• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pu在Gd2Zr2O7基質(zhì)中的模擬固化: (Gd1–xCex)2Zr2O7+x的熱物理性能研究

    2015-12-05 06:30:15夏祥來李林艷艷陳曉謀潘社奇
    物理化學(xué)學(xué)報 2015年9期
    關(guān)鍵詞:中國工程物理研究院遼寧大學(xué)葡萄膜

    夏祥來 李林艷 郭 放 蘇 偉 劉 艷陳曉謀 潘社奇

    (1遼寧大學(xué)化學(xué)院, 沈陽 110036; 2清華大學(xué)核能與新能源技術(shù)研究院, 北京 100084;3中國工程物理研究院, 四川 綿陽 621900)

    Pu在Gd2Zr2O7基質(zhì)中的模擬固化: (Gd1–xCex)2Zr2O7+x的熱物理性能研究

    夏祥來1,2李林艷2,*郭 放1,*蘇 偉3劉 艷3陳曉謀3潘社奇3

    (1遼寧大學(xué)化學(xué)院, 沈陽 110036;2清華大學(xué)核能與新能源技術(shù)研究院, 北京 100084;3中國工程物理研究院, 四川 綿陽 621900)

    采用高溫固相反應(yīng), 以NaF作助熔劑, 在1000 °C的溫度下合成了錒系元素Pu的模擬固化體(Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7). 研究了模擬固化體的物相、熱膨脹系數(shù)(TEC)、熱導(dǎo)率(TC)隨溫度及組成的變化規(guī)律. 粉末X射線衍射(XRD)測試結(jié)果表明: Gd2Zr2O7基質(zhì)本身呈弱有序燒綠石結(jié)構(gòu), 而用Ce4+取代Gd3+的模擬固化體都呈缺陷螢石結(jié)構(gòu). (Gd1–xCex)2Zr2O7+x的Ce(3d) X射線光電子能譜(XPS)有六個峰, 結(jié)合能分別位于 881.7, 888.1, 897.8, 900.4, 907.1, 916.1 eV處, 與CeO2的XPS圖譜非常相似, 說明Ce為四價. 隨著溫度的升高, 所有樣品的熱膨脹系數(shù)總體上呈增大趨勢. 在室溫至750 °C附近, 大部分樣品的熱導(dǎo)率隨溫度的升高而降低, 之后熱導(dǎo)率又呈小幅上升. 在相同溫度下, 固化體(Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7)的熱膨脹系數(shù)及熱導(dǎo)率隨組成變化呈相同趨勢: 在0 ≤ x ≤ 0.1范圍內(nèi)隨x的增大而增大, 隨后在x = 0.1–0.7時逐漸減小.

    核廢料固化; 燒綠石結(jié)構(gòu); 螢石結(jié)構(gòu); 熱膨脹系數(shù); 熱導(dǎo)率

    1 Introduction

    With the increasing severe energy crisis and environment pollution, many countries were forced to develop nuclear power due to its higher energy density and less waste emission than traditional fossil fuel. However, the spent nuclear fuel (SNF) contains fission products, corrosion products, process contaminants, fuel components, and transmutation products.1These wastes would be a severe threat to ecological environment because they contain high radioactive and long-lived actinides, such as238Pu,239Pu,237Np,243Am and so on.2Therefore, safe and effective disposal of high level waste (HLW) is crucial to the public acceptance and sustainable development of nuclear energy. Substantial amounts of HLW will require to be immobilized in an inert matrix for geological disposal. Many different types of glass and ceramic materials have been investigated for the immobilization of HLW,3such as borosilicate glasses,4phosphate glasses,5aluminosilicate glasses,6tianate or zirconate pyrochlore,7–13phosphate ceramics,14,15etc.

    However, the glass solidified form has a tendency to get devitrified in the presence of water and steam at elevated pressure and temperature in geological repositories, which results in water soluble salt and increases the leachability of radioactive elements.16Studies about heavy-ion irradiation on the Gd2(ZrxTi1–x)2O7system demonstrated that amorphization decreases systematically with increasing Zr content. For the end member Gd2Zr2O7, no amorphization occurred at extremely high ion fluences, which indicated that Gd2Zr2O7is a very stable matrix and suitable for HLW immobilization.8–10

    However, Gd2Zr2O7is difficult to be synthesized. For example, fluorite Gd2(ZrxTi1–x)2O7was prepared by a sol-gel route: the Gd-Ti-Zr-O gels were calcined at 700 °C for 1 h, then the calcine was wet ball-milled, pressed into pellets, and sintered at 1600 °C for 50 h in air.11Pyrochlore Gd2Zr2?xCexO7was prepared by grinding, pelletizing, and calcining the stoichiometric oxide mixture repeatedly at 1200 °C for 36 h, 1300 °C for 36 h, and 1400 °C for 48 h, respectively.17In addition, high pressure, high temperature, and microwave sintering were also used to synthesize Gd2Zr2O7.18,19Tetravalent cerium is very similar to tetravalent plutonium in many aspects, such as oxidation state, ionic radius, hydrolysis, and redox behavior. As the host of actinides, the thermal expansion coefficient should not be very high but the thermal conductivity should be high enough.20

    This work used Ce as an analogue of Pu to simulate its immobilization in Gd2Zr2O7.21–23(Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7) were synthesized at relatively low temperature compared with traditional high-temperature solid-state reaction,24and the thermophysical properties of these simulated solidified forms were also studied.

