• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping of QTLs for Dehiscence Length at Basal Part of Thecae in Rice Based on TD70/Kasalath RIL Population

    2015-12-14 08:32:10LingZHAOYadongZHANGChunfangZHAOLihuiZHOUShuYAOXinYUDanDINGTsutomuMATSUICailinWANG
    Agricultural Science & Technology 2015年10期
    關(guān)鍵詞:江西農(nóng)業(yè)大學(xué)開花期結(jié)實率

    Ling ZHAO, Yadong ZHANG, Chunfang ZHAO, Lihui ZHOU, Shu YAO, Xin YU, Dan DING,Tsutomu MATSUI, Cailin WANG*

    1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice R&D Center/Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China;

    2. Faculty of Applied Biological Science, Gifu University, Gifu 501-2354, Japan

    In recent years, the frequent occurrence of disasters caused by global warming and high temperature has resulted in serous loss to rice production in China, even all over the world. Particularly high temperature at booting and flowering stages significantly decreases rice yield and quality. In-depth study on rice tolerance to high temperature will provide theoretical basis for the development of rice cultivars with high-temperature tolerance at flowering stage.High-temperature tolerance is a quantitative trait which is difficult to be identified directly or indirectly. Direct identification of rice tolerance in field under natural high-temperature conditions is affected by various factors and hardly repeatable. The indirect method identified rice tolerance under simulated high-temperature conditions in greenhouse or artificial climate chamber, is accurate and repeatable, but expensive equipment was needed.Appropriate indices for evaluating rice tolerance to high temperature are important in both direct and indirect approaches. Among the various indices proposed in previous studies to determine high-temperature tolerance of rice at flowering stage, seed setting rate is the mostly used one[1]. Since it is difficult to identify seed setting rate under high-temperature conditions,some other indices such as the stress index of seed setting rate, percentage of unfilled grains, weight of filled grains, percentage of whole-kernel milled rice, chalkiness, the stress index of protein content, as well as the chlorophyll content, the free proline content, the ABA content and the pollen viability under high temperatureconditions were then proposed[2-3].Many QTL loci related to rice tolerance to high temperature have been identified based on different indices[4-11], but it is difficult to apply these indices directly in rice breeding. Therefore, it is urgent to find some indexes which closely related to high-temperature tolerance and easy to be identified at normal temperature for rice breeding.

    The correlation between the length of dehiscence at the basal part of thecae (LDBT) and high-temperature tolerance was confirmed by Matsui et al.[12-13],and the studies revealed that a large LDBT improved the seed setting rate of rice under high-temperature conditions (Fig.1). Subsequent studies showed that LDBT was a stable trait at both normal and high temperatures, and thus could be used as an index to identify rice tolerance to high temperature at flowering stage under normal temperature conditions[14-16].Three traits LDBT,flowering period and panicle temperature were found probably to be related to rice fertility at high temperature by Zhao et al.[17]seedling setting under high-temperature conditions had no significant correlation with flowering period and panicle temperature, but significant positive correlation with LDBT. The study of Jagadish et al.[6]also confirmed the correlation between LDBT and high-temperature tolerance of rice at flowering stage.

    In the present study, a population of recombinant inbred lines (RIL)with different LDBT was generated and their linkage map including 141 SSR markers was used to locate the QTLs controlling LDBT, with an attempt to reveal the correlations between LDBT and other agronomic traits and thus provide a theoretical basis for the study of high-temperature tolerance of rice at flowering stage.

    Materials and Methods

    Materials

    A combination was made between an Indica cultivar Kasalath and a Japonica cultivar TD70 which was derived from Swan Valley///9520//(72-496/Suyunuo).In the summer of 2005,a population of 240 recombinant inbred lines(RIL)was obtained from the F1generation by single seed descent breeding. In 2012, the 240 F6:7RILs and their parents were sown in the experimental field of Institute of Food Crops, Jiangsu Academy of Agricultural Sciences. 30-day-old seedlings were transplanted into plots. One cultivar was planted in four rows with 10 seedlings in each row, in a plot.Seedling spacing was 26.7 cm between rows and 16.7 cm within rows.The plots were ranged at random with two repetitions. After maturity, five plants randomly selected from each plot were separately harvested.

    Temperature measurement

    The temperature at rice canopy was measured using a temperature and humidity monitor (HOBO U23-001) once every hour throughout the whole growth period.

    Measurement items and methods

    Measurement of LDBT of RILs Five representative plants of each line were selected for the measurement of LDBT using a digital microscope(VHX-500,Keyence Corporation,Osaka,Japan).The LDBT of five anthers from each floret was measured and the average was calculated as the LDBT of the floret. The average LDBT of five florets from a plant was considered as LDBT of the plant.In the same way, the average LDBT of five plants of a line was taken as the LDBT of the line.

    Measurement of heading date of RILs The day when 50% plants in a plot already headed was considered as the heading date of the plot.For the calculation of correlation coefficients,this index was considered as the days from seed sowing to heading date.Heading period was defined as a period of 7 d from three days before heading date to three days after heading date.

