• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    酪氨酸猝滅Eosin Y的熒光

    2015-12-05 06:30:11王經(jīng)東于安池
    物理化學(xué)學(xué)報(bào) 2015年9期
    關(guān)鍵詞:單光子基態(tài)飛秒

    王經(jīng)東 李 爽 呂 榮 于安池

    (中國人民大學(xué)化學(xué)系, 北京 100872)

    酪氨酸猝滅Eosin Y的熒光

    王經(jīng)東 李 爽 呂 榮 于安池*

    (中國人民大學(xué)化學(xué)系, 北京 100872)

    氨基酸殘基對探針分子的熒光猝滅行為可以為生物大分子的結(jié)構(gòu)及構(gòu)象動(dòng)力學(xué)研究提供重要的信息.本文運(yùn)用飛秒瞬態(tài)吸收光譜和時(shí)間相關(guān)單光子計(jì)數(shù)實(shí)驗(yàn)系統(tǒng)研究了在水(H2O)和氘代水(D2O)溶液中乙?;〈野彼?AcTyr)對Eosin Y的超快熒光猝滅動(dòng)力學(xué)過程. 發(fā)現(xiàn)導(dǎo)致AcTyr對Eosin Y熒光猝滅的主要原因是由于它們之間形成了短壽命的基態(tài)復(fù)合物. 我們還發(fā)現(xiàn)Eosin Y與AcTyr形成的基態(tài)復(fù)合物的激發(fā)態(tài)壽命具有明顯的動(dòng)力學(xué)同位素效應(yīng), 表明AcTyr對Eosin Y的熒光猝滅是通過質(zhì)子耦合電子轉(zhuǎn)移過程發(fā)生的.

    飛秒瞬態(tài)吸收光譜; 時(shí)間相關(guān)單光子計(jì)數(shù); 基態(tài)復(fù)合物; 酪氨酸猝滅; 質(zhì)子耦合電子轉(zhuǎn)移

    1 Introduction

    Quenching of a fluorescent probe by amino acid residues can provide valuable information about structures and conformational dynamics of peptides and proteins.1–11It is known that many processes such as fluorescence resonance energy transfer (FRET), Dexter electron exchange, exciplex or ground-state complex formation, and photoinduced electron transfer (PET), can lead to the fluorescence quenching of a fluorophore.12Unlike FRET and Dexter transfer processes, PET does not require the spectral overlap between a donor and an acceptor and is only governed by the redox chemistry of the donor and acceptor. Besides, PET requires a contact formation between a donor and an acceptor at a sub-nanometer scale and makes it an elegant method to probe subtle structural or conformational changes in biopolymers.13

    Among amino acids, tryptophan and tyrosine are the two that can cause the most obvious fluorescence quenching of a fluorophore in aqueous solution or in protein.1–11,13–30Up to date, thefluorescence quenching of a fluorophore by tryptophan has been extensively studied and it is generally reported that tryptophan quenches the fluorescence of the fluorophore via a PET interaction.4–7,10,11,14–26However for the fluorescence quenching of a fluorophore by tyrosine, its mechanism still debates.14–17,28–30Some studies suggest that tyrosine quenches the fluorescence of a fluorophore via a PET process,14–17while some other studies suggest that tyrosine quenches the fluorescence of a fluorophore via a photoinduced proton-coupled electron transfer (PCET) process.28–30It is known that both PET and PCET are important elementary steps in biochemical reactions.31–33

    Recently, we studied the ultrafast fluorescence quenching dynamics of Atto655 in N-acetyl-tyrosine (AcTyr) solution with femtosecond transient absorption spectroscopy and found that AcTyr quenched the fluorescence of Atto655 in aqueous solution via a PCET interaction.34To search another PCET system, we studied the fluorescence quenching dynamics of Eosin Y by AcTyr in aqueous solution in this work. The reason that we selected Eosin Y is due to that the photophysics and photochemistry of Eosin Y have been of widespread interest and it is frequently used as a fluorescent probe and biological stain.35Due to the low solubility of tyrosine in water, we selected AcTyr instead of tyrosine. In this work, we first obtained the transient absorption spectra of Eosin Y in the absence and presence of 200 mmolL–1AcTyr solution at various delay times with a femtosecond transient absorption spectrometer. Then, we measured the first electronic excited-state decays of Eosin Y in the presence of different concentration of AcTyr in H2O and D2O solutions. We found that the decay time of the first electronic excited-state of Eosin Y in the presence of AcTyr in D2O solution was different with that in H2O solution. The molecular structures of both Eosin Y and N-acetyl-tyrosine are displayed in Scheme 1.

    2 Materials and methods

    Eosin Y (> 99%) and N-acetyl-tyrosine (> 99%) were purchased from Sigma-Aldrich and used as received. 1 × TE (Tris-HCl EDTA) buffer (10 mmolL–1Tris-HCl + 1 mmolL–1EDTA, pH = 8.0) was diluted from 100 × TE buffer (Sigma-Aldrich). Ultrapure H2O (18.2 MΩcm) was obtained through a Millipore Milli-Q water purification system. Ultra-D D2O (> 99.9%) was purchased from Sigma-Aldrich and used as received.

    Steady-state absorption spectra were recorded on a Varian Cary 50 UV-Vis spectrometer. Steady-state fluorescence spectra were recorded on a Perkin-Elmer LS-55 luminescence spectrometer. Fluorescence lifetimes were obtained on a homemade time-correlated single-photon counting (TCSPC) apparatus.36Briefly, the output of an optical parametric amplifier (OPA) pumped by a Spectra Physics 1 kHz amplified Ti:Sapphire laser was used as the excitation light. The emission was collected and sent into a Princeton Instruments SP2358 monochromator and detected with a PDM-50CT single photon avalanche diode. The NIM-output of the PDM 50CT and the output of a fast TDA 200 photodiode were respectively connected to a PicoQuant GmbH TimeHarp 200 correlator as the start and stop pulses. Magic-angle detection was used. The instrumental response function of this equipment was about 180 ps.

    The femtosecond transient absorption setup was described elsewhere.37Briefly, the outputs of a Spectra Physics 1 kHz amplified Ti:sapphire laser were used to pump an OPA and to generate the white light continuum, respectively. The outputs of the OPA were used as the pump pulses, and the white light continuum generated by a spinning fused silica disk were used as the probe pulses. The timing between the pump and probe pulses was controlled using a Newport M-ILS250CC motorized translation stage. The time resolution of this apparatus was about 150 fs.

    Scheme 1 Molecular structures of Eosin Y and N-acetyl-tyrosine

    In the TCSPC measurements, the concentrations of the samples were kept at about 1 × 10–6molL–1. In the femtosecond transient absorption measurements, the concentrations of the samples were kept at about 1 × 10–5molL–1. A homemade magnet stirring bar was placed inside a 1 mm path length sample cell and rotated by an external magnet motor to keep the sample solution fresh.