    2 Experimental

    Polycrystalline samples of (Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7) were prepared by solid-state reaction using NaF as a flux. AR grade pow

    ders of Gd(NO3)36H2O (99.9%), Zr(NO3)4(99.5%), Ce(NO3)36H2O (99.9%) in stoichiometric ratio and 5% (w, mass fraction) NaF (98.0%) were ground adequately. The mixtures were put in alumina crucibles and calcined in furnace (SX3-8-13, Tianjin City Central Experimental Electric Furnace Co., Ltd. China) at 1000 °C for 10 h in air.24The resulted calcines were washed by distilled water for 3–4 times to remove NaF, and dried at 150 °C for 3 h. The obtained powders were uniaxially cold pressed into pellets with 190 MPa and pressurelessly sintered at 1400 °C for 6 h. The bulk samples were cut and polished into cuboids or disks for the measurement of thermophysical properties.

    Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku D/max-2000 diffractometer with graphite monochromatized Cu-Kαradiation on 40 kV, 100 mA at a scanning rate of 4 (°)min–1.

    Thermal expansion coefficients (TECs) of the specimens (6 mm × 4 mm × 25 mm) were measured with a high-temperature dilatometer (Model NETSCH DIL 402EP, Germany). The data were recorded continuously at a scanning rate of 5 °Cmin–1in the range of ambient temperature to 1000 °C in N2atmosphere.

    Thermal diffusivities (λ) and the specific heat capacities (Cp) of the specimens with 12.7 mm in diameter and 2 mm in thickness were measured with laser-flash method (Anter(TA)FL4010, USA) from ambient temperature to 1000 °C with every 250 °C as an interval. Densities (ρ) of the specimens were measured on a densimeter (QL-120C, MatsuHaku, Taiwan). Thermal conductivities (k) were calculated by Eq.(1) with λ, Cp, and ρ:

    3 Results and discussion

    3.1 Syntheses and phase identification

    In our previous work, it proved that (Gd1–xCex)2Zr2O7+xcould be synthesized at relatively low temperature by using nitrate as active raw materials and NaF as a flux, compared with traditional high-temperature solid-state reaction.24As for many A2B2O7compounds, if the ratio of cation ionic radii lies in the range rA/rB= 1.46–1.78, they prefer pyrochlore structure withLa2Zr2O7as a typical example which crystallizes in Fd3m space group (S.G.) and a = 1.079 nm; for a lower radius ratio, the defect fluorite structure is stabilized, such as Yb2Zr2O7which crystallizes in Fm3m space group and a = 0.517 nm. In general, Gd2Zr2O7(rA/rB= 1.46) crystallizes in weakly ordered pyrochore structure (S.G.: Fd3m, a = 1.052 nm) which is closed related to fluorite structure (S.G.: Fm3m, a = 0.526 nm). The main lattice of the two structures produces a set of identical diffraction peaks (2θ): 29.62°, 34.38°, 49.34°, 58.67°, 61.48°. In pyrochore structure, the arrangements of cations and anion vacancies are ordered, which constitutes a super lattice featured in a set of weak diffraction peaks at 2θ ≈ 14.65° (111), 28.52° (311), 37.51° (331), 44.89° (511). The decrease of rA/rBcaused by other cation doping will result in the structure transformation from pyrochlore to fluorite.

    Fig.1 XRD patterns of (Gd1–xCex)2Zr2O7+x

    XRD patterns of the as-synthesized (Gd1–xCex)2Zr2O7+xare shown in Fig.1. It can be seen that pure Gd2Zr2O7indeed exhibits weakly ordered pyrochore structure (JCPDS 79-1146). Partial Ce4+substitution for Gd3+leads to the structural transformation from pyrochlore to defect fluorite (JCPDS 80-0471) even if x is as low as 0.1. When x reaches 0.7, XRD peaks of the product widen obviously, indicating that high Ce4+substitution rate for Gd3+would lead to lattice distortion. When x = 1, that is, full substitution of Ce4+for Gd3+leads to the product into two phases, (Zr0.88Ce0.12)2O2(P42/nmc, JCPDS 82-1389) and (Ce0.75Zr0.25)2O2(Fm3m, JCPDS 28-0271).

    The XPS Ce(3d) spectrum of the (Gd1–xCex)2Zr2O7+x(x = 0.5) sample is shown in Fig.2. It can be seen that there are six peaks at 881.7, 888.1, 897.8, 900.4, 907.1, 916.1 eV respectively, which is almost identical to those of CeO2.25Among them, the three peaks of 881.7, 888.1, 897.8 eV arise from the terminal state of 3d94f1, 3d94f2, and 3d94f0. The corresponding spin-orbit splitting peaks occur at 900.4, 907.1, and 916.1 eV. The XPS Ce(3d) spectrum reveals that Ce specimen in (Gd1–xCex)2Zr2O7+xshould be in tetravalent.

    Fig.2 XPS Ce(3d) spectrum of the (Gd1–xCex)2Zr2O7+x(x = 0.5) splitting peaks occur at 900.4, 907.1 and 916.1eV.