    Determination of agronomic traits of RILs The plant height, tiller number, flag leaf length, flag leaf width,seeding setting rate, kernel number,1 000-grain weight, grain width, grain length,grain thickness and awn length of five plants randomly selected from each plot were measured and the averages were taken for later analysis.

    Table 1 Phenotypic variation of LDBT among RILs and two parents

    Statistical analysis

    Molecular linkage map of the 240 recombinant inbred lines (RIL) were derived from the cross between TD70 and Kasalath included 141 markers[18].QTL IciMapping3.4 software was adopted to scan the QTLs controlling LDBT within whole genome sequences by inclusive composite interval mapping (ICIM)[19]. The QTLs having a LOD value above 2.5 were recorded and named after the nomenclature of McCouch et al[20].

    SPSS17.0 software was adopted for variance analysis and correlation analysis.

    Results and Analysis

    LDBT phenotypic variation among RILs and their parents

    As shown in Table 1, the LDBTs of TD70 and Kasalath were 590.5 and 342.4 μm on average, exhibiting extremely significant difference between them. The LDBT of the 240 RILs in repetition ranged from 247.6 to 864.4 μm, with an average of 446.4 μm, and a coefficient of variation of 81.43%,while that in repletion 2 ranged from 254.9 to 781.9 μm, with an average of 448.2 μm and a coefficient of variation of 79.49% (Table 1). There was no significant difference between the two repetitions.

    The results proved transgressive inheritance of LDBT in the RIL population.The LDBT showed a normal dis-tribution in the RILs, consistent with the inheritance of a quantitative trait(Fig.2).

    QTLs controlling LDBT of rice

    Two QTLs controlling LDBT were detected among the RIL population and fine mapped on chromosome 6 and 8, respectively (Fig.3). qLDBT6 was mapped within a 15.8-cM interval between RM3 and RM3628 markers on chromosome 6 with a LOD value of 3.23, contribution rate of 6.18% and additive effect of 17.74% . qLDBT8 was mapped within a 11.1-cM interval between RM1376 and RM4085 markers on chromosome 8 with a LOD value 2.95,contribution rate of 8.00%and additive effect of 20.09% . The increasing alleles at both QTL loci were from the female parent TD70 (Table 2).

    Table 2 Identification of QTLs for LDBT in RIL population

    Table 3 Correlation coefficients between LDBT and agronomic trait

    Temperature at late botting stage and flowering stage of RIL population

    August 9 and 11 were the heading dates of two parents Kasalath and TD70,while the heading dates of RILs distributed from July 25 and September 9.The daily maximum temperature and the daily average temperature from July 22 to September 9, 2012 were shown in Fig.4. The daily maximum temperature and the daily average temperature during this period peaked on July 30, up to 32.34 and 37.18 ℃; they reduced to the lowest level on September 9, only 20.39 and 21.08 ℃, respectively. The daily average temperature was above 30 ℃in 14 d from July 19 to September 12,even exceeded 32 ℃in 3 d, and the daily maximum temperature exceeded 37 ℃in only one day.

    Correlations between LDBT and other agronomic traits

    The LDBT of RIL population shared extremely significant positive correlations with flag leaf width,1 000-grain weight, grain length, grain width and grain thickness, but no significant correlations with heading date, plant height, tiller number, flag leaf length,kernel number, seed setting rate, the maximum temperature of heading date, average temperature during heading period,the maximum temperature during heading period and awn length(Table 3).

    Discussion

    Heat stress has become one of the main factors affecting rice production now, it is important to learn rice tolerance on high temperature. Previous studies revealed that LDBT was correlated to high-temperature tolerance of rice,and proposed that it could be used as an index for evaluating rice tolerance to high-temperature. Indepth study on LDBT of rice will provide more theoretical basis for this hypothesis.

    In the present study,qLDBT8 was fine mapped to a 1.28 -Mb domain between RM1376 and RM4085 markers on chromosome 8. According to the data from Graneme website, only four QTLs of rice had been mapped to this domain till January, 2014 (Fig.5).Among them, S8, a QTL locus related to rice sterility was detected in this domain using a F2 population of 240 lines generated from the cross between Peiai 64S and 8902S[21].S8 was fine mapped to a 0.57-Mb domain between RM885 and RM333s on chromosome 8, and it could be detected under natural long-day and short-day conditions, artificially simulated longday and high-temperature conditions,artificially simulated long-day and lowtemperature conditions,artificially simulated short-day and high-temperature conditions, indicating it was a stable QTL locus controlling rice sterility[22].As LDBT was proven to be related to rice fertility at high temperature, we speculated that the 1.28-Mb domain where qLDBT8 was located might closely related to rice sterility, which is expected to be studied in future.

    A major QTL Ghd8 which controls rice heading period also locates in the same domain with qLDBT8 on chromosome 8, from 4 331 109 to 4 333 832 bp, encodes the HAP3H subunit of a protein binding to CCAAT box transcription factor[23]. Ghd8, allelic to Hd5, can regulate the heading period,yield and plant height of rice[24-25].In addition, there are a QTL for rice biomass production (qpw)and a QTL for quantitative resistance to Pyricularia grisea(rbr8)locating in a 2.7-Mb domain between RG333 and RM25[26-27].

