.doi:10.1063/1.460620

    (23)Kucharski,S.A.;Bartlett,R.J.J.Chem.Phys.1992,97, 4282.doi:10.1063/1.463930

    (24)Raghavachari,K.;Trucks,G.W.;Pople,J.A.;Head-Gordon,M. Chemical Physics Letters1989,157,479.doi:10.1016/S0009-2614(89)87395-6

    (25)Watts,J.D.;Gauss,J.;Bartlett,R.J.J.Chem.Phys.1993,98, 8718.doi:10.1063/1.464480

    (26)CFOUR,aquantum chem icalprogram packagew ritten by Stanton,J.F.;Gauss,J.;Harding,M.E.;Szalay,P.G.w ith contributions from Auer,A.A.;Bartlett,R.J.;Benedikt,U.; Berger,C.;Bernholdt,D.E.;Bomble,Y.J.;Cheng,L.; Christiansen,O.;Heckert,M.;Heun,O.;Huber,C.;Jagau,T. C.;Jonsson,D.;Jusélius,J.;K lein,K.;Lauderdale,W.J.; Matthews,D.A.;Metzroth,T.;Mück,L.A.;O'Neill,D.P.; Price,D.R.;Prochnow,E.;Puzzarini,C.;Ruud,K.; Schiffmann,F.;Schwalbach,W.;Simmons,C.;Stopkow icz,S.; Tajti,A.;Vázquez,J.;Wang,F.;Watts,J.D.and the integral packages MOLECULE(A lm l?f,J.;Taylor,P.R.),PROPS (Taylor,P.R.),ABACUS(Helgaker,T.;Jensen,H.J.A.; J?rgensen,P.;Olsen,J.),and ECP routinesby M itin,A.V.;van Wüllen,C.For the currentversion,seehttp://www.cfour.de.

    (27)Tu,Z.Y.;Yang,D.D.;Wang,F.;Guo,J.W.J.Chem.Phys. 2011,135,034115.doi:10.1063/1.3611052

    (28)Peterson,K.A.;Puzzarini,C.TheoreticalChemistry Accounts 2005,114,283.doi:10.1007/s00214-005-0681-9

    (29)Yang,D.D.;Wang,F.TheoreticalChemistry Accounts2012, 131,1117.doi:10.1007/s00214-012-1117-y

    (30)Strojecki,M.;Kro?nicki,M.;Zgoda,P.;Koperski,J.Chemical Physics Letters2010,489,20.doi:10.1016/j.cplett.2010.02.039

    Coup led-Cluster Theo retical Study o f Struc tu res and Spec troscop ic Constan ts o f Dim ers Zn2and Cd2w ith Sp in-Orbit Coup ling

    TU Zhe-Yan1,2,*WANGWen-Liang1
    (1Key Laboratory forMacromolecular Science ofShaanxiProvince,SchoolofChemistry and Chemical Engineering,Shaanxi NormalUniversity,Xi'an 710062,P.R.China;2SchoolofScience,Xi'an Polytechnic University,Xi'an 710048,P.R.China)

    The structures and spectroscopic constants of Zn2and Cd2were studied using the coup led-cluster theory w ith spin-orbitcoup ling based on the two-component relativistic effective core potentialandmatched basis sets aug-cc-pv n z-pp(n=Q,5),combining com p lete basis setextrapolation of the electronic correlation energy and fourth-order polynom ial fitting technique.Spin-orbitcoupling was included in the post-Hartree-Fock p rocedure,i.e.,in the coup led-cluster iteration,to obtainm ore reasonab le results,although the spin-orbit coup ling effectobserved in Zn2and Cd2is notvisible as it is in Hg2.Our theoretical results agree wellw ith the latestexperimentalvalues and othergroups'theoreticalresults,and willbe helpfulin understanding the spectral characteristics of these two dimers.

    Spectroscopic constant;Spin-orbitcoup ling;Dimer;Coup led-cluster theory

    O641

    icle]

    10.3866/PKU.WHXB201503261 www.whxb.pku.edu.cn

    Received:November 14,2014;Revised:March 24,2015;Published onWeb:March 26,2015.

    ?Corresponding author.Email:tuzheyan@126.com;Tel:+86-18392679232.

    The projectwassupported by the Start-up Fundsof Xi'an Polytechnic University,China(BS1211)and Scientific Research Program Funded by ShaanxiProvincial Education Department,China(2013JK0679).