    The coordination numbers of Gd3+and Zr4+in Gd2Zr2O7lattice were 8 and 6, respectively. The relevant ionic radii for 8-fold and 6-fold coordinations are: Gd3+0.105 and 0.094, Ce4+0.097 and 0.087, Zr4+0.084 and 0.072 nm, respectively. As a result, partial Ce4+substitution for Gd3+with smaller ion radius leads to the decrease of rA/rB, which in turn causes the structural transformation from pyrochlore (Gd2Zr2O7) to defect fluorite ((Gd1–xCex)2Zr2O7+x(0.1 ≤ x ≤ 0.7)).

    Fig.3 Temperature dependence of the thermal expansion coefficient of (Gd1–xCex)2Zr2O7+x

    3.2 Thermal expansion

    The dependence of linear TECs of (Gd1–xCex)2Zr2O7+x(0 ≤x ≤ 0.7) on temperature is shown in Fig.3. It can be seen that the TECs of the samples with any composition increase with the increasing temperature in general trend, which is attributed to the increasing atomic distance with the increase of temperature. The TECs of the Ce-doping sample are all lower than that of pure Gd2Zr2O7in the range of 200–750 °C. When the temperature is higher than 750 °C, the TECs of the samples with high Ce-doping rate (x = 0.5, 0.7) are slightly higher than those of pure Gd2Zr2O7. Composition dependence of the thermal expansion coefficient of (Gd1–xCex)2Zr2O7+xat the same temperature, such as 1000 °C is presented in Fig.4. It can be seen that the TECs of (Gd1–xCex)2Zr2O7+xdecrease from x = 0 to 0.1, then increase constantly from x = 0.1 to 0.7. The influences of Ce4+substitution for Gd3+on Gd2Zr2O7lattice mainly reflect in two aspects: ① In order to compensate the excess positive charges brought about by Ce4+substitution for Gd3+, the amount of oxygen vacancies in Gd2Zr2O7lattice decreases, which in turn increases the amount of Zr―O bonds. ② On the other hand, partial Ce4+may migrate to Zr4+nearby, which in turn weakensZr―O bonds. The former effect would decrease the TECs of (Gd1–xCex)2Zr2O7+x, whereas the latter effect on TECs is opposite because normal Zr―O bond is short and strong, which is negatively correlated with the TECs. Experimental results on the TECs of (Gd1–xCex)2Zr2O7+xshow that the former effect plays a dominant role at low temperature and low Ce4+substitution rate and vice versa.

    3.3 Thermal conductivities

    The measured specific heat capacities, thermal diffusivities at different temperatures of (Gd1–xCex)2Zr2O7+xsample at ambient temperature are shown in Fig.5 and Fig.6. The bulk densities of (Gd1–xCex)2Zr2O7+xsamples are 5.79, 5.89, 5.88, 5.90, 5.76gcm–1for x = 0, 0.1, 0.3, 0.5, 0.7 samples. According to Eq.(1), the calculated thermal conductivities of (Gd1–xCex)2Zr2O7+xat different temperatures are plotted in Fig.7. It can be seen from Fig.7 that the TCs of most (Gd1–xCex)2Zr2O7+xsamples decrease with the increasing temperature up to 750 °C nearby, followed by a slight increase from 750 to 1000 °C. According to the thermal conduction theory, heat conduction in crystals is mainly carried out by means of phonons, and the lattice thermal conductivity is proportional to the mean free path of phonon. With temperature increasing, lattice vibrations become more intense, which would shorten the mean free path of phonon, and TC decreases as a result. However, with temperature further going up, the mean free path of phonon could not be shortened infinitely, and the contribution of photon conduction to heat conduction increases with temperature increasing and cannot be neglected, which results in a slight increase of TC.

    Fig.4 Composition dependence of the thermal expansion coefficient of (Gd1–xCex)2Zr2O7+xat 1000 °C

    Fig.5 Temperature dependence of the specific heat capacity of (Gd1–xCex)2Zr2O7+x

    Fig.6 Temperature dependence of the thermal diffusivities of (Gd1–xCex)2Zr2O7+x

    Fig.7 Temperature dependence of the thermal conductivities of (Gd1–xCex)2Zr2O7+x

    Fig.8 Composition dependence of the thermal conductivities of (Gd1–xCex)2Zr2O7+xat 500 °C

    At the same temperature, the variation trend TCs of (Gd1–xCex)2Zr2O7+xwith their composition, taking 500 °C as an example, is given in Fig.8. It can be found that the TCs of (Gd1–xCex)2Zr2O7+xalso decrease from x = 0 to 0.1, then increase constantly from x = 0.1 to 0.7. In real crystal structure, scattering of phonons occurs when they interact with lattice defects, such as vacancies, dislocations, grain boundaries, substitutionby other atoms, and so on.26Substation of Ce4+with higher charge and smaller ion radius for Gd3+will produce replacement defectand reduce the amount of oxygen vacancies simultaneously in Gd2Zr2O7lattice. The replacement defectwould enhance the scattering of phonons, which in turn decreases TC, and the influence of the decrease of oxygen vacancies on TC is opposite. It could be concluded from Fig.8 that the replacement defectdominates the TC variation when Ce-doping amount is less than 10%, then the influence of the decrease of oxygen vacancies on TC gets more and more obviously.