    Our early work proved that LDBT had certain correlation with seed setting rate of rice under high-temperature conditions. The existing studies about rice LDBT mostly focused on its correlations with high-temperature tolerance. The correlations between LDBT and other agronomic traits were analyzed for the first time in the present study. TD70 is a large-grain Japonica rice cultivar,with 1 000-grain weight up to 70 g.It has long and wide grains and large LDBT, and thus was considered as an perfect material for the study on rice LDBT. The study showed that there was no significant correlation between rice LDBT and seed setting rate, which may be related to the air temperature during heading period in the summer of 2012. Shi et al.[28]found that air temperature below 33 ℃had no significant influence on the seed setting rate of Huajing 1 and Teyou 559. By studying the effects of high temperature at flowering stage on rice yield, Shi et al.[29]discovered that compared with air temperature of 35 ℃, high temperature between 35 and 39 ℃had no significant influence on rice yield, while extreme temperature above 39 ℃significantly reduced rice yield by 13%. The study of Wang et al.[30]revealed that pollination of rice was affected if the daily average temperature at flowering stage exceeded 32 ℃. From July 25 to September 9, 2012, the daily average temperature exceeded 32 ℃in only 3 d,and the daily maximum temperature exceeded 37 ℃in only one day (July 30). Among the 240 RILs we tested,the heading dates of 16 lines were before August 5, and the maximum temperature in following days was below 37 ℃.The air temperature at flowering stage was not too high,which might be the reason why no significant correlation between LDBT and seed setting rate was observed among the RILs we tested.

    [1]YANG YJ (楊永杰), FU GF (符冠富),XIONG J (熊杰), et al. Effects of high temperature on rice and evaluation on rice tolerance to high temperature(高溫對水稻的影響及水稻耐熱性測評方法研究)[J].China Rice(中國稻米),2012,18(1):39-40.

    [2]HUANG YJ(黃英金),YANG ZY(楊芝燕),RAO ZM (饒志明),et al.Active oxygen damage effect and regulation of chlorophyll degradation in rice leaves at filling stage under high temperature stress(灌漿期高溫脅迫下水稻葉片葉綠素降解的活性氧損傷及調(diào)控研究)[J].Acta Agriculturae Universitatis Jiangxiensis(江西農(nóng)業(yè)大學(xué)學(xué)報),2000,22(5):1-6.

    [3]LEI DY(雷東陽), CHEN LY(陳立云), LI WX (李穩(wěn)香),et al. Effect of high temperature on physiology difference of flowering among different hybrid rice(高溫對不同雜交稻開花期影響的生理差異) [J]. Research of Agricultural Modernization (農(nóng)業(yè)現(xiàn)代化研究), 2005, 26(5):397-400.

    [4]YANG TF (楊梯豐),ZHANG SH (張少紅),WANG XF (王曉飛),et al.Screening for germplasm with heat tolerance at flowering stage in Oryza sativa (水稻抽穗開花期耐熱種質(zhì)資源的篩選鑒定)[J].Journal of South China Agricultural University(華南農(nóng)業(yè)大學(xué)學(xué)報),2012,33(4):585-589.

    [5]ZHANG GL, CHEN LY, XIAO GY, et al.Bulked segregant analysis to detect QTL related to heat tolerance in rice(Oryza sativa L.) using SSR markers[J]. Agricultural Sciences in China,2009,8(4):482-487.

    [6]JAGADISH S, CAIRNS J, LAFITTE R,et al.Genetic analysis of heat tolerance at anthesis in rice [J]. Crop Science,2010,50:1633-1641.

    [7]PAN Y(盤毅), LUO LH(羅麗華), DENG HB(鄧化冰),et al.Quantitative trait Loci associated with pollen fertility under high temperature stress at flowering stage in rice (水稻開花期高溫脅迫下的花粉育性QTL 定位)[J].Chinese Journal of Rice Science (中國水稻科學(xué)),2011,25(1):99-102.

    [8]XIAO YH, PAN Y, LUO L. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice [J]. Euphytica, 2011, 178:331-338.

    [9]YE CR, ARGAYOSO MA, REDONA ED, et al. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers [J]. Plant Breeding, 2012,131:33-41.

    [10]CHENG L, WANG JM, VERONICA U,et al.Genetic analysis of cold anthesis in rice tolerance at seedling stage and heat tolerance at anthesis in rice(Oryza sativa L.) [J]. Journal of Integrative Agriculture,2012,1(3):359-367.

    [11]LEI DY,TAN LB,LIU FX,et al.Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.) [J].Plant Science,2013,201-202:121-127.

    [12]MATSUI T,OMASA K,HORIE T.High temperature at flowering inhibits swelling of pollen grains,a driving force for thecae dehiscence in rice(Oryza sativa L.)[J]. Plant Production Science,2000,3:430-434.

    [13]MATSUI T,KOBAZSAI K,KAGATA H,et al. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot and humid condition[J].Plant Production Science,2005,8(2):109-114.