    西安工程大學(xué)博士科研啟動(dòng)基金(BS1211)和陜西省教育廳專項(xiàng)科研計(jì)劃項(xiàng)目(2013JK0679)資助

    ?Editorialoffice of Acta Physico-Chimica Sinica

    猜你喜歡
    聚物角動(dòng)量常數(shù)
    對(duì)經(jīng)典力學(xué)中的軌道角動(dòng)量和自轉(zhuǎn)角動(dòng)量的探討
    丁二烯二聚物精制及脫氫制乙苯技術(shù)研究
    關(guān)于Landau常數(shù)和Euler-Mascheroni常數(shù)的漸近展開式以及Stirling級(jí)數(shù)的系數(shù)
    基于角動(dòng)量模型的流場渦旋提取方法
    用角動(dòng)量的方法解決并推廣一個(gè)功能關(guān)系問題
    夏季角動(dòng)量輸送變化與中國東部降水的關(guān)系
    含二苯并噻吩-S,S-二氧化物的給-受型齊聚噻吩衍生物的合成與表征
    幾個(gè)常數(shù)項(xiàng)級(jí)數(shù)的和
    萬有引力常數(shù)的測量
    丁二烯自聚物的危害、成因及防控措施
    成年女人毛片免费观看观看9| 精品国产国语对白av| 婷婷丁香在线五月| 欧美一区二区精品小视频在线| 国产精品免费视频内射| 每晚都被弄得嗷嗷叫到高潮| 嫁个100分男人电影在线观看| 国产av又大| 成人国语在线视频| 十八禁人妻一区二区| 久久性视频一级片| 久久这里只有精品19| 中出人妻视频一区二区| 国产又黄又爽又无遮挡在线| 国产激情偷乱视频一区二区| 日韩国内少妇激情av| 亚洲国产精品合色在线| 国产免费男女视频| 日韩精品中文字幕看吧| 欧美日韩精品网址| 一边摸一边做爽爽视频免费| 一区二区三区高清视频在线| 久久人人精品亚洲av| 久久精品aⅴ一区二区三区四区| 欧美黄色片欧美黄色片| 视频区欧美日本亚洲| 搡老妇女老女人老熟妇| 嫁个100分男人电影在线观看| 一二三四在线观看免费中文在| 中文资源天堂在线| 久久 成人 亚洲| 国内精品久久久久精免费| 中文字幕最新亚洲高清| 成人一区二区视频在线观看| 精品国产国语对白av| 久久国产精品影院| 夜夜看夜夜爽夜夜摸| www.自偷自拍.com| 久久国产精品男人的天堂亚洲| 欧美黑人欧美精品刺激| 免费高清在线观看日韩| 99久久无色码亚洲精品果冻| 一本一本综合久久| 在线av久久热| 久久国产精品人妻蜜桃| 又黄又粗又硬又大视频| 美女大奶头视频| 欧美日韩亚洲综合一区二区三区_| 久久这里只有精品19| 黄色毛片三级朝国网站| 老熟妇乱子伦视频在线观看| 亚洲专区字幕在线| а√天堂www在线а√下载| 国产精品二区激情视频| 亚洲成av片中文字幕在线观看| 久久中文看片网| 欧美黄色片欧美黄色片| 精品久久久久久久毛片微露脸| 欧美在线一区亚洲| 国产欧美日韩一区二区精品| 十分钟在线观看高清视频www| 久久伊人香网站| 成人一区二区视频在线观看| 成人国产综合亚洲| 精品电影一区二区在线| 男人舔女人下体高潮全视频| 久久香蕉国产精品| 亚洲国产精品成人综合色| 国产真实乱freesex| 婷婷丁香在线五月| 亚洲欧美日韩高清在线视频| 嫩草影视91久久| 90打野战视频偷拍视频| aaaaa片日本免费| 欧美日本视频| 国产不卡一卡二| 人成视频在线观看免费观看| 久久久久久久久免费视频了| 欧美+亚洲+日韩+国产| 久久久久久大精品| 国产视频内射| 亚洲专区字幕在线| 啦啦啦免费观看视频1| 免费搜索国产男女视频| 午夜久久久久精精品| 国产精品亚洲一级av第二区| 在线免费观看的www视频| 桃红色精品国产亚洲av| 欧美最黄视频在线播放免费| 国产成人欧美| av在线播放免费不卡| 男男h啪啪无遮挡| 成人亚洲精品av一区二区| 亚洲国产中文字幕在线视频| 成人一区二区视频在线观看| 婷婷亚洲欧美| 自线自在国产av| 色综合亚洲欧美另类图片| 国产精品av久久久久免费| 国产色视频综合| 色综合欧美亚洲国产小说| 丁香六月欧美| 777久久人妻少妇嫩草av网站| 男人舔奶头视频| 亚洲激情在线av| 日日干狠狠操夜夜爽| 在线av久久热| 国产精品1区2区在线观看.