    3 Results and discussion

    The formation of a ground-state complex between a fluorophore and a quencher can be revealed through its ensemble steady-state absorption spectra.16–18Fig.1 displays the steadystate absorption spectra of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer. The inset in Fig.1 is the expended view of the steady-state absorption spectra of Eosin Y with different concentrations of AcTyr. Clearly, the absorbance of Eosin Y decreases slightly and its absorption maximum shifts bathochromically upon addition of AcTyr. Furthermore, titration of Eosin Y with AcTyr solution shows an isosbestic point at around 522 nm in the absorption spectra of Eosin Y with different concentrations of AcTyr (inset of Fig.1). These findings demonstrate that a ground-state complex between Eosin Y and AcTyr was formed in aqueous solution.

    To explore the interaction between Eosin Y and AcTyr, we respectively recorded the fluorescence spectra of Eosin Y under different concentrations of AcTyr in aqueous solution. Fig.2 shows the absorbance-corrected fluorescence spectra of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer. The fluorescence intensity of Eosin Y de-creases upon addition of AcTyr, indicating that AcTyr can quench the fluorescence of Eosin Y.

    Fig.1 Steady-state absorption spectra of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer

    To quantitatively analyze the fluorescence quenching behavior of Eosin Y by AcTyr, we displayed the steady-state fluorescence intensity Stern-Volmer (SV) plot of Eosin Y in the presence of AcTyr in 1 × TE pH = 8.0 buffer in Fig.3. It is clear that the SV plot of Eosin Y in AcTyr solution has an upward curvature. Through a quadratic Stern-Volmer model F0/F = (1 + KS[Q])(1 + KD[Q])(F and F0are the fluorescence intensity of Eosin Y in the presence and absence of AcTyr, and [Q] is the concentration of AcTyr), which incorporated both static (KS) and dynamic (KD) components, we determined that AcTyr quenches the fluorescence of Eosin Y with a KSvalue of (14.5 ± 1.0) mol–1L and a KDvalue of (3.0 ± 0.6) mol–1L in 1 × TE pH = 8.0 buffer solution. The KSvalue is about 5 times larger than the KDvalue, indicating that the static fluorescence quenching between Eosin Y and AcTyr through a ground-state complex formation is dominant in the fluorescence quenching of Eosin Y by AcTyr, which is in agreement with our steadystate absorption observation (Fig.1).

    Fig.2 Absorbance-corrected steady-state fluorescence spectra of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer

    Fig.3 Steady-state Stern-Volmer plot of Eosin Y in the presence of AcTyr in 1 × TE pH = 8.0 buffer

    To confirm that the dynamic quenching process between Eosin Y and AcTyr is minimal, we also recorded the fluorescence decay kinetics of Eosin Y in the presence of different concentrations of AcTyr in aqueous solution by means of TCSPC experiments (The time resolution of our TCSPC setup is low and it can only catch the dynamic quenching process). Fig.4 shows the magic-angle fluorescence decay curves of Eosin Y under different concentrations of AcTyr in 1 × TE pH = 8.0 buffer solution. The fluorescence decay of Eosin Y becomes slightly faster upon increasing AcTyr concentration. The fluorescence decay of Eosin Y without AcTyr can be fitted by a single exponential decay function, while the fluorescence decays of Eosin Y with AcTyr need either a single exponential decay function or a summation of two exponential decay functions to be fitted. Table 1 summarizes all fitting parameters for the magic-angle fluorescence decays of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0buffer solution. escence quenching modelτ and τ0are the fluorescence lifetime of Eosin Y in the presence and absence of AcTyr), we derived that AcTyr quenches dynamically the fluorescence of Eosin Y with amol–1L in 1 × TE pH = 8.0 buffer. The obtainedvalue ((2.2 ± 0.4) mol–1L) with time-resolved data shown in Fig.5 is quite similar as the obtained KDvalue ((3.0 ± 0.6) mol–1L) with steadystate data shown in Fig.3. With the obtainedvalue ((2.2 ± 0.4) mol–1L) and fluorescence lifetime of Eosin Y (1.10 ns), we derived a collision quenching rate constant, kD= (2.0 ± 0.3) × 109mol–1Ls–1, for the bimolecular fluorescence quenching

    With the averaged lifetime (< τ >) listed in Table 1, we obtained the time-resolved Stern-Volmer plot of Eosin Y in the presence of AcTyr in aqueous solution (Fig.5). Obviously, the obtained quenching efficiency of Eosin Y by AcTyr at each AcTyr concentration with the time-resolved fluorescence measurement (Fig.5) is extremely smaller than that with the steadystate fluorescence measurement (Fig.3). Through a linear fluor-process between Eosin Y and AcTyr. The obtained kDvalue is about 4 times smaller than the bimolecular collision rate constant predicted by the Smoluchowski equation for a diffusionlimited process,38indicating that not all collisions between Eosin Y and AcTyr are efficient to quench the fluorescence of Eosin Y.

    Fig.4 Magic-angle fluorescence decays of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer

    Tabl1 Fluorescence decay parameters for Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer, obtained from magic-angle time-correlated single-photon counting measurements

    Fig.5 Time-resolved Stern-Volmer plot of Eosin Y in the presence ofAcTyr in 1 × TE pH = 8.0 buffer

    Fig.6 Femtosecond transient absorption spectra of Eosin Y in the absence (A) and presence (B) of 200 mmolL–1AcTyr solution in 1 × TE pH = 8.0 buffer at various time delays

    To investigate the ultrafast fluorescence quenching dynamics of Eosin Y by AcTyr, we measured the transient absorption spectra of Eosin Y in the absence and presence of 200 mmolL–1AcTyr solution at various time delays by using a femtosecond transient absorption spectrometer, as shown in Fig.6. The obtained transient absorption spectra of eosin Y in aqueous solution at various delays (Fig.6A) are in agreement with the previous report.39The transient absorption spectra of Eosin Y mainly consists of two bands: one absorption band located in the wavelength range of 390–470 nm due to its singlet excited-state absorption and one bleaching band located in the wavelength range of 470–650 nm where is coinciding with its ground-state absorption and excited-state stimulated emission. Due to the limitation scanning range of our femtosecond transient absorption spectrometer and the relatively low absorption extinction coefficient of the triplet electronic state of Eosin Y, we only observed a tiny absorption band in the wavelength range of 600–700 nm arising from its triplet electronic state at the longer delay time (i.e., 1400 ps). Besides, it is also found that the time evolution of the transient absorption spectra of Eosin Y in 200 mmolL–1AcTyr solution is faster than that in aqueous solution.