    4 Conclusions

    (1) Polycrystalline samples of (Gd1–xCex)2Zr2O7+xwere prepared by solid-state reaction using NaF as a flux at 1000 °C for 10 h. XRD results show that pure Gd2Zr2O7exhibits weakly ordered pyrochore structure. Ce4+substitution for Gd3+leads to the structural transformation from pyrochlore to defect fluorite even if x is as low as 0.1. When x reaches 0.7, XRD peaks of the products widen obviously.

    (2) The TECs of (Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7) with any composition increase with the temperature increasing in general trend. The TECs of the Ce-doping samples are all lower than that of pure Gd2Zr2O7in the range of 200–750 °C. When the temperature is higher than 750 °C, the TECs of the samples with high Ce-doping rate (x = 0.5, 0.7) are higher than that of pure Gd2Zr2O7. At the same temperature, the TECs of (Gd1–xCex)2Zr2O7+xdecrease from x = 0 to 0.1, then increase constantly from x = 0.1 to 0.7.

    (3) The TCs of most (Gd1–xCex)2Zr2O7+xsamples decrease with the increasing temperature up to 750 °C nearby, followed by a slight increase from 750 to 1000 °C. At the same temperature, the TCs of (Gd1–xCex)2Zr2O7+xalso decrease from x = 0 to 0.1, then increase constantly from x = 0.1 to 0.7.

    (1)Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S. IOP Conf. Series: Mater. Sci. Eng. 2010, 9, 012001-1. doi: 10.1088/1757-899X/9/1/012001

    (2)Yudintsev, S. V.; Stefanovsky, S. V.; Ewing, R. C. Actinide Host Phases as Radioactive Waste Forms. In Structural Chemistry of Inorganic Actinide Compounds; Krivovichev, S. V., Burns, P. C., Tananaev, I. G. Eds.; Elsevier: Amsterdam, 2007; pp 457–490.

    (3)Donald, I. W.; Metcalfe, B. L.; Taylor, R. N. J. J. Mater. Sci. 1997, 32, 5851. doi: 10.1023/A:1018646507438

    (4)Lutze, W.; Ewing, R. C. Radioactive Waste Forms for the Future; Lutze, W., Ewing, R. C. Eds.; Elsevier: Amsterdam, 1988; pp 1–159.

    (5)Kumar, B.; Lin, S. J. Am. Ceram. Soc. 1991, 74, 226. doi: 10.1111/jace.1991.74.issue-1

    (6)Stefanovsky, S. V.; Ivanov, I. A.; Gulin, A. N. Scientific Basis for Nuclear Waste Management XVIII; Murakami, T., Ewing, R. C. Eds.; Materials Research Society: Pittsburgh, PA, 1995; pp 101–106.

    (7)Sickafus, K. E.; Minervini, L.; Grimes, R. W.; Valdez, J. A.; Ishimaru, M.; Li, F.; McClellan, K. J.; Hartmann, T. Science 2000, 289, 748. doi: 10.1126/science.289.5480.748

    (8)Weber, W. J.; Ewing, R. C. Science 2000, 289, 2051. doi: 10.1126/science.289.5487.2051

    (9)Lu, X. R.; Dong, F. Q.; Hu, S.; Wang, X. L.; Wu, Y. L. Acta Phys. Sin. 2012, 61, 152401-1. [盧喜瑞, 董發(fā)勤, 胡 淞, 王曉麗, 吳彥霖. 物理學(xué)報, 2012, 61, 152401-1.]

    本研究中2例患者分別在使用唑來膦酸72、60 h后出現(xiàn)雙眼急性葡萄膜炎,在第二次使用唑來膦酸前,先給予地塞米松及潑尼松龍滴眼液共預(yù)處理6 d,患者再次啟動唑來膦酸治療后,未出現(xiàn)任何眼部癥狀[5]。PATEL等[22]的回顧性調(diào)查中,有3例患者在初次發(fā)病18個月后在未給予任何預(yù)處理的情況下再次給予唑來膦酸靜脈輸注,未出現(xiàn)急性葡萄膜炎的癥狀或體征。這些研究提示急性葡萄膜炎不應(yīng)成為再次使用唑來膦酸的臨床禁忌,但應(yīng)做好臨床監(jiān)測和預(yù)防工作。

    (10)Zhang, F. X.; Wang, J. W.; Lian, J.; Lang, M. K.; Becker, U.; Ewing, R. C. Phys. Rev. Lett. 2008, 100, 045503-1. doi: 10.1103/PhysRevLett.100.045503

    (11)Mandal, B. P.; Pandey, M.; Tyagi, A. K. J. Nucl. Mater. 2010, 406, 238. doi: 10.1016/j.jnucmat.2010.08.042

    (12)Kutty, K. V. G.; Asuvathraman, R.; Madhavan, R. R.; Jena, H. J. Phys. Chem. Solids 2005, 66, 596. doi: 10.1016/j.jpcs.2004.06.066

    (13)Weber, W. J.; Wald, J. W.; Matzke, H. J. Nucl. Mater. 1986, 138, 196. doi: 10.1016/0022-3115(86)90006-1

    (14)Kerdaniel, E. D. F.; Clavier, N.; Dacheux, N.; Terra, O.; Podor, R. J. Nucl. Mater. 2007, 362, 451. doi: 10.1016/j.jnucmat. 2007.01.132

    (15)Metcalfe, B. L.; Donald, I. W.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D. J. Nucl. Mater. 2009, 385, 485. doi: 10.1016/j.jnucmat.2008.12.035