| 18禁国产床啪视频网站| 后天国语完整版免费观看| 国产激情欧美一区二区| 人人妻,人人澡人人爽秒播| 欧美性猛交╳xxx乱大交人| 十分钟在线观看高清视频www| 女性被躁到高潮视频| 婷婷六月久久综合丁香| 欧美色视频一区免费| 日日摸夜夜添夜夜添小说| 韩国精品一区二区三区| 黄频高清免费视频| 久久久久精品国产欧美久久久| 亚洲 欧美 日韩 在线 免费| 黑丝袜美女国产一区| 老司机午夜福利在线观看视频| 欧美日韩精品网址| 国产精品一区二区三区四区久久 | 免费观看精品视频网站| av天堂在线播放| 性色av乱码一区二区三区2| 欧美成人免费av一区二区三区| 国产精品免费视频内射| 亚洲中文av在线| 国产日本99.免费观看| 亚洲自偷自拍图片 自拍| 一区二区日韩欧美中文字幕| 中文字幕人妻熟女乱码| av电影中文网址| 男女下面进入的视频免费午夜 | 国产高清videossex| 久久香蕉激情| 国产真人三级小视频在线观看| 久久中文看片网| 亚洲狠狠婷婷综合久久图片| 成人午夜高清在线视频 | 欧美激情久久久久久爽电影| 99国产极品粉嫩在线观看| 在线国产一区二区在线| 国产午夜福利久久久久久| 男女下面进入的视频免费午夜 | 女人被狂操c到高潮| 波多野结衣巨乳人妻| 国产99白浆流出| 在线永久观看黄色视频| 欧美激情极品国产一区二区三区| 精品久久久久久久末码| 99国产精品99久久久久| 国产不卡一卡二| 亚洲成av人片免费观看| 欧美乱码精品一区二区三区| 午夜福利欧美成人| 精品欧美国产一区二区三| 午夜日韩欧美国产| 国产av一区二区精品久久| 香蕉国产在线看| 一级毛片高清免费大全| 日韩 欧美 亚洲 中文字幕| 禁无遮挡网站| 欧美日韩瑟瑟在线播放| 天堂√8在线中文| 97超级碰碰碰精品色视频在线观看| 国产精品国产高清国产av| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲精品中文字幕一二三四区| 国产片内射在线| ponron亚洲| 制服丝袜大香蕉在线| 国产片内射在线| 成人国产一区最新在线观看| 两个人视频免费观看高清| 久久人妻av系列| 97碰自拍视频| 99riav亚洲国产免费| 午夜日韩欧美国产| 国产精品免费一区二区三区在线| 欧美黄色淫秽网站| av电影中文网址| 精品少妇一区二区三区视频日本电影| 性欧美人与动物交配| xxx96com| 国产精品亚洲美女久久久| 日本成人三级电影网站| 色在线成人网| or卡值多少钱| 精品熟女少妇八av免费久了| 日韩大尺度精品在线看网址| 亚洲一区二区三区色噜噜| 亚洲第一青青草原| www.www免费av| www.熟女人妻精品国产| 激情在线观看视频在线高清| 丁香欧美五月| 免费观看人在逋| 久久久久久亚洲精品国产蜜桃av| 精品久久久久久久人妻蜜臀av| 伊人久久大香线蕉亚洲五| 女性生殖器流出的白浆| 18禁黄网站禁片午夜丰满| 黑人操中国人逼视频| 久久人人精品亚洲av| 亚洲精品美女久久av网站| 999久久久精品免费观看国产| 男女午夜视频在线观看| 亚洲九九香蕉| e午夜精品久久久久久久| 欧美日本视频| 久久人人精品亚洲av| 欧美激情高清一区二区三区| 首页视频小说图片口味搜索| 看片在线看免费视频| 国产av在哪里看| 国产亚洲av嫩草精品影院| 日韩av在线大香蕉| 久久久久久亚洲精品国产蜜桃av| 夜夜躁狠狠躁天天躁| 黄色成人免费大全| 国产精品久久久人人做人人爽| 美女高潮到喷水免费观看| 欧美乱妇无乱码| 欧美久久黑人一区二区| 久久亚洲精品不卡| 