    Since the time evolution of the transient absorption spectra of Eosin Y in the wavelength range of 390–470 nm (first electronic excited-state absorption) is much simpler than that in the wavelength range of 470–700 nm, we monitor the first electronic excited-state decay kinetics of Eosin Y to catch its fluores-cence quenching dynamics by AcTyr in aqueous solution. Fig.7 displays the first electronic excited-state decay kinetics of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer solution. Clearly, the decay of the first electronic excited-state of Eosin Y becomes faster upon addition of AcTyr. The decay of the first electronic excited-state of Eosin Y without AcTyr can be fitted by a single exponential decay function, while the decays of the first electronic excited-state of Eosin Y with AcTyr need a summation of two exponential decay functions to be fitted. All fitting parameters are summarized in Table 2. From the data listed in Table 2, it is found that the time constant of the fast component (τ1) of Eosin Y in the presence of AcTyr does not vary with the increase of AcTyr concentration, but its amplitude (a1) does. This is a well-known behavior40and indicates the formation of a ground-state complex between Eosin Y and AcTyr in aqueous solution, which is also consistent with our steady-state absorption and fluorescence spectroscopy measurements. Besides, the slower time constant of Eosin Y in different AcTyr concentrations (τ2listed in Table 2) also agrees well with the obtained averaged time constant from our TCSPC measurement (< τ > listed in Table 1), which reflects the dynamic fluorescence quenching process between Eosin Y and AcTyr.

    Fig.7 Magic-angle femtosecond pump-probe transients of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 H2O buffer

    Researchers generally use so-called “static” and “dynamic”quenching to account for the deactivation of excited fluorophores.18,41However, Zewail et al.40pointed out that this distinction depends on the actual timescale of the utilized experimental methods. Herein, we measured the fluorescence quenching kinetics of Eosin Y by AcTyr with a femtosecond transient absorption spectrometer. The time resolution of the femtosecond transient absorption spectrometer (150 fs ) is far higher than that of typical time correlated single photon counting setup (100 ps). Thus, the ~35 ps component listed in the Table 2 should be the excited-state lifetime of the ground-state complex formed between Eosin Y and AcTyr in 1 × TE H2O buffer solution.

    Tabl2 Excited-state decay parameters for Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 H2O buffer, obtained from femtosecond transient absorption measurements

    Fig.8 Magic-angle femtosecond pump-probe transients of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 D2O buffer

    Recently, it is found that AcTyr quenches the fluorescence of Atto655 via a PCET process in aqueous solution.34Moreover, it is reported that the observation of a kinetic isotope effect (KIE) is the hallmark of a PCET reaction.33,42,43To confirm whether the fluorescence quenching of Eosin Y by AcTyr in aqueous solution undergoes a PCET process or not, we also measured the first electronic excited-state decays of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE D2O buffer solution, as shown in Fig.8. Table 3 listed the fitting parameters for the excited-state decays of Eosin Y in the presence of different concentrations of AcTyr in 1×TE D2O buffer solution. Similarly, the time constant of the fast component (~54 ps) of Eosin Y in the presence of AcTyr in 1 × TE D2O buffer solution also does not vary with the increase of AcTyr concentration, but its amplitude does. Thus, the ~54 ps component listed in the Table 3 is also the excited-state lifetime of the ground-state complexformed between Eosin Y and AcTyr in 1 × TE D2O buffer solution. The excited-state lifetime of the ground-state complex formed between Eosin Y and AcTyr in 1 × TE D2O buffer solution is different with that in 1 × TE H2O buffer solution and it shows an obvious KIE effect (~54 ps in 1 × TE D2O buffer solution vs ~35 ps in 1 × TE H2O buffer solution), indicating that AcTyr also quenches the fluorescence of Eosin Y via a PCET process.

    Tabl3 Excited-state decay parameters for Eosin Y in the presence of different concentrations of AcTyr in 1×TE D2O buffer, obtained from femtosecond transient absorption measurements

    In this work, we studied the fluorescence quenching dynamics of Eosin Y by AcTyr in aqueous solution and found that the excited-state lifetime of the ground-state complex formed between Eosin Y and AcTyr in 1 × TE H2O buffer solution is about 35 ps. With the kinetic scheme shown in our previous reports,26we derived that the PCET rate from AcTyr to Eosin Y is about 2.8 × 1010s–1. For a PCET process, various levels of theory have been employed.32,33However in the recent, Mayer and coworkers44,45proved that the PCET reaction can be well described by the semiclassical Marcus electron transfer equation31

    where ΔG is the driving force for the electron transfer reaction, J is the electronic coupling matrix element between donor and acceptor, λ is the reorganization energy, ?is the Planck constant, k is the Boltzman constant, and T is the temperature. The driving force ΔG can be estimated by using Weller’s equation46

    where Eoxis the first one-electron oxidation peak potential of the donor, Eredis the first one-electron reduction peak potential of the acceptor, ESis the energy of the zero-zero transition to the lowest excited singlet state, and C is the solvent dependent Coulombic interaction energy, which can be neglected in moderately polar environment.

    From literature, it is found that the peak potential for oneelectron reduction of Eosin Y is around –0.79 V (vs normal hydrogen electrode, NHE)47and the first one-electron oxidation peak potential of AcTyr in aqueous solution is around 0.89 V (vs NHE)29,48. Besides, from the steady-state absorption and fluorescence spectra shown in Figs.1 and 2, it is found that the zero-zero transition energy (ES) of Eosin Y in aqueous solution to be 2.35 eV (~527 nm). Substituting these values into equation (2), we derived that ΔG = –0.67 eV for the PCET reaction between Eosin Y and AcTyr. Assuming a typical reorganization energy of λ = 1.2 eV for aqueous solution40,45,49and substituting the PCET rate (2.8 × 1010s–1) from AcTyr to Eosin Y into equation (1), we derive that the electronic coupling constant for the PCET reaction between Eosin Y and AcTyr is about 35 cm–1. Gotz et al.15reported that the electronic coupling constant for the reaction between labeled fluorescein and Tyr residue in FluA-Fl complex is 140 cm–1, which is quite different with our obtained electronic coupling constant for the reaction between Eosin Y and AcTyr. Interestingly, Mayer and coworkers45studied the PCET reactions of a series of hydrogen-bonded phenols and found that the electronic coupling constants for the reactions of hydrogen-bonded phenols are in the range of 20–30 cm–1, which is quite similar to our obtained electronic coupling constant for the reaction between Eosin Y and AcTyr.