    (16)Ringwood, A. E.; Kesson, S. E.; Ware, N. G.; Hibberson, W.; Major, A. Nature 1979, 278, 219. doi: 10.1038/278219a0

    (17)Patwe, S. J.; Ambekar, B. R.; Tyagi, A. K. J. Alloy. Compd. 2005, 389, 243. doi: 10.1016/j.jallcom.2004.06.094

    (19)Lu, X. R.; Ding, Y.; Dan, H.; Yuan, S. B.; Mao, X. L.; Fan, L.; Wu, Y. L. Ceram. Int. 2014, 40, 13191. doi: 10.1016/j.ceramint.2014.05.024

    (20)Mandal, B. P.; Garg, N.; Sharma, S. M.; Tyagi, A. K. J. Nucl. Mater. 2009, 392, 95. doi: 10.1016/j.jnucmat.2009.03.050

    (21)Reid, D. P.; Stennettn, M. C.; Hyatt, N. C. J. Solid State Chem. 2012, 191, 2. doi: 10.1016/j.jssc.2011.12.039

    (22)Dickson, C. L.; Glasser, F. P. Cem. Concr. Res. 2000, 30, 1619. doi: 10.1016/S0008-8846(00)00362-8

    (23)Lu, X. R.; Fan, L.; Shu, X. Y.; Su, S. J.; Ding, Y.; Yi, F. C. Ceram. Int. 2015, 41, 6344. doi: 10.1016/j.ceramint.2015.01.068

    (24)Zhao, P. Z.; Li, L.Y.; Xu, S. M.; Zhang, Q. Acta Phys. -Chim. Sin. 2013, 29, 1168. [趙培柱, 李林艷, 徐盛明, 張 覃. 物理化學(xué)學(xué)報, 2013, 29, 1168.] doi: 10.3866/PKU.WHXB201304013

    (25)Zhao, L. Z. Acta Phys. Sin. 1989, 38, 987. [趙良仲. 物理學(xué)報, 989, 38, 987.]

    (26)Zhang, H. S.; Chen, X. G.; Li, G.; Wang, X. L.; Dang, X. D. J. Eur. Ceram. Soc. 2012, 32, 3693. doi: 10.1016/j.jeurceramsoc. 2012.06.003

    Simulation of the Immobilization of Pu in the Gd2Zr2O7Matrix by Investigating the Thermophysical Properties of (Gd1?xCex)2Zr2O7+x

    XIA Xiang-Lai1,2LI Lin-Yan2,*GUO Fang1,*SU Wei3LIU Yan3CHEN Xiao-Mou3PAN She-Qi3
    (1College of Chemistry, Liaoning University, Shenyang 110036, P. R. China;2Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China;3China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, P. R. China)

    Polycrystalline samples of (Gd1?xCex)2Zr2O7+x(0 ≤ x ≤ 0.7) were synthesized by solid-state reaction using NaF as a flux at 1000 °C to simulate Pu-immobilization in the Gd2Zr2O7matrix. Phase transformation and variation of the thermal expansion coefficients (TECs) and thermal conductivities (TCs) of the samples with temperature and composition were investigated. Powder X-ray diffraction (XRD) patterns show that pure Gd2Zr2O7has a weakly ordered pyrochlore structure, whereas Ce-containing samples (i.e., the Pu-simulated solidified samples) exhibit a defect fluorite structure even if x is as low as 0.1. When x reaches 0.7, the XRD peaks of these samples widen. In the Ce 3d X-ray photoelectron spectrum (XPS) of (Gd1?xCex)2Zr2O7+xthere are six peaks located at binding energies of 881.7, 888.1, 897.8, 900.4, 907.1, and 916.1 eV, which are almost the same as the peaks of CeO2. The Ce 3d XPSreveals that the Ce species in (Gd1?xCex)2Zr2O7+xare tetravalent. The TECs of (Gd1?xCex)2Zr2O7+x(0 ≤ x ≤0.7) generally increase with increasing temperature. At the same temperature, the TECs and TCs exhibit the same variation trend with the composition of the simulated solidified forms: they decrease from x = 0 to 0.1 and then linearly increase from x = 0.1 to 0.7.

    Immobilization of nuclear waste; Pyrochlore structure; Defect fluorite structure; Thermal expansion coefficient; Thermal conductivity

    O642

    10.3866/PKU.WHXB201507203

    Received: March 26, 2015; Revised: July 16, 2015; Published on Web: July 20, 2015.

    *Corresponding authors. LI Lin-Yan, Email: lilinyan@tsinghua.edu.cn; Tel: +86-10-89796097. GUO Fang, Email: fguo@lnu.edu.cn.

    The project was supported by NSAF (11176014) and National Natural Science Foundation of China (21471088).