    [14]MATSUI T. Function of long basal dehiscence of the thecae in rice(Oryza sativa L.)pollination under hot and humid condition [J]. Phyton, 2005, 45:401-407.

    [15]MATSUI T, OMASA K, HORIE T. The difference in sterility due to high temperature during the flowering period among japonica-rice varieties [J].Plant Production Science,2001,4:90-93.

    [16]TIAN X,MATSUI T,LI S,et al.Heat induced floret sterility of hybrid rice(Oryza sativa L.)cultivars under humid and low wind conditions in the field of Jianghan Basin, China [J]. Plant Production Science,2010,13:243-251.

    [17]ZHAO L, KOBAYASI K, HASEGAWA T,et al.Traits responsible for variation in pollination and seed set among six rice cultivars grown in a miniature paddy field with free air at a hot, humid spot in China [J]. Agriculture, Ecosystems and Environment, 2010, 139:110-115.

    [18]DONG SL(董少玲), ZHANG YH(張穎慧),ZHANG YD (張亞東),et al.Construction of molecular genetic linkage map based on a rice RIL population and detection of QTL for tiller angle(水稻重組自交系分子遺傳圖譜構(gòu)建及分蘗角的QTL 檢測)[J].Jiangsu Journal of Agricultural Sciences (江蘇農(nóng)業(yè)學(xué)報),2012,28(2):236-242.

    [19]WANG JK (王建康).Inclusive composite interval mapping of quantitative trait genes (數(shù)量性狀基因的完備區(qū)間作圖方法) [J]. Acta Agronomica Sinica(作物學(xué)報),2009,35(2):239-245.

    [20]MCCOUCH SR, CHO YG, YANO M,et al. Report on QTL nomenclature[J].Rice Genet Newsl,1997,14:11-13.

    [21]HE Y Q, YANG J, XU CG, et al. Genetic bases of instability of male sterility and fertility reversibility in photoperiod-sensitive genic male-sterile rice[J].Theoretical and Applied Genetics,1999,99:683-693.

    [22]WEI X J, XU J F, GUO H N, et al.DTH8 suppresses flowering in rice,influencing plant height and yield potential simultaneously [J]. Plant Physiology,2010,153(4):1747-1758.

    [23]YAN W H,WANG P,CHEN H X, et al.A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity,plant height, and heading date in rice[J].Molecular Plant,2011,4 (2):319-330.

    [24]DAI XD, DING YN, TAN L B, et al.LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice(Oryza rufipogon)[J].Journal of Integrative Plant Biology, 2012, 54(10):790-799.

    [25]SHIBAYA T, NONOUE Y, ONO N, et al. Genetic interactions involved in the inhibition of heading by heading date QTL,Hd2 in rice under long-day conditions [J]. Theoretical and Applied Genetics,2011,123:1133-1143.

    [26]LIAN X, XING Y, YAN H, et al. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid [J]. Theoretical and Applied Genetics,2005,112:85-96.

    [27]CHEN H, WANG S, XING Y, et al.Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley [J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(5):2544-2549.

    [28]SHI CL (石春林), JIN ZQ (金之慶),ZHENG JC(鄭建初),et al.Quantitative analysis on the effects of high temperature at meiosis stage on seed-setting rate of rice florets (減數(shù)分裂期高溫對水稻穎花結(jié)實率影響的定量分析) [J].Acta Agronomica Sinica (作物學(xué)報),2008,34(4):627-631.

    [29]SHI KY(時寬玉),CUI YW(崔永偉),HU RF (胡瑞法).Impact of high temperature at flowering on midseason rice yield(水稻花期高溫對產(chǎn)量的影響研究)[J].Journal of Agricultural Science and Technology(中國農(nóng)業(yè)科技導(dǎo)報),2009,2:78-83.

    [30]WANG CL(王才林),ZHONG WG(仲維功). Effects of high temperature on seed setting rate of rice and its prevention(高溫對水稻結(jié)實率的影響及其防御對策) [J]. Jiangsu Agricultural Sciences(江蘇農(nóng)業(yè)科學(xué)),2004,1:15-18.