    The fluorophore-tryptophan pairs have been widely used to monitor the conformational dynamics of peptides and proteins.4–8,13The current study demonstrates that the fluorophore-tyrosine pairs could also be employed to study the conformational dynamics of peptides and proteins. Fluorescence correlation spectroscopy (FCS)50has proved to be one of important experimental methods to study the conformational dynamics of a biopolymer. Under the assumption that the brightness (Q) of the dark species is zero, researchers could extract both the forward and reverse rate constants from a single FCS experimental curve,18which are important parameters to understand the conformational dynamics of a biopolymer. However, our recent study shows that the assumption of Q = 0 would introduce noticeable errors in its equilibrium constant for the systems with Q ≥ 0.01.34The value of Q for the dark species has to be determined with an additional experiment so as to obtain the correct forward and reverse rate constants. With the data listed in Table 2, we derived that the relative brightness of the groundstate complex formed between Eosin Y and AcTyr (Q = τ1/τF, where τFis the fluorescence lifetime of free dye) is 0.032 ± 0.004. Suppose a reaction (K = 1) involving Eosin Y and tyrosine in biopolymers, it will introduce about –12% deviation of its equilibrium constant under the assumption of Q = 0. The femtosecond study on the ultrafast fluorescence quenching dynamics of a fluorophore by amino acid residue in aqueous solution or in protein can provide valuable parameter (Q) for the study of the conformational dynamics of a biopolymer with the FCS method.

    4 Conclusions

    We studied the ultrafast fluorescence quenching dynamics of Eosin Y in the presence of AcTyr in H2O and D2O solutions with steady-state absorption and fluorescence spectroscopy, time-resolved fluorescence spectroscopy, and femtosecond transient absorption spectroscopy. Both the steady-state and time-resolved studies demonstrate that the formation of a ground-state complex between Eosin Y and AcTyr is the major process to cause the fluorescence quenching of Eosin Y by AcTyr in aqueous solution. The kinetic isotope effect on the first electronic excited-state decay kinetics of Eosin Y in the presence of AcTyr reveals that AcTyr quenches the fluorescence of Eosin Y in aqueous solution via a PCET process. With the version of the semiclassical Marcus electron transfer theory,we derived that the electronic coupling constant for the PCET reaction between Eosin Y and AcTyr in aqueous solution is around 35 cm–1. The obtained electronic coupling constant for the reaction between Eosin Y and AcTyr does not agree with the repoted electronic coupling constant for the reaction between labeled fluorescein and Tyr residue in FluA-Fl complex by Gotz et al.,15but it agrees well with the electronic coupling constants for the reactions of hydrogen-bonded phenols by Mayer and coworkers.45With the obtained kinetic data, we derived that the relative brightness of the formed ground-state complex between Eosin Y and AcTyr is 0.032 ± 0.004, which is an important parameter to understand the conformational dynamics of a biopolymer.

    (1)Michalet, X.; Weiss, S.; Jager, M. Chem. Rev. 2006, 106, 1785. doi: 10.1021/cr0404343

    (2)Royer, C. A. Chem. Rev. 2006, 106, 1769. doi: 10.1021/cr0404390

    (3)Edman, L.; Mets, U.; Rigler, R. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 6710. doi: 10.1073/pnas.93.13.6710

    (4)Neuweiler, H.; Banachewicz, W.; Fersht, A. R. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 22106. doi: 10.1073/pnas.1011666107

    (5)Neuweiler, H.; Doose, S.; Sauer, M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16650. doi: 10.1073/pnas.0507351102

    (6)Rogers, J. M. G.; Poishchuk, A. L.; Guo, L.; Wang, J.; DeGrado, W. F.; Gai, F. Langmuir 2011, 27, 3815. doi: 10.1021/la200480d

    (7)Chen, H.; Rhoades, E.; Butler, J. S.; Loh, S. N.; Webb, W. W. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 10459. doi: 10.1073/pnas.0704073104

    (8)Doose, S.; Neuweiler, H.; Barsch, H.; Sauer, M. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17400. doi: 10.1073/pnas.0705605104

    (9)Yang, H.; Luo, G. B.; Karnchanaphanurach, P.; Louie, T. M.; Rech, I.; Cova, S.; Xun, L. Y.; Xie, X. S. Science 2003, 302, 262. doi: 10.1126/science.1086911

    (10)Hudgins, R. R.; Huang, F.; Gramlich, G.; Nau, W. M. J. Am. Chem. Soc. 2002, 124, 556. doi: 10.1021/ja010493n

    (11)Marme, N.; Knemeyer, J. P.; Wolfrum, J.; Sauer, M. Angew. Chem. Int. Edit. 2004, 43, 3798.

    (12)Goldberg, J. M.; Batjargal, S.; Chen, B. S.; Petersson, E. J. J. Am. Chem. Soc. 2013, 135, 18651. doi: 10.1021/ja409709x

    (13)Doose, S.; Neuweiler, H.; Sauer, M. ChemPhysChem 2009, 10, 1389. doi: 10.1002/cphc.v10:9/10

    (14)Chen, H.; Ahsan, S. S.; Santiago-Berrios, M. E. B.; Abruna, H. D.; Webb, W. W. J. Am. Chem. Soc. 2010, 132, 7244. doi: 10.1021/ja100500k

    (15)Gotz, M.; Hess, S.; Beste, G.; Skerra, A.; Michel-Beyerle, M. E. Biochemistry 2002, 41, 4156. doi: 10.1021/bi015888y

    (16)Buschmann, V.; Weston, K. D.; Sauer, M. Bioconjugate Chem. 2003, 14, 195. doi: 10.1021/bc025600x

    (17)Marme, N.; Knemeyer, J. P.; Sauer, M.; Wolfrum, J. Bioconjugate Chem. 2003, 14, 1133. doi: 10.1021/bc0341324

    (18)Doose, S.; Neuweiler, H.; Sauer, M. ChemPhysChem 2005, 6, 2277.

    (19)Luo, G. B.; Andricioaei, I.; Xie, X. S.; Karplus, M. J. Phys. Chem. B 2006, 110, 9363. doi: 10.1021/jp057497p

    (20)Mataga, N.; Chosrowjan, H.; Shibata, Y.; Tanaka, F. J. Phys. Chem. B 1998, 102, 7081.

    (21)Mataga, N.; Chosrowjan, H.; Shibata, Y.; Tanaka, F.; Nishina, Y.; Shiga, K. J. Phys. Chem. B 2000, 104, 10667. doi: 10.1021/jp002145y

    (22)Mataga, N.; Chosrowjan, H.; Taniguchi, S.; Tanaka, F.; Kido, N.; Kitamura, M. J. Phys. Chem. B 2002, 106, 8917.