    國家自然科學(xué)基金委員會和中國工程物理研究院聯(lián)合基金(11176014)和國家自然科學(xué)基金(21471088)資助項目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    中國工程物理研究院遼寧大學(xué)葡萄膜
    基于目標航跡的引導(dǎo)誤差校正方法研究
    中國工程物理研究院
    軍工文化(2023年3期)2023-04-28 08:39:41
    葡萄膜炎繼發(fā)高眼壓的臨床特征分析
    CeAuGa3的力學(xué)性質(zhì)及磁性的第一性原理計算
    非感染性葡萄膜炎343例患者的分型、臨床表現(xiàn)及并發(fā)癥
    眼科新進展(2021年7期)2021-07-22 07:18:44
    臨床常用中藥提取物在葡萄膜炎治療中的新進展
    An Analysis of Deviation in Oliver Twist
    新生代(2019年4期)2019-11-13 21:46:34
    基于四傳感器的弱信號源定位方法
    傳感器世界(2019年9期)2019-03-17 18:52:46
    《遼寧大學(xué)學(xué)報》(自然科學(xué)版)征稿細則
    慢性葡萄膜炎患者生存質(zhì)量量表的驗證
    啦啦啦在线免费观看视频4| 999精品在线视频| 亚洲第一av免费看| 亚洲在久久综合| 悠悠久久av| 免费女性裸体啪啪无遮挡网站| 欧美黑人精品巨大| 久热这里只有精品99| 精品一品国产午夜福利视频| 亚洲精品一区蜜桃| 国产精品一区二区精品视频观看| 一区二区三区乱码不卡18| 国产成人av激情在线播放| 国产精品一区二区在线不卡| 亚洲国产中文字幕在线视频| 18禁裸乳无遮挡动漫免费视频| 亚洲免费av在线视频| 大码成人一级视频| 日韩不卡一区二区三区视频在线| 精品一区二区免费观看| 精品久久久久久电影网| 欧美人与性动交α欧美精品济南到| 国产精品国产三级专区第一集| 最黄视频免费看| 久久这里只有精品19| 成人国产av品久久久| 国产精品免费大片| 狂野欧美激情性xxxx| 亚洲av福利一区| 2018国产大陆天天弄谢| 中文精品一卡2卡3卡4更新| www.精华液| 各种免费的搞黄视频| 国产熟女午夜一区二区三区| av福利片在线| 国产极品粉嫩免费观看在线| e午夜精品久久久久久久| 国产男人的电影天堂91| 成人影院久久| 最近中文字幕高清免费大全6| 人人澡人人妻人| 久久韩国三级中文字幕| 2021少妇久久久久久久久久久| 日韩 亚洲 欧美在线| kizo精华| 色网站视频免费| 久久这里只有精品19| 亚洲成人手机| 自线自在国产av| 女性生殖器流出的白浆| 成人国产av品久久久| 免费看不卡的av| 美女大奶头黄色视频| 美女扒开内裤让男人捅视频| 精品少妇一区二区三区视频日本电影 | 亚洲国产精品国产精品| 黑人猛操日本美女一级片| 国产精品av久久久久免费| 久久久欧美国产精品| 国产淫语在线视频| 18禁观看日本| 亚洲少妇的诱惑av| 秋霞伦理黄片| 黄色视频不卡| 天堂中文最新版在线下载| 汤姆久久久久久久影院中文字幕| 婷婷色综合大香蕉| 熟女少妇亚洲综合色aaa.| 国产日韩一区二区三区精品不卡| 丝袜美足系列| 国产精品久久久久久精品电影小说| 999精品在线视频| 青春草视频在线免费观看| 欧美黄色片欧美黄色片| 黄色一级大片看看| 日本黄色日本黄色录像| 婷婷色综合www| 久久国产亚洲av麻豆专区| 热re99久久国产66热| 91精品伊人久久大香线蕉| 亚洲精品日本国产第一区| 性色av一级| 欧美av亚洲av综合av国产av | 免费观看a级毛片全部| 成人国语在线视频| 在线观看国产h片| 亚洲成人手机| 青春草国产在线视频| 亚洲国产精品国产精品| 一本一本久久a久久精品综合妖精| 亚洲av日韩在线播放| 免费人妻精品一区二区三区视频| 观看美女的网站| 妹子高潮喷水视频| 欧美激情极品国产一区二区三区| 七月丁香在线播放| 老司机亚洲免费影院| 日韩 欧美 亚洲 中文字幕| 纵有疾风起免费观看全集完整版| 国产日韩一区二区三区精品不卡| 国产成人欧美| 亚洲成人av在线免费| 国产麻豆69| 欧美 亚洲 国产 日韩一| av在线app专区| 国产成人精品久久久久久| 中文精品一卡2卡3卡4更新| 国产 精品1| 另类亚洲欧美激情| 99香蕉大伊视频| 毛片一级片免费看久久久久| 午夜影院在线不卡| 伊人亚洲综合成人网| 中文字幕最新亚洲高清| 亚洲三区欧美一区| 国产精品.