    猜你喜歡
    江西農(nóng)業(yè)大學(xué)開花期結(jié)實率
    高寒草原針茅牧草花期物候變化特征及其影響因子分析
    江西農(nóng)業(yè)大學(xué)獸醫(yī)院
    江西農(nóng)業(yè)大學(xué)設(shè)計作品選登
    江西農(nóng)業(yè)大學(xué)建校115周年歷史回眸
    江西農(nóng)業(yè)大學(xué)獸醫(yī)院
    秈稻兩用核不育系異交結(jié)實率與花器官性狀的相關(guān)性分析
    利用野栽雜交分離群體定位水稻結(jié)實率QTLs
    不同品種油用型牡丹的光合與生理特性及其與結(jié)實率的相關(guān)性分析
    SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN?
    初春氣象條件對蘋果開花期的影響分析
    黄色日韩在线| 欧美又色又爽又黄视频| 日韩中字成人| 国产精品精品国产色婷婷| 久久午夜福利片| 两人在一起打扑克的视频| 日韩大尺度精品在线看网址| 在线天堂最新版资源| 日本与韩国留学比较| 天堂动漫精品| 久久天躁狠狠躁夜夜2o2o| 麻豆av噜噜一区二区三区| 又爽又黄无遮挡网站| 免费在线观看日本一区| 老熟妇仑乱视频hdxx| 在线免费观看的www视频| 国产精品久久久久久人妻精品电影| 欧美xxxx性猛交bbbb| 十八禁国产超污无遮挡网站| 亚洲经典国产精华液单 | 一本久久中文字幕| 最近最新中文字幕大全电影3| 国产毛片a区久久久久| 欧美日本亚洲视频在线播放| 噜噜噜噜噜久久久久久91| 成人av在线播放网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产欧美日韩精品亚洲av| 亚洲精品影视一区二区三区av| 久久久国产成人精品二区| 啦啦啦韩国在线观看视频| 九九在线视频观看精品| 午夜a级毛片| 最近视频中文字幕2019在线8| 国产精品嫩草影院av在线观看 | 国产在线精品亚洲第一网站| 三级男女做爰猛烈吃奶摸视频| 3wmmmm亚洲av在线观看| 女人十人毛片免费观看3o分钟| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 日本成人三级电影网站| 中文字幕人成人乱码亚洲影| 狠狠狠狠99中文字幕| 成年女人毛片免费观看观看9| 好看av亚洲va欧美ⅴa在| 人人妻,人人澡人人爽秒播| 久久精品综合一区二区三区| 无人区码免费观看不卡| 成人永久免费在线观看视频| 自拍偷自拍亚洲精品老妇| 淫秽高清视频在线观看| 久久久国产成人精品二区| 欧美绝顶高潮抽搐喷水| 国内揄拍国产精品人妻在线| 日韩高清综合在线| av在线老鸭窝| 久久久久久九九精品二区国产| 国产国拍精品亚洲av在线观看| 欧美成狂野欧美在线观看| 老女人水多毛片| 国产老妇女一区| 免费av毛片视频| 国模一区二区三区四区视频| 国产色爽女视频免费观看| 又紧又爽又黄一区二区| 国产精品一区二区三区四区久久| 亚洲成av人片免费观看| 国产在线男女| 97人妻精品一区二区三区麻豆| 搡老妇女老女人老熟妇| 最新在线观看一区二区三区| 亚洲在线观看片| 免费av观看视频| 国产伦一二天堂av在线观看| 国语自产精品视频在线第100页| 国产精品综合久久久久久久免费| 久久精品国产自在天天线| 九九热线精品视视频播放| 97热精品久久久久久| 国产淫片久久久久久久久 | 国内精品久久久久精免费| 欧美日韩国产亚洲二区| 亚洲欧美日韩东京热| 国产精品乱码一区二三区的特点| 国产伦一二天堂av在线观看| 1024手机看黄色片| 国内精品久久久久久久电影| 午夜激情福利司机影院| 国产v大片淫在线免费观看| 成年女人毛片免费观看观看9| 国产精品久久久久久久久免 | 蜜桃亚洲精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 欧美中文日本在线观看视频| 一级黄片播放器| 国产欧美日韩一区二区精品| 嫩草影院精品99| 日韩av在线大香蕉| 国产精品自产拍在线观看55亚洲| 国产精品久久久久久精品电影| 精品人妻偷拍中文字幕| 国产白丝娇喘喷水9色精品| 麻豆一二三区av精品| 小蜜桃在线观看免费完整版高清| 亚洲av中文字字幕乱码综合| 日日摸夜夜添夜夜添av毛片 | 国产三级中文精品| 成人国产一区最新在线观看| 嫩草影视91久久| 日韩成人在线观看一区二区三区| 国产精品三级大全| 嫩草影院入口| 禁无遮挡网站| 无人区码免费观看不卡| av女优亚洲男人天堂| 一进一出抽搐动态| 欧美丝袜亚洲另类 | 成人无遮挡网站| 成年人黄色毛片网站| 欧美国产日韩亚洲一区| 婷婷精品国产亚洲av| 搡老岳熟女国产| 乱人视频在线观看| 热99re8久久精品国产| 精品一区二区三区av网在线观看| 日韩欧美 国产精品| 一二三四社区在线视频社区8| 丝袜美腿在线中文| 国产欧美日韩一区二区精品| 