国产精品免费一区二区三区在线| 天天一区二区日本电影三级| 麻豆久久精品国产亚洲av| 91麻豆精品激情在线观看国产| 大型av网站在线播放| 黄色a级毛片大全视频| 国产三级在线视频| 桃红色精品国产亚洲av| 老熟妇乱子伦视频在线观看| 久久精品人妻少妇| 18美女黄网站色大片免费观看| 精品高清国产在线一区| 99精品欧美一区二区三区四区| 女人被狂操c到高潮| 欧美亚洲日本最大视频资源| 日本 欧美在线| 中文字幕高清在线视频| 亚洲成av片中文字幕在线观看| 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 午夜福利视频1000在线观看| 白带黄色成豆腐渣| 精品免费久久久久久久清纯| 亚洲av中文字字幕乱码综合 | 国产成人欧美在线观看| 黑人巨大精品欧美一区二区mp4| 俄罗斯特黄特色一大片| 99国产精品99久久久久| 亚洲成人国产一区在线观看| 日本在线视频免费播放| 欧美在线黄色| e午夜精品久久久久久久| 精品国产亚洲在线| 99精品欧美一区二区三区四区| 操出白浆在线播放| 精品福利观看| 黄片小视频在线播放| 成人午夜高清在线视频 | 午夜久久久久精精品| 一进一出抽搐gif免费好疼| 中文字幕另类日韩欧美亚洲嫩草| 国产人伦9x9x在线观看| 亚洲精品中文字幕在线视频| 精品久久久久久久毛片微露脸| 91麻豆av在线| 久久久久久免费高清国产稀缺| 久久中文字幕一级| 两个人看的免费小视频| 国产成人系列免费观看| 香蕉国产在线看| 亚洲自偷自拍图片 自拍| 日韩欧美一区视频在线观看| bbb黄色大片| 欧美日韩精品网址| 一二三四社区在线视频社区8| 美女 人体艺术 gogo| 午夜激情av网站| 国产主播在线观看一区二区| а√天堂www在线а√下载| 老司机午夜十八禁免费视频| 91九色精品人成在线观看| 身体一侧抽搐| 日韩三级视频一区二区三区| e午夜精品久久久久久久| 手机成人av网站| 精品国产美女av久久久久小说| 久久九九热精品免费| 免费一级毛片在线播放高清视频| 国产真人三级小视频在线观看| 制服诱惑二区| 在线观看舔阴道视频| 日韩欧美一区视频在线观看| 1024视频免费在线观看| 欧美最黄视频在线播放免费| 大型黄色视频在线免费观看| 少妇裸体淫交视频免费看高清 | 天天添夜夜摸| 天堂影院成人在线观看| 妹子高潮喷水视频| 久久中文看片网| 国产精品美女特级片免费视频播放器 | 少妇 在线观看| 国产真人三级小视频在线观看| 黄色 视频免费看| 一二三四社区在线视频社区8| 首页视频小说图片口味搜索| 一级黄色大片毛片| 久久精品国产清高在天天线| 国产精华一区二区三区| 香蕉久久夜色| 午夜影院日韩av| 色精品久久人妻99蜜桃| 久久人妻av系列| 午夜福利在线在线| 亚洲国产精品成人综合色| www.精华液| 久热爱精品视频在线9| АⅤ资源中文在线天堂| 国产视频内射| 在线观看免费视频日本深夜| 动漫黄色视频在线观看| 99精品欧美一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 777久久人妻少妇嫩草av网站| 国产av不卡久久| 久久久久久亚洲精品国产蜜桃av| 又紧又爽又黄一区二区| 久久久久久国产a免费观看| 午夜久久久在线观看| 国内少妇人妻偷人精品xxx网站 | 一区二区三区国产精品乱码| 精品国产一区二区三区四区第35| av片东京热男人的天堂| 2021天堂中文幕一二区在线观 | 午夜a级毛片| 99久久综合精品五月天人人| 丁香欧美五月| 熟女少妇亚洲综合色aaa.