久久久| 精品久久久久久电影网| 久久久久人妻精品一区果冻| 午夜激情久久久久久久| 午夜免费观看性视频| 午夜福利一区二区在线看| 人人妻人人爽人人添夜夜欢视频| 亚洲第一区二区三区不卡| 最黄视频免费看| av天堂久久9| 女性被躁到高潮视频| 乱人伦中国视频| 欧美黄色片欧美黄色片| 男的添女的下面高潮视频| 女人精品久久久久毛片| 亚洲精品久久午夜乱码| 777久久人妻少妇嫩草av网站| 亚洲av成人不卡在线观看播放网 | 国产精品一区二区在线不卡| 欧美日韩av久久| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| 一边亲一边摸免费视频| 亚洲国产欧美日韩在线播放| 男女下面插进去视频免费观看| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播 | 亚洲欧洲国产日韩| 夜夜骑夜夜射夜夜干| 久久精品熟女亚洲av麻豆精品| 欧美日韩成人在线一区二区| 无限看片的www在线观看| 精品视频人人做人人爽| 免费观看a级毛片全部| 99九九在线精品视频| 男人添女人高潮全过程视频| 男人操女人黄网站| 亚洲一区中文字幕在线| 19禁男女啪啪无遮挡网站| 十分钟在线观看高清视频www| 九色亚洲精品在线播放| 午夜福利免费观看在线| av又黄又爽大尺度在线免费看| 一级a爱视频在线免费观看| 亚洲,欧美,日韩| 波多野结衣一区麻豆| 久久精品国产综合久久久| 国产又爽黄色视频| 亚洲熟女精品中文字幕| 国产精品嫩草影院av在线观看| 久久天堂一区二区三区四区| 美女主播在线视频| 又黄又粗又硬又大视频| 人妻 亚洲 视频| 亚洲熟女精品中文字幕| a级毛片黄视频| 91精品三级在线观看| 操美女的视频在线观看| 秋霞在线观看毛片| 国产熟女欧美一区二区| 久久人人爽av亚洲精品天堂| 国产在线一区二区三区精| 最近最新中文字幕大全免费视频 | 另类精品久久| 亚洲欧美精品自产自拍| 精品少妇久久久久久888优播| 老熟女久久久| 这个男人来自地球电影免费观看 | 成年美女黄网站色视频大全免费| 日韩成人av中文字幕在线观看| 丁香六月天网| 日韩av不卡免费在线播放| 黄色怎么调成土黄色| 男女午夜视频在线观看| 青草久久国产| 老司机深夜福利视频在线观看 | 久久婷婷青草| 国产麻豆69| 亚洲欧美一区二区三区国产| 99精国产麻豆久久婷婷| 国产成人免费观看mmmm| 欧美久久黑人一区二区| 国产欧美亚洲国产| 国产精品无大码| 男女高潮啪啪啪动态图| 少妇 在线观看| 国产又爽黄色视频| 精品亚洲成国产av| 婷婷色av中文字幕| 少妇精品久久久久久久| 久久久久久久久久久免费av| 久久久久精品久久久久真实原创| 免费观看性生交大片5| 国产一级毛片在线| 黄色视频不卡| 日本色播在线视频| 国产精品女同一区二区软件| 国产成人啪精品午夜网站| 亚洲色图 男人天堂 中文字幕| 看非洲黑人一级黄片| 欧美国产精品一级二级三级| 久久 成人 亚洲| 国产黄色视频一区二区在线观看| kizo精华| 街头女战士在线观看网站| √禁漫天堂资源中文www| 在线 av 中文字幕| 在线观看免费视频网站a站| 欧美在线一区亚洲| 国产男人的电影天堂91| 中文乱码字字幕精品一区二区三区| 久久国产精品男人的天堂亚洲| av.在线天堂| 大码成人一级视频| 在线 av 中文字幕| 一区福利在线观看| 大陆偷拍与自拍| 国产欧美日韩综合在线一区二区| 欧美另类一区| 2021少妇久久久久久久久久久| 波多野结衣av一区二区av| 人人妻人人澡人人爽人人夜夜| 久久久精品国产亚洲av高清涩受| 精品少妇久久久久久888优播| 国产精品久久久久久精品古装| 亚洲久久久国产精品| 免费人妻精品一区二区三区视频| 国产精品女同一区二区软件| 亚洲精品国产区一区二| 国产成人一区二区在线| 哪个播放器可以免费观看大片| 91老司机精品| 国产成人欧美| 久久女婷五月综合色啪小说| 日日撸夜夜添| 一边摸一边抽搐一进一出视频| 国产精品麻豆人妻色哟哟久久| 黄频高清免费视频| av网站免费在线观看视频| 亚洲成人国产一区在线观看 | av有码第一页| svipshipincom国产片| 亚洲图色成人| 男人操女人黄网站| 丰满饥渴人妻一区二区三| 制服丝袜香蕉在线| 一级毛片我不卡| 午夜福利,免费看| 高清av免费在线| 在线亚洲精品国产二区图片欧美| 青草久久国产| 国产亚洲av高清不卡| 免费观看av网站的网址| 99久久综合免费| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线不卡| 久久久精品免费免费高清| 亚洲伊人久久精品综合| 亚洲美女搞黄在线观看| 操出白浆在线播放| 欧美 日韩 精品 国产| 视频在线观看一区二区三区| 国产老妇伦熟女老妇高清| 久久久国产精品麻豆| www.精华液| 久久人人爽人人片av| 日本猛色少妇xxxxx猛交久久| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品古装| 成人亚洲精品一区在线观看| 最黄视频免费看| 久久热在线av| 如何舔出高潮| 国产男女超爽视频在线观看| 中文字幕色久视频| 美女国产高潮福利片在线看| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 国产1区2区3区精品| 日韩欧美精品免费久久| 国产日韩欧美亚洲二区| 男女下面插进去视频免费观看| √禁漫天堂资源中文www| 黄网站色视频无遮挡免费观看| 国产欧美亚洲国产| av片东京热男人的天堂| 欧美乱码精品一区二区三区| 国产成人一区二区在线| www.