国内久久婷婷六月综合欲色啪| 亚洲无线观看免费| 亚洲av成人不卡在线观看播放网| 免费看美女性在线毛片视频| 99热这里只有是精品在线观看 | 欧美日韩乱码在线| 天堂影院成人在线观看| 全区人妻精品视频| 精品久久久久久久久av| 成人亚洲精品av一区二区| 黄色配什么色好看| 久久精品国产亚洲av香蕉五月| 亚洲性夜色夜夜综合| 欧美日韩亚洲国产一区二区在线观看| 国产精品99久久久久久久久| 五月伊人婷婷丁香| 天美传媒精品一区二区| 又爽又黄a免费视频| 久久国产精品影院| 欧美精品国产亚洲| 国产中年淑女户外野战色| 高潮久久久久久久久久久不卡| 久久精品91蜜桃| 美女黄网站色视频| 欧美黄色淫秽网站| 一区二区三区激情视频| 日本免费a在线| 别揉我奶头 嗯啊视频| 日韩中文字幕欧美一区二区| www.999成人在线观看| 高清毛片免费观看视频网站| 亚洲三级黄色毛片| 一区福利在线观看| 天天躁日日操中文字幕| 免费黄网站久久成人精品 | 午夜福利在线观看吧| 日本黄色片子视频| h日本视频在线播放| 国内揄拍国产精品人妻在线| 成人无遮挡网站| 国产精品永久免费网站| 九九在线视频观看精品| 欧美日韩乱码在线| 精品人妻一区二区三区麻豆 | 欧美三级亚洲精品| 国产三级中文精品| 桃红色精品国产亚洲av| 赤兔流量卡办理| 亚洲av成人不卡在线观看播放网| 九九热线精品视视频播放| 亚洲av电影不卡..在线观看| 小说图片视频综合网站| 天堂√8在线中文| 久久久国产成人精品二区| 免费看光身美女| 午夜福利欧美成人| 久9热在线精品视频| 国产激情偷乱视频一区二区| 欧美在线黄色| 亚洲最大成人手机在线| 久久精品国产亚洲av涩爱 | 九九热线精品视视频播放| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站高清观看| www日本黄色视频网| 欧美成人a在线观看| 久久伊人香网站| 国产午夜福利久久久久久| 十八禁网站免费在线| 青草久久国产| 看黄色毛片网站| 久久精品国产自在天天线| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久v下载方式| 麻豆成人av在线观看| 美女高潮喷水抽搐中文字幕| 麻豆国产av国片精品| 波多野结衣巨乳人妻| 色噜噜av男人的天堂激情| 日本 欧美在线| 男女那种视频在线观看| 欧美日韩福利视频一区二区| 99热精品在线国产| 男人舔女人下体高潮全视频| 美女免费视频网站| 丁香欧美五月| 久久精品国产自在天天线| 亚洲精品色激情综合| 琪琪午夜伦伦电影理论片6080| 国产野战对白在线观看| av天堂在线播放| av国产免费在线观看| 婷婷六月久久综合丁香| 精品午夜福利在线看| av在线天堂中文字幕| 国产高清有码在线观看视频| 欧美在线一区亚洲| 精品熟女少妇八av免费久了| 麻豆国产av国片精品| 成年人黄色毛片网站| 成人鲁丝片一二三区免费| 亚洲美女搞黄在线观看 | 一个人免费在线观看的高清视频| 亚洲狠狠婷婷综合久久图片| 性色avwww在线观看| aaaaa片日本免费| 美女 人体艺术 gogo| 久久午夜亚洲精品久久| 日日干狠狠操夜夜爽| 久久精品国产自在天天线| 国产av不卡久久| 天堂√8在线中文| 亚洲av.av天堂| 日韩精品青青久久久久久| 伊人久久精品亚洲午夜| 国产一级毛片七仙女欲春2| 久久国产乱子伦精品免费另类| 宅男免费午夜| 日本a在线网址| 99在线视频只有这里精品首页| 国产69精品久久久久777片| 国产 一区 欧美 日韩| 免费看光身美女| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕av在线有码专区| 在线天堂最新版资源| 村上凉子中文字幕在线| 欧美黄色片欧美黄色片| 超碰av人人做人人爽久久| 丰满的人妻完整版| 黄色女人牲交| 国产高清视频在线播放一区| 国产精品一区二区三区四区免费观看 | 婷婷精品国产亚洲av在线| 黄片小视频在线播放| 日本免费a在线| 国产淫片久久久久久久久 | 免费观看精品视频网站| 激情在线观看视频在线高清| 精品国产三级普通话版| a级毛片a级免费在线| 波多野结衣高清作品| 国产精品一区二区三区四区久久| 亚洲乱码一区二区免费版| 男女床上黄色一级片免费看| 久久6这里有精品| 美女 人体艺术 gogo| 亚洲在线自拍视频| 国产白丝娇喘喷水9色精品| 国产三级在线视频| 麻豆国产97在线/欧美| 国产精品一区二区三区四区久久| 嫩草影院新地址| 99久国产av精品| 天堂av国产一区二区熟女人妻| 女同久久另类99精品国产91| 97人妻精品一区二区三区麻豆| 国产欧美日韩一区二区三| 国产精品av视频在线免费观看| 久久久久久久午夜电影| 18美女黄网站色大片免费观看| 亚洲人与动物交配视频| 麻豆国产av国片精品| 中文字幕免费在线视频6| 国产精品人妻久久久久久| 九九在线视频观看精品| 国产一区二区在线观看日韩| 