    (23)Sun, Q. F.; Lu, R.; Yu, A. C. J. Phys. Chem. B 2012, 116, 660. doi: 10.1021/jp2100304

    (24)Vaiana, A. C.; Neuweiler, H.; Schulz, A.; Wolfrum, J.; Sauer, M.; Smith, J. C. J. Am. Chem. Soc. 2003, 125, 14564. doi: 10.1021/ja036082j

    (25)Zhong, D. P.; Zewail, A. H. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 11867. doi: 10.1073/pnas.211440398

    (26)Zhu, R. X.; Li, X.; Zhao, X. S.; Yu, A. C. J. Phys. Chem. B 2011, 115, 5001. doi: 10.1021/jp200876d

    (27)Visser, A.; van den Berg, P. A. W.; Visser, N. V.; van Hoek, A.; van den Burg, H. A.; Parsonage, D.; Claiborne, A. J. Phys. Chem. B 1998, 102, 10431. doi: 10.1021/jp982141h

    (28)Laan, W.; Gauden, M.; Yeremenko, S.; van Grondelle, R.; Kennis, J. T. M.; Hellingwerf, K. J. Biochemistry 2006, 45, 51. doi: 10.1021/bi051367p

    (29)Sjodin, M.; Ghanem, R.; Polivka, T.; Pan, J.; Styring, S.; Sun, L. C.; Sundstrom, V.; Hammarstrom, L. Phys. Chem. Chem. Phys. 2004, 6, 4851. doi: 10.1039/b407383e

    (30)Mathes, T.; Zhu, J. Y.; van Stokkum, I. H. M.; Groot, M. L.; Hegemann, P.; Kennis, J. T. M. J. Phys. Chem. Lett. 2012, 3, 203. doi: 10.1021/jz201579y

    (31)Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. doi: 10.1016/0304-4173(85)90014-X

    (32)Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Chem. Rev. 2012, 112, 4016. doi: 10.1021/cr200177j

    (33)Hammes-Schiffer, S.; Stuchebrukhov, A. A. Chem. Rev. 2010, 110, 6939. doi: 10.1021/cr1001436

    (34)Zhang, Y.; Yuan, S. W.; Lu, R.; Yu, A. C. J. Phys. Chem. B 2013, 117, 7308.

    (35)Arbeloa, E. M.; Porcal, G. V.; Bertolotti, S. G.; Previtali, C. M. J. Photochem. Photobiol. A: Chem. 2013, 252, 31. doi: 10.1016/j.jphotochem.2012.11.003

    (36)Yuan, S. W.; Lu, R.; Yu, A. C. Acta Phys. -Chim. Sin. 2014, 30, 987. [袁樹威, 呂 榮, 于安池. 物理化學(xué)學(xué)報(bào), 2014, 30, 987.] doi: 10.3866/PKU.WHXB201403112

    (37)Zhong, R. B.; Lu, R.; Yu, A. C. Sci. China Chem. 2013, 56, 230. doi: 10.1007/s11426-012-4788-2

    (38)Lakowicz, J. R. Principles of Fluorescence Spectroscopy;Plenum Press, New York, 1999.

    (39)Fita, P.; Fedoseeva, M.; Vauthey, E. J. Phys. Chem. A 2011, 115, 2465.

    (40)Fiebig, T.; Wan, C. Z.; Zewail, A. H. ChemPhysChem 2002, 3, 781. doi: 10.1002/1439-7641(20020916)3:9<781::AIDCPHC781>3.0.CO;2-U

    (41)Rachofsky, E. L.; Osman, R.; Ross, J. B. A. Biochemistry 2001, 40, 946. doi: 10.1021/bi001664o

    (42)Hazra, A.; Soudackov, A. V.; Hammes-Schiffer, S. J. Phys. Chem. Lett. 2011, 2, 36. doi: 10.1021/jz101532g

    (43)Hammes-Schiffer, S. Energy Environ. Sci. 2012, 5, 7696. doi: 10.1039/c2ee03361e

    (44)Mayer, J. M. J. Phys. Chem. Lett. 2011, 2, 1481. doi: 10.1021/jz200021y

    (45)Schrauben, J. N.; Cattaneo, M.; Day, T. C.; Tenderholt, A. L.; Mayer, J. M. J. Am. Chem. Soc. 2012, 134, 16635. doi: 10.1021/ja305668h

    (46)Weller, A. Z. Phys. Chem. 1982, 133, 93. doi: 10.1524/zpch. 1982.133.1.093

    (47)Zhang, J. B.; Sun, L. N.; Ichinose, K.; Funabiki, K.; Yoshida, T. Phys. Chem. Chem. Phys. 2010, 12, 10494. doi: 10.1039/c002831b

    (48)Irebo, T.; Zhang, M. T.; Markle, T. F.; Scott, A. M.; Hammarstrom, L. J. Am. Chem. Soc. 2012, 13, 16247.

    (49)Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541. doi: 10.1021/jp951507c

    (50)Krichevsky, O.; Bonnet, G. Report Prog. Phys. 2002, 65, 251. doi: 10.1088/0034-4885/65/2/203

    Fluorescence Quenching of Eosin Y by Tyrosine

    WANG Jing-Dong LI Shuang Lü Rong YU An-Chi*
    (Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China)

    Quenching of a fluorescent probe by amino acid residues can provide valuable information about the structural and conformational dynamics of a biopolymer. Herein, we systematically investigated the ultrafast fluorescence quenching dynamics of Eosin Y in the presence of N-acetyl-tyrosine (AcTyr) in H2O and D2O solutions using both femtosecond transient absorption and time-correlated single-photon counting experiments. We found that the quenching of the fluorescence of Eosin Y by AcTyr in aqueous solution is mainly because of the formation of a ground-state complex between Eosin Y and AcTyr. We also found that the lifetime of the ground-state complex formed between Eosin Y and AcTyr showed a clear kinetic isotope effect, indicating that the quenching of the fluorescence of Eosin Y by AcTyr in aqueous solution is via a proton-coupled electron transfer process.

    Femtosecond transient absorption spectroscopy; Time-correlated single-photon counting; Ground-state complex; Tyrosine quenching; Proton-coupled electron transfer

    O643

    10.3866/PKU.WHXB201507241

    Received: April 17, 2015; Revised: July 24, 2015; Published on Web: July 24, 2015.

    *Corresponding author. Eamil: a.yu@chem.ruc.edu.cn; Tel: +86-10-62514601; Fax: +86-10-62516444. The project was supported by the National Natural Science Foundation of China (21373269).