| 国产精品久久久av美女十八| 国产v大片淫在线免费观看| 国产av在哪里看| 精品无人区乱码1区二区| 12—13女人毛片做爰片一| 后天国语完整版免费观看| 精品一区二区三区视频在线观看免费| 俺也久久电影网| 变态另类成人亚洲欧美熟女| 一本久久中文字幕| 精品一区二区三区视频在线观看免费| 1024手机看黄色片| 亚洲全国av大片| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久国产精品视频| 操出白浆在线播放| 人人妻,人人澡人人爽秒播| 久久久精品国产亚洲av高清涩受| 最好的美女福利视频网| 国产精品亚洲av一区麻豆| 亚洲自拍偷在线| 首页视频小说图片口味搜索| 亚洲国产看品久久| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久人人做人人爽| 色尼玛亚洲综合影院| avwww免费| 熟女少妇亚洲综合色aaa.| 在线观看一区二区三区| www.熟女人妻精品国产| 深夜精品福利| 国产精品野战在线观看| 90打野战视频偷拍视频| 欧美乱色亚洲激情| 免费观看人在逋| 99国产精品99久久久久| 国产一卡二卡三卡精品| 国产伦人伦偷精品视频| 国产色视频综合| 亚洲欧美日韩高清在线视频| 国产av在哪里看| 亚洲成av人片免费观看| 一本综合久久免费| 亚洲精品久久成人aⅴ小说| 久久香蕉激情| 麻豆久久精品国产亚洲av| 男人的好看免费观看在线视频 | 国产久久久一区二区三区| 天天躁夜夜躁狠狠躁躁| 禁无遮挡网站| 天天一区二区日本电影三级| 99在线人妻在线中文字幕| 97超级碰碰碰精品色视频在线观看| 亚洲国产高清在线一区二区三 | 成年女人毛片免费观看观看9| 国产成人欧美| 久久亚洲真实| 色婷婷久久久亚洲欧美| 国内毛片毛片毛片毛片毛片| 午夜免费鲁丝| 黄色女人牲交| 可以免费在线观看a视频的电影网站| 一进一出抽搐gif免费好疼| 日韩高清综合在线| 国产伦在线观看视频一区| 啦啦啦 在线观看视频| 国产高清videossex| 亚洲国产精品sss在线观看| bbb黄色大片| 欧美日韩黄片免| 国产国语露脸激情在线看| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 99国产精品99久久久久| 亚洲成av片中文字幕在线观看| 欧美中文综合在线视频| 色在线成人网| 久久这里只有精品19| 亚洲av成人不卡在线观看播放网| 1024手机看黄色片| 久久久久国产精品人妻aⅴ院| 亚洲无线在线观看| 老司机午夜十八禁免费视频| 久久久精品国产亚洲av高清涩受| 两性午夜刺激爽爽歪歪视频在线观看 | 啦啦啦观看免费观看视频高清| 一区二区日韩欧美中文字幕| 成年女人毛片免费观看观看9| 久久精品人妻少妇| 禁无遮挡网站| 一级a爱视频在线免费观看| 91av网站免费观看| 丁香六月欧美| 国产成年人精品一区二区| 午夜日韩欧美国产| 香蕉丝袜av| 成人国产综合亚洲| 高清毛片免费观看视频网站| 日韩欧美 国产精品| 久久久精品国产亚洲av高清涩受| 国产一区在线观看成人免费| 黄色丝袜av网址大全| 亚洲熟妇中文字幕五十中出| 99久久99久久久精品蜜桃| 亚洲av第一区精品v没综合| 国产精品98久久久久久宅男小说| 制服诱惑二区| 免费看a级黄色片| 午夜福利成人在线免费观看| 1024香蕉在线观看| 淫妇啪啪啪对白视频| 免费av毛片视频| 99热这里只有精品一区 | 亚洲一码二码三码区别大吗| 在线国产一区二区在线| 国产欧美日韩精品亚洲av| 精品第一国产精品| 国产av一区二区精品久久| 精品久久久久久成人av| 97人妻精品一区二区三区麻豆 | 欧美激情久久久久久爽电影| 午夜亚洲福利在线播放| 91在线观看av| 露出奶头的视频| 精品久久久久久久人妻蜜臀av| 天堂√8在线中文| 精品一区二区三区av网在线观看| 国产精品,欧美在线| 校园春色视频在线观看| 97人妻精品一区二区三区麻豆 | 欧美不卡视频在线免费观看 | 在线观看免费日韩欧美大片| 搞女人的毛片| 久久久久久久午夜电影| 久久 成人 亚洲| 19禁男女啪啪无遮挡网站| 脱女人内裤的视频| 长腿黑丝高跟| 黄片播放在线免费| 深夜精品福利| 最新美女视频免费是黄的| 国产精品久久久人人做人人爽| www.