精华霜和精华液先用哪个| 少妇人妻一区二区三区视频| 亚洲激情在线av| av在线天堂中文字幕| 亚洲av美国av| 亚洲欧美日韩卡通动漫| 两人在一起打扑克的视频| 免费在线观看日本一区| 精品不卡国产一区二区三区| 欧美在线黄色| 亚洲av电影在线进入| 性插视频无遮挡在线免费观看| 久久久久久久精品吃奶| 午夜福利视频1000在线观看| 91久久精品国产一区二区成人| 久久久国产成人免费| 午夜久久久久精精品| 黄色一级大片看看| 国产av在哪里看| 亚洲av免费在线观看| 日韩中字成人| 国产精品日韩av在线免费观看| www.www免费av| 日韩 亚洲 欧美在线| 狂野欧美白嫩少妇大欣赏| 久久久国产成人精品二区| 啦啦啦观看免费观看视频高清| 18+在线观看网站| 精品久久久久久久人妻蜜臀av| 全区人妻精品视频| 久久这里只有精品中国| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 中文字幕高清在线视频| 国产高潮美女av| 久久精品夜夜夜夜夜久久蜜豆| 波多野结衣高清作品| 久久性视频一级片| 久久人妻av系列| 在线观看66精品国产| 欧美一区二区国产精品久久精品| 国产精品嫩草影院av在线观看 | 婷婷六月久久综合丁香| 成人午夜高清在线视频| 又爽又黄无遮挡网站| 9191精品国产免费久久| 99视频精品全部免费 在线| 亚洲精品亚洲一区二区| АⅤ资源中文在线天堂| 毛片女人毛片| 久久国产精品人妻蜜桃| 一个人看的www免费观看视频| 亚洲成人中文字幕在线播放| 成人特级av手机在线观看| 制服丝袜大香蕉在线| 18禁黄网站禁片午夜丰满| 欧美一级a爱片免费观看看| 亚洲中文字幕日韩| 亚洲激情在线av| 少妇裸体淫交视频免费看高清| 精品熟女少妇八av免费久了| 啦啦啦观看免费观看视频高清| 国产精品一区二区性色av| 国产精品免费一区二区三区在线| 别揉我奶头~嗯~啊~动态视频| 久久久精品大字幕| 国产精品乱码一区二三区的特点| 午夜两性在线视频| 神马国产精品三级电影在线观看| 久久久久久九九精品二区国产| 欧美日韩瑟瑟在线播放| 日本黄色视频三级网站网址| 国产精品影院久久| 在线观看美女被高潮喷水网站 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 制服丝袜大香蕉在线| 成人精品一区二区免费| 亚洲av免费在线观看| 尤物成人国产欧美一区二区三区| 美女免费视频网站| 日本黄色片子视频| 在线观看av片永久免费下载| 欧美成狂野欧美在线观看| 免费av不卡在线播放| 91在线精品国自产拍蜜月| 国产午夜精品论理片| 亚洲最大成人av| 99热精品在线国产| 亚洲av.av天堂| 亚洲avbb在线观看| 一区二区三区高清视频在线| 少妇裸体淫交视频免费看高清| 中文字幕高清在线视频| 黄片小视频在线播放| www.熟女人妻精品国产| 国产一区二区在线观看日韩| 国产精品伦人一区二区| 久久欧美精品欧美久久欧美| 最近在线观看免费完整版| 日本成人三级电影网站| 亚洲欧美日韩卡通动漫| 99国产精品一区二区三区| 舔av片在线| 欧美国产日韩亚洲一区| 亚洲精品成人久久久久久| 国产日本99.免费观看| 两个人的视频大全免费| 亚洲五月婷婷丁香| 国产精品98久久久久久宅男小说| 观看美女的网站| 国产伦在线观看视频一区| 我要看日韩黄色一级片| 高潮久久久久久久久久久不卡| 男人舔女人下体高潮全视频| 免费在线观看亚洲国产| 国产精品一区二区性色av| 给我免费播放毛片高清在线观看| 国语自产精品视频在线第100页| 一夜夜www| 国产视频内射| 欧美激情久久久久久爽电影| 久久久久久久久久黄片| 麻豆成人午夜福利视频| 国产免费男女视频| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 国产乱人伦免费视频| 欧美bdsm另类| 日本一二三区视频观看| 亚洲欧美日韩高清在线视频| 日韩欧美国产一区二区入口| 久久中文看片网| 日韩av在线大香蕉| 丁香六月欧美| 夜夜看夜夜爽夜夜摸| 变态另类丝袜制服| 免费在线观看成人毛片| 黄色一级大片看看| 黄片小视频在线播放| 国产成人av教育| 欧美绝顶高潮抽搐喷水| 九九久久精品国产亚洲av麻豆| 一本一本综合久久| 免费人成在线观看视频色| 国产三级在线视频| 一边摸一边抽搐一进一小说| 亚洲欧美日韩高清在线视频| 日韩成人在线观看一区二区三区| 18禁在线播放成人免费| 国产成年人精品一区二区| 简卡轻食公司| 国产伦一二天堂av在线观看| 精华霜和精华液先用哪个| 日韩高清综合在线| 看片在线看免费视频| 此物有八面人人有两片| 日本精品一区二区三区蜜桃| 无人区码免费观看不卡| 亚洲三级黄色毛片| 久久久久久九九精品二区国产| 一区福利在线观看| 女人十人毛片免费观看3o分钟| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 两个人视频免费观看高清| 亚洲av成人精品一区久久| 老熟妇仑乱视频hdxx| 我要看日韩黄色一级片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99久久精品热视频| 真人一进一出gif抽搐免费| 国产精品人妻久久久久久| 午夜免费成人在线视频| 国产精品三级大全| 首页视频小说图片口味搜索| 国语自产精品视频在线第100页| 国产成人福利小说| xxxwww97欧美| 激情在线观看视频在线高清| 香蕉av资源在线| 美女 人体艺术 gogo| .