    國家自然科學(xué)基金(21373269)資助項(xiàng)目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    單光子基態(tài)飛秒
    一類非線性Choquard方程基態(tài)解的存在性
    擬相對論薛定諤方程基態(tài)解的存在性與爆破行為
    全飛秒與半飛秒的區(qū)別
    人人健康(2021年16期)2021-12-01 07:08:33
    一類反應(yīng)擴(kuò)散方程的Nehari-Pankov型基態(tài)解
    非線性臨界Kirchhoff型問題的正基態(tài)解
    基于飛秒激光的固體危化品切割機(jī)床設(shè)計(jì)與開發(fā)
    溴丙烯在800nm和400nm飛秒激光強(qiáng)場下的解離電離
    基于單光子探測技術(shù)的拉曼光譜測量
    電子測試(2018年18期)2018-11-14 02:30:36
    我國單光子源國際綜合性能最優(yōu)
    基于飛秒脈沖相關(guān)法的高精度時(shí)間同步測量
    毛片一级片免费看久久久久 | 两个人的视频大全免费| 国产成人av教育| av在线老鸭窝| 亚洲成人中文字幕在线播放| 很黄的视频免费| 欧美色视频一区免费| a级毛片a级免费在线| 色综合亚洲欧美另类图片| 亚洲成人中文字幕在线播放| 男人舔奶头视频| 高潮久久久久久久久久久不卡| 男人和女人高潮做爰伦理| 色播亚洲综合网| 久久精品国产清高在天天线| 如何舔出高潮| 成人三级黄色视频| 十八禁国产超污无遮挡网站| 九九热线精品视视频播放| 午夜福利在线观看免费完整高清在 | 国产成人影院久久av| 精华霜和精华液先用哪个| 啦啦啦观看免费观看视频高清| 欧美成人一区二区免费高清观看| 亚洲,欧美精品.| 国内精品美女久久久久久| av黄色大香蕉| 国产一区二区亚洲精品在线观看| 国产一区二区在线观看日韩| 动漫黄色视频在线观看| 免费av观看视频| 在线播放国产精品三级| 欧美xxxx黑人xx丫x性爽| 久久精品综合一区二区三区| 黄片小视频在线播放| 两个人的视频大全免费| 久久久久国产精品人妻aⅴ院| 在线播放国产精品三级| 中文字幕精品亚洲无线码一区| 在线观看美女被高潮喷水网站 | 欧美色视频一区免费| av又黄又爽大尺度在线免费看| 精品国产一区二区三区久久久樱花 | 午夜精品一区二区三区免费看| 午夜老司机福利剧场| 有码 亚洲区| 国产黄频视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美日韩东京热| 晚上一个人看的免费电影| 国产黄片视频在线免费观看| 99re6热这里在线精品视频| 99久久人妻综合| 舔av片在线| 亚洲欧洲国产日韩| 日本免费在线观看一区| av在线亚洲专区| 狂野欧美白嫩少妇大欣赏| 午夜亚洲福利在线播放| 亚洲欧洲国产日韩| 欧美97在线视频| 久久久久九九精品影院| 亚洲欧洲日产国产| 亚洲精品久久久久久婷婷小说| 一个人看视频在线观看www免费| 亚洲国产最新在线播放| 97在线视频观看| 国产免费一级a男人的天堂| 一级爰片在线观看| 简卡轻食公司| 久久精品久久精品一区二区三区| eeuss影院久久| 九九在线视频观看精品| 免费人成在线观看视频色| 大片免费播放器 马上看| 国产成人精品久久久久久| 成人午夜精彩视频在线观看| 在线亚洲精品国产二区图片欧美 | 永久网站在线| 国产爽快片一区二区三区| 午夜亚洲福利在线播放| 亚洲精品乱码久久久久久按摩| 可以在线观看毛片的网站| 岛国毛片在线播放| 色5月婷婷丁香| 日韩av不卡免费在线播放| 久久久午夜欧美精品| 好男人在线观看高清免费视频| 国产亚洲91精品色在线| 国产精品偷伦视频观看了| 免费av不卡在线播放| 日韩成人伦理影院| 人妻系列 视频| 一区二区三区精品91| 建设人人有责人人尽责人人享有的 | 禁无遮挡网站| 日本免费在线观看一区| 国产精品久久久久久精品古装| 综合色丁香网| 久久久成人免费电影| 日本午夜av视频| 精品少妇黑人巨大在线播放| 免费黄网站久久成人精品| 美女cb高潮喷水在线观看| 69人妻影院| 国产精品秋霞免费鲁丝片| 国产精品偷伦视频观看了| 欧美激情久久久久久爽电影| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区www在线观看| 综合色av麻豆| 99久久中文字幕三级久久日本| 亚洲精品中文字幕在线视频 | 高清av免费在线| 99精国产麻豆久久婷婷| 欧美人与善性xxx| 在线亚洲精品国产二区图片欧美 | 麻豆乱淫一区二区| 欧美xxxx黑人xx丫x性爽| 欧美少妇被猛烈插入视频| 成人国产麻豆网| 久久热精品热| av福利片在线观看| 久久精品国产亚洲av涩爱| 国产精品麻豆人妻色哟哟久久| 能在线免费看毛片的网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲av中文av极速乱| 国产成人精品久久久久久| 一个人看视频在线观看www免费| 午夜精品一区二区三区免费看| 久久久久性生活片| 97热精品久久久久久| 亚洲国产av新网站| 夫妻性生交免费视频一级片| 在线播放无遮挡| 观看免费一级毛片| 女人被狂操c到高潮| 性色av一级| 亚洲精品久久午夜乱码| 亚洲国产欧美人成| 亚洲av免费在线观看| 亚洲国产av新网站| 亚洲熟女精品中文字幕| 永久免费av网站大全| www.av在线官网国产| 国产毛片在线视频| 一级毛片aaaaaa免费看小| 97在线人人人人妻| 精品99又大又爽又粗少妇毛片| 国产精品嫩草影院av在线观看| 精品久久久久久久久av| 各种免费的搞黄视频| 久久久成人免费电影| 只有这里有精品99| 亚洲精品aⅴ在线观看| 国产女主播在线喷水免费视频网站| 久久久久久久国产电影| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久午夜乱码| 日本爱情动作片www.