精华液| 一区二区日韩欧美中文字幕| 美女扒开内裤让男人捅视频| 一a级毛片在线观看| 校园春色视频在线观看| 一a级毛片在线观看| 美女扒开内裤让男人捅视频| 亚洲av成人不卡在线观看播放网| 亚洲国产精品成人综合色| 一本综合久久免费| av在线天堂中文字幕| 黑人操中国人逼视频| av在线天堂中文字幕| 香蕉久久夜色| 欧美日韩亚洲综合一区二区三区_| 啦啦啦观看免费观看视频高清| 免费在线观看完整版高清| 亚洲天堂国产精品一区在线| 黄色女人牲交| 日韩欧美在线二视频| 久热这里只有精品99| 欧美中文综合在线视频| 精品国产美女av久久久久小说| 欧美一级a爱片免费观看看 | 久久中文字幕人妻熟女| 99久久99久久久精品蜜桃| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 成人免费观看视频高清| 成人欧美大片| videosex国产| 精品国产国语对白av| 亚洲九九香蕉| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清 | 久久青草综合色| 国产三级黄色录像| 麻豆一二三区av精品| 精品久久久久久久毛片微露脸| 欧美性长视频在线观看| 亚洲七黄色美女视频| 日本熟妇午夜| 后天国语完整版免费观看| 国内少妇人妻偷人精品xxx网站 | 国产又爽黄色视频| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 国产成人一区二区三区免费视频网站| 日韩精品青青久久久久久| av片东京热男人的天堂| 久久久国产欧美日韩av| 精品日产1卡2卡| 国内揄拍国产精品人妻在线 | 熟女电影av网| 成人手机av| 国产精品综合久久久久久久免费| 国产成人av教育| 亚洲精品在线观看二区| 国产精品亚洲av一区麻豆| 精品国产一区二区三区四区第35| 成人18禁在线播放| 91麻豆精品激情在线观看国产| 中文字幕最新亚洲高清| 一二三四社区在线视频社区8| 黄色毛片三级朝国网站| 免费高清在线观看日韩| 老司机深夜福利视频在线观看| 99久久无色码亚洲精品果冻| 亚洲中文字幕日韩| 久久性视频一级片| 好男人电影高清在线观看| 久久久久久亚洲精品国产蜜桃av| 久久婷婷人人爽人人干人人爱| 亚洲av片天天在线观看| 一区二区三区精品91| 999久久久国产精品视频| e午夜精品久久久久久久| 午夜福利18| 老司机福利观看| 精华霜和精华液先用哪个| 亚洲av电影不卡..在线观看| 久热这里只有精品99| 国产久久久一区二区三区| 亚洲成人国产一区在线观看| 中文字幕久久专区| 免费高清在线观看日韩| 天天一区二区日本电影三级| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| 国产真实乱freesex| 91成人精品电影| 亚洲国产精品久久男人天堂| 日韩三级视频一区二区三区| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 亚洲精品国产区一区二| x7x7x7水蜜桃| 欧美av亚洲av综合av国产av| √禁漫天堂资源中文www| 黄片小视频在线播放| 免费一级毛片在线播放高清视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品亚洲一区二区| 1024手机看黄色片| 欧美日本亚洲视频在线播放| 熟女少妇亚洲综合色aaa.| 亚洲av美国av| 成人精品一区二区免费| 香蕉丝袜av| 在线观看66精品国产| 1024手机看黄色片| 无遮挡黄片免费观看| 99热这里只有精品一区 | 亚洲全国av大片| 制服人妻中文乱码| 欧美成人性av电影在线观看| 亚洲 国产 在线| 中文在线观看免费www的网站 | 亚洲精品国产一区二区精华液| 欧美性猛交黑人性爽| 精品国产超薄肉色丝袜足j| 国产激情久久老熟女| 国产精品自产拍在线观看55亚洲|