国产精品久久| 精品久久国产蜜桃| 中文字幕精品亚洲无线码一区| 国产亚洲欧美98| 亚洲人成网站在线播放欧美日韩| 亚洲av日韩精品久久久久久密| 成熟少妇高潮喷水视频| 亚洲成人免费电影在线观看| 长腿黑丝高跟| 首页视频小说图片口味搜索| 国产精品1区2区在线观看.| 国产一区二区在线av高清观看| 99riav亚洲国产免费| 亚洲第一欧美日韩一区二区三区| 老熟妇乱子伦视频在线观看| 我的女老师完整版在线观看| 欧美成人a在线观看| 亚洲五月婷婷丁香| 窝窝影院91人妻| 97人妻精品一区二区三区麻豆| 深爱激情五月婷婷| 欧美成人免费av一区二区三区| 人妻夜夜爽99麻豆av| 日韩欧美免费精品| av在线老鸭窝| 深夜a级毛片| 亚洲最大成人手机在线| 国产伦在线观看视频一区| 国产精品一及| 在线看三级毛片| 亚洲中文字幕一区二区三区有码在线看| 嫩草影院精品99| 精品午夜福利视频在线观看一区| 男女那种视频在线观看| 精品国产亚洲在线| 亚洲av成人av| 成年女人毛片免费观看观看9| 亚洲,欧美,日韩| 亚洲av成人av| www.熟女人妻精品国产| 精品人妻1区二区| 久久久久九九精品影院| 好看av亚洲va欧美ⅴa在| 亚洲av美国av| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 久久6这里有精品| 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 久久亚洲真实| 精品久久久久久久人妻蜜臀av| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 日本黄大片高清| 女人十人毛片免费观看3o分钟| 好看av亚洲va欧美ⅴa在| 一二三四社区在线视频社区8| 婷婷丁香在线五月| 日韩免费av在线播放| 日本一二三区视频观看| 亚洲在线观看片| 3wmmmm亚洲av在线观看| 亚洲av电影不卡..在线观看| 五月伊人婷婷丁香| 亚洲一区高清亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 日韩 亚洲 欧美在线| 丁香欧美五月| 亚洲av不卡在线观看| 免费av毛片视频| 国产精品野战在线观看| 18禁在线播放成人免费| h日本视频在线播放| 国产精品嫩草影院av在线观看 | 内射极品少妇av片p| 一边摸一边抽搐一进一小说| 国产精品综合久久久久久久免费| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久久亚洲 | 人妻丰满熟妇av一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 高清毛片免费观看视频网站| 麻豆久久精品国产亚洲av| 国产亚洲欧美98| 日韩欧美一区二区三区在线观看| 国产精品电影一区二区三区| 18禁在线播放成人免费| 变态另类成人亚洲欧美熟女| 一个人免费在线观看的高清视频| 久久久久久久亚洲中文字幕 | 久久99热6这里只有精品| 国产免费一级a男人的天堂| 欧美成人a在线观看| 国产精品乱码一区二三区的特点| 亚洲av日韩精品久久久久久密| 最新在线观看一区二区三区| 亚洲av二区三区四区| 亚洲综合色惰| 精品午夜福利视频在线观看一区| 欧美日本亚洲视频在线播放| 亚洲国产色片| 国产真实伦视频高清在线观看 | 麻豆国产97在线/欧美| 国产伦在线观看视频一区| 九九热线精品视视频播放| 久久国产精品人妻蜜桃| 精品人妻视频免费看| 中亚洲国语对白在线视频| 久久久久免费精品人妻一区二区| 久久精品综合一区二区三区| 国内精品久久久久精免费| 午夜福利在线在线| 如何舔出高潮| 日本五十路高清| 午夜激情欧美在线| 亚洲专区国产一区二区| 天美传媒精品一区二区| 精品国内亚洲2022精品成人| 亚洲精品一区av在线观看| 一进一出抽搐动态| 成人高潮视频无遮挡免费网站| 嫁个100分男人电影在线观看| 欧美不卡视频在线免费观看| 国产高清有码在线观看视频| 亚洲一区二区三区色噜噜| 久久99热6这里只有精品| 香蕉av资源在线| 欧美日本视频| 18美女黄网站色大片免费观看| 日韩精品青青久久久久久| 直男gayav资源| 久久久久久国产a免费观看| 看十八女毛片水多多多| 熟女人妻精品中文字幕| 男女下面进入的视频免费午夜| 国产精品电影一区二区三区| 一夜夜www| 人妻夜夜爽99麻豆av|