在线观看| 一级片'在线观看视频| 我的女老师完整版在线观看| 亚洲精品成人久久久久久| 成人黄色视频免费在线看| 男的添女的下面高潮视频| 看十八女毛片水多多多| 亚洲人成网站在线观看播放| 新久久久久国产一级毛片| 18禁动态无遮挡网站| 在线免费十八禁| 男人和女人高潮做爰伦理| 男女国产视频网站| 男女边吃奶边做爰视频| 亚洲欧洲日产国产| 在线观看三级黄色| 97超视频在线观看视频| 五月伊人婷婷丁香| 欧美精品人与动牲交sv欧美| 你懂的网址亚洲精品在线观看| 一个人看的www免费观看视频| 国产精品99久久久久久久久| 亚洲精品一二三| 赤兔流量卡办理| 亚洲在线观看片| 久久精品国产a三级三级三级| 亚洲图色成人| 99久国产av精品国产电影| 青青草视频在线视频观看| 国产成人免费观看mmmm| 91久久精品国产一区二区三区| 久久精品久久精品一区二区三区| 99久国产av精品国产电影| 一级av片app| 嘟嘟电影网在线观看| 观看免费一级毛片| 亚洲国产精品999| 99精国产麻豆久久婷婷| 久久精品人妻少妇| 99热国产这里只有精品6| 国产av不卡久久| 国产综合精华液| 午夜福利视频1000在线观看| 男人狂女人下面高潮的视频| 一级爰片在线观看| 麻豆成人av视频| 日本-黄色视频高清免费观看| 深夜a级毛片| 大片电影免费在线观看免费| 亚洲aⅴ乱码一区二区在线播放| 日韩亚洲欧美综合| 中文字幕免费在线视频6| 又爽又黄a免费视频| 波多野结衣巨乳人妻| 国产成人精品福利久久| 三级国产精品欧美在线观看| 哪个播放器可以免费观看大片| 亚洲一级一片aⅴ在线观看| 欧美性感艳星| 亚洲综合精品二区| 欧美日韩亚洲高清精品| 日韩视频在线欧美| 天天一区二区日本电影三级| 欧美精品人与动牲交sv欧美| av免费在线看不卡| av国产精品久久久久影院| 国产精品久久久久久精品电影小说 | 3wmmmm亚洲av在线观看| 亚洲精品色激情综合| 久久6这里有精品| 狂野欧美白嫩少妇大欣赏| 中文字幕制服av| 国产欧美日韩精品一区二区| av福利片在线观看| 五月伊人婷婷丁香| 国产高清国产精品国产三级 | 18禁在线播放成人免费| 国产精品熟女久久久久浪| 成年av动漫网址| 亚洲,欧美,日韩| 最近中文字幕2019免费版| av在线观看视频网站免费| xxx大片免费视频| 成人漫画全彩无遮挡| 人妻少妇偷人精品九色| 新久久久久国产一级毛片| 看免费成人av毛片| 日韩人妻高清精品专区| 最近最新中文字幕免费大全7| 亚洲色图综合在线观看| 国产亚洲av嫩草精品影院| 午夜精品国产一区二区电影 | 亚洲欧美一区二区三区黑人 | 国产精品人妻久久久影院| 国产av国产精品国产| 午夜激情福利司机影院| 成人一区二区视频在线观看| 黄色日韩在线| 少妇丰满av| 亚洲四区av| 精品99又大又爽又粗少妇毛片| 国产午夜精品一二区理论片| 三级国产精品欧美在线观看| 99热网站在线观看| 国产免费视频播放在线视频| 美女高潮的动态| 国产欧美日韩精品一区二区| 你懂的网址亚洲精品在线观看| 亚洲国产av新网站| 一二三四中文在线观看免费高清| 免费在线观看成人毛片| 一级毛片aaaaaa免费看小| 亚洲电影在线观看av| 精品一区二区免费观看| 嫩草影院新地址| 精品一区二区三区视频在线| av黄色大香蕉| 亚洲色图av天堂| 日本色播在线视频| 国产精品女同一区二区软件| a级毛色黄片| 亚洲av中文字字幕乱码综合| 永久免费av网站大全| 美女国产视频在线观看| 国产精品久久久久久av不卡| 亚洲av不卡在线观看| 日韩在线高清观看一区二区三区| 22中文网久久字幕| 国产国拍精品亚洲av在线观看| 亚洲四区av| 国产高清三级在线| 亚洲电影在线观看av| 日韩三级伦理在线观看| 热99国产精品久久久久久7| 尤物成人国产欧美一区二区三区| av天堂中文字幕网| 99久久中文字幕三级久久日本| 啦啦啦中文免费视频观看日本| 麻豆乱淫一区二区| 人人妻人人看人人澡| 国内少妇人妻偷人精品xxx网站| 高清av免费在线| 国产淫片久久久久久久久| 亚洲三级黄色毛片| 国产午夜福利久久久久久| 一级毛片 在线播放| 精品久久久久久久久av| 国产亚洲精品久久久com| 国产色婷婷99| 日韩人妻高清精品专区| 欧美少妇被猛烈插入视频| 最近的中文字幕免费完整| 成人午夜精彩视频在线观看| 日韩欧美 国产精品| 一级a做视频免费观看| 最近的中文字幕免费完整| 欧美高清成人免费视频www| 亚洲精品视频女| 久久久精品94久久精品| 久久久久国产精品人妻一区二区| 成人午夜精彩视频在线观看| 日韩人妻高清精品专区| 午夜激情久久久久久久| 亚洲精品日本国产第一区| a级一级毛片免费在线观看| 男的添女的下面高潮视频| 欧美少妇被猛烈插入视频| 亚洲成人久久爱视频| 精品一区二区三卡| 亚洲av日韩在线播放| 五月玫瑰六月丁香| 在线免费十八禁| 看黄色毛片网站| 亚洲精品亚洲一区二区| 97在线视频观看| 久久99热6这里只有精品| 久久亚洲国产成人精品v| 国产精品成人在线| 最近中文字幕高清免费大全6| 香蕉精品网在线| 精品酒店卫生间| 久久精品国产自在天天线| 欧美zozozo另类| 乱码一卡2卡4卡精品| 三级男女做爰猛烈吃奶摸视频| 免费av毛片视频| 男男h啪啪无遮挡| 高清在线视频一区二区三区| 亚洲电影在线观看av| 国产成人精品婷婷| 99热6这里只有精品| 人妻一区二区av| 欧美日韩精品成人综合77777| 黄色怎么调成土黄色| 欧美3d第一页| 国产成人精品福利久久| 菩萨蛮人人尽说江南好唐韦庄| 最近手机中文字幕大全| 男女那种视频在线观看| 中文天堂在线官网| 欧美另类一区| 成人二区视频| 岛国毛片在线播放| 一区二区av电影网| 性色avwww在线观看| 99热这里只有是精品50| 国产精品一区二区性色av| av又黄又爽大尺度在线免费看| 日韩亚洲欧美综合| 亚洲av中文字字幕乱码综合| 亚洲精品久久久久久婷婷小说| 久久久精品欧美日韩精品| 久久精品国产亚洲av天美| 在线看a的网站| 嫩草影院精品99| 免费看日本二区| 成人免费观看视频高清| 丰满人妻一区二区三区视频av| 丝袜脚勾引网站| 国产精品不卡视频一区二区| 亚洲天堂av无毛| 亚洲国产最新在线播放| 建设人人有责人人尽责人人享有的 | 99久久九九国产精品国产免费| 亚洲欧美一区二区三区黑人 | 嘟嘟电影网在线观看| 亚洲精品一二三| 国产女主播在线喷水免费视频网站| 欧美精品国产亚洲| 午夜激情福利司机影院| 不卡视频在线观看欧美| 又大又黄又爽视频免费| 精品久久久精品久久久| av线在线观看网站| 国产有黄有色有爽视频| 激情五月婷婷亚洲| 欧美 日韩 精品 国产| 网址你懂的国产日韩在线| 精品久久久久久久久亚洲| 性色avwww在线观看| 久久这里有精品视频免费| 亚洲天堂av无毛| 亚洲va在线va天堂va国产| 国产欧美日韩精品一区二区| 国产精品国产三级专区第一集| 国精品久久久久久国模美| 亚洲人成网站高清观看| 久久热精品热| 91久久精品国产一区二区成人| 国产高清三级在线| 久久久亚洲精品成人影院| 97超视频在线观看视频| 亚洲人与动物交配视频| 国产成人一区二区在线| 草草在线视频免费看| 男人爽女人下面视频在线观看| 亚洲精品一二三| 日韩制服骚丝袜av| 免费黄色在线免费观看| 亚洲最大成人中文| 日韩三级伦理在线观看| av女优亚洲男人天堂| 不卡视频在线观看欧美| 亚洲精品乱久久久久久| 国产69精品久久久久777片| av福利片在线观看| 搡老乐熟女国产| 成人亚洲精品av一区二区| 亚洲精品视频女| 欧美日韩视频高清一区二区三区二| 国产大屁股一区二区在线视频| 制服丝袜香蕉在线| 综合色av麻豆| 老师上课跳d突然被开到最大视频| 午夜日本视频在线| 亚洲高清免费不卡视频| 久久精品熟女亚洲av麻豆精品| 亚洲熟女精品中文字幕| 国产亚洲精品久久久com| av在线亚洲专区| 国产精品秋霞免费鲁丝片| 久久久久网色| 日日摸夜夜添夜夜添av毛片| 日本wwww免费看| 人妻少妇偷人精品九色| 黄色一级大片看看| 国产av不卡久久| 亚洲精品中文字幕在线视频 | 2022亚洲国产成人精品| 亚洲精品久久午夜乱码| 亚洲在线观看片| 国产午夜精品久久久久久一区二区三区| 一个人观看的视频www高清免费观看| 久久精品国产鲁丝片午夜精品| 三级国产精品欧美在线观看| 国产男女内射视频| 高清av免费在线| 亚洲国产欧美人成| 精品久久久久久久久av| 欧美日本视频| 成年av动漫网址| 黄色配什么色好看| 黄片wwwwww| 亚洲色图综合在线观看| 日韩亚洲欧美综合| 午夜精品一区二区三区免费看| 色网站视频免费| 91aial.com中文字幕在线观看| a级毛片免费高清观看在线播放| 国产精品一区二区三区四区免费观看| 日韩成人伦理影院| 91精品一卡2卡3卡4卡| 夜夜看夜夜爽夜夜摸| 国产一区亚洲一区在线观看| 干丝袜人妻中文字幕| 国产乱人视频| 亚洲国产精品成人综合色| 人人妻人人看人人澡| 亚洲精品乱久久久久久| 嘟嘟电影网在线观看| 久久久久久九九精品二区国产| 欧美成人a在线观看| 欧美老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 蜜桃久久精品国产亚洲av| 亚洲精品自拍成人| 最近手机中文字幕大全| 十八禁网站网址无遮挡 | 如何舔出高潮| 两个人的视频大全免费| 毛片一级片免费看久久久久| 人人妻人人爽人人添夜夜欢视频 | 丝袜脚勾引网站| 女人久久www免费人成看片| 激情 狠狠 欧美| 成人美女网站在线观看视频| 在线观看一区二区三区| 你懂的网址亚洲精品在线观看| 七月丁香在线播放| 亚洲av不卡在线观看| 2021天堂中文幕一二区在线观| 99久久精品国产国产毛片| 国产探花极品一区二区| 午夜激情久久久久久久| 久久精品国产鲁丝片午夜精品| 免费高清在线观看视频在线观看| 国产淫片久久久久久久久| 欧美区成人在线视频| 超碰av人人做人人爽久久| 欧美老熟妇乱子伦牲交| 国产精品三级大全| 大又大粗又爽又黄少妇毛片口| 国产成人免费观看mmmm| 欧美成人精品欧美一级黄| 男的添女的下面高潮视频| 99久国产av精品国产电影| 高清午夜精品一区二区三区| 亚洲精品久久午夜乱码| 男女无遮挡免费网站观看| 亚洲国产欧美在线一区| 内地一区二区视频在线| 亚洲成人精品中文字幕电影| 亚洲欧美一区二区三区国产| 午夜福利网站1000一区二区三区| 好男人视频免费观看在线| 亚洲av二区三区四区| 91久久精品国产一区二区成人| 亚洲欧美日韩东京热| 69av精品久久久久久| 亚洲国产日韩一区二区| 午夜免费鲁丝| 看免费成人av毛片| 日韩成人av中文字幕在线观看| 91精品一卡2卡3卡4卡| 亚洲精品国产色婷婷电影| a级一级毛片免费在线观看| xxx大片免费视频| 最近最新中文字幕大全电影3| 亚洲国产精品专区欧美| 亚洲精品中文字幕在线视频 | 一级毛片久久久久久久久女| 午夜视频国产福利| 国产精品三级大全| 精品一区二区三卡| 欧美精品国产亚洲| 免费少妇av软件| 国产成人精品婷婷| 夜夜爽夜夜爽视频| 国产欧美另类精品又又久久亚洲欧美| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 国产精品.久久久| 日日摸夜夜添夜夜爱| 大香蕉久久网| 国产免费视频播放在线视频| 欧美激情久久久久久爽电影| 深爱激情五月婷婷| av在线亚洲专区| 成人漫画全彩无遮挡| 色5月婷婷丁香| 一级毛片久久久久久久久女| 亚洲,欧美,日韩| 超碰av人人做人人爽久久| 内射极品少妇av片p| 亚洲最大成人av| 国产精品国产av在线观看| 黑人高潮一二区| 老女人水多毛片| 日韩大片免费观看网站| 丝袜喷水一区| 啦啦啦在线观看免费高清www| 男女那种视频在线观看| 中文精品一卡2卡3卡4更新| 欧美一级a爱片免费观看看| 一级片'在线观看视频| 成人欧美大片| 免费不卡的大黄色大毛片视频在线观看| 国产大屁股一区二区在线视频| 日韩制服骚丝袜av| 又爽又黄a免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 联通29元200g的流量卡| 一级a做视频免费观看| 看黄色毛片网站| 99九九线精品视频在线观看视频| 内射极品少妇av片p| av国产精品久久久久影院| 色综合色国产| 午夜福利视频精品| 美女脱内裤让男人舔精品视频| 97热精品久久久久久| 全区人妻精品视频| 2021少妇久久久久久久久久久| 国产女主播在线喷水免费视频网站| 成年人午夜在线观看视频| 男的添女的下面高潮视频| 最近2019中文字幕mv第一页| 日韩一本色道免费dvd| 水蜜桃什么品种好| 国产一区二区三区av在线| 国产久久久一区二区三区| 各种免费的搞黄视频| 国产探花在线观看一区二区| 激情 狠狠 欧美| 国产白丝娇喘喷水9色精品| 丰满少妇做爰视频| 制服丝袜香蕉在线| 欧美xxxx性猛交bbbb| 日产精品乱码卡一卡2卡三| 18禁动态无遮挡网站| 少妇人妻 视频| 观看免费一级毛片| 2018国产大陆天天弄谢| 国产欧美日韩精品一区二区|