精华液| 丁香六月天网| 99久久精品国产亚洲精品| 啦啦啦啦在线视频资源| 麻豆av在线久日| 日本欧美国产在线视频| 精品国产一区二区三区久久久樱花| 欧美国产精品一级二级三级| 国产日韩欧美视频二区| 午夜免费男女啪啪视频观看| 电影成人av| 黑人猛操日本美女一级片| 亚洲三区欧美一区| 久久av网站| 国产精品无大码| 91精品伊人久久大香线蕉| 亚洲第一av免费看| 最新的欧美精品一区二区| 久久久久久久久免费视频了| 成年av动漫网址| 男女之事视频高清在线观看 | 免费女性裸体啪啪无遮挡网站| 久久久精品94久久精品| 国产无遮挡羞羞视频在线观看| 国产一区二区激情短视频 | 亚洲国产日韩一区二区| 最新在线观看一区二区三区 | 国产免费又黄又爽又色| 日韩中文字幕视频在线看片| 国产精品麻豆人妻色哟哟久久| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产av蜜桃| 90打野战视频偷拍视频| 久久99精品国语久久久| 亚洲精品视频女| 99久久综合免费| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 久久久久久久精品精品| 亚洲av成人不卡在线观看播放网 | 高清不卡的av网站| 国产在线一区二区三区精| 美女大奶头黄色视频| 黄色怎么调成土黄色| av在线老鸭窝| 午夜日本视频在线| 亚洲精品av麻豆狂野| 一级爰片在线观看| 91aial.com中文字幕在线观看| 日韩欧美精品免费久久| av视频免费观看在线观看| 一区二区av电影网| a级毛片黄视频| 亚洲国产日韩一区二区| 中文精品一卡2卡3卡4更新| 国产成人欧美| 男的添女的下面高潮视频| 91精品国产国语对白视频| 成年动漫av网址| 欧美日韩一级在线毛片| 日韩中文字幕欧美一区二区 | 国产人伦9x9x在线观看| 亚洲成人国产一区在线观看 | 免费看av在线观看网站| av免费观看日本| 国产精品久久久久久久久免| 中文字幕人妻熟女乱码| 国产爽快片一区二区三区| 国产欧美日韩综合在线一区二区| 久久精品国产a三级三级三级| 亚洲国产av新网站| 国产亚洲精品第一综合不卡| av又黄又爽大尺度在线免费看| 欧美精品高潮呻吟av久久| 久久久久国产一级毛片高清牌| 新久久久久国产一级毛片| 精品一区二区三区四区五区乱码 | 日韩欧美一区视频在线观看| 成人影院久久| 久久精品国产亚洲av涩爱| 午夜免费鲁丝| 看十八女毛片水多多多| 人妻人人澡人人爽人人| 亚洲一码二码三码区别大吗| 亚洲欧美中文字幕日韩二区| 日韩一本色道免费dvd| 热99国产精品久久久久久7| 19禁男女啪啪无遮挡网站| 国产成人精品久久久久久| 如日韩欧美国产精品一区二区三区| 成人影院久久| 街头女战士在线观看网站| 天天添夜夜摸| 国产精品一区二区在线不卡| 伊人久久大香线蕉亚洲五| 亚洲精品自拍成人| 精品卡一卡二卡四卡免费| 宅男免费午夜| 一本—道久久a久久精品蜜桃钙片| 国产乱来视频区| 99国产综合亚洲精品| 91老司机精品| 国产精品香港三级国产av潘金莲 | 汤姆久久久久久久影院中文字幕| 美国免费a级毛片| 亚洲,欧美精品.| 久久久久视频综合| 中文字幕制服av| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区久久| 亚洲,欧美精品.| 亚洲国产精品一区三区| 九草在线视频观看| 日韩欧美精品免费久久| 亚洲精品aⅴ在线观看| 少妇人妻精品综合一区二区| 青草久久国产| 嫩草影视91久久| 桃花免费在线播放| 亚洲精品久久成人aⅴ小说| 国产片内射在线| 国产精品二区激情视频| 丝袜美足系列| 亚洲av日韩在线播放| 狂野欧美激情性bbbbbb| 91国产中文字幕| 999精品在线视频| bbb黄色大片| 国产野战对白在线观看| 夫妻午夜视频| 国产成人一区二区在线| 热re99久久国产66热| 你懂的网址亚洲精品在线观看| 女性被躁到高潮视频| 男女边摸边吃奶| 啦啦啦啦在线视频资源| 精品一区二区三区四区五区乱码 | 国产成人一区二区在线| av卡一久久| 美女脱内裤让男人舔精品视频| 亚洲四区av| 国产精品 国内视频| 国产精品一二三区在线看| 欧美日韩一级在线毛片| 亚洲国产毛片av蜜桃av| 日本猛色少妇xxxxx猛交久久| 国产毛片在线视频| 啦啦啦在线免费观看视频4| 美女脱内裤让男人舔精品视频| 国产老妇伦熟女老妇高清| 亚洲精品日韩在线中文字幕| 国产一级毛片在线| 精品一区二区三区四区五区乱码 | 亚洲,欧美,日韩| 国产成人a∨麻豆精品| 欧美日韩亚洲综合一区二区三区_| 在线 av 中文字幕| 国产精品无大码| 亚洲av成人不卡在线观看播放网 | 性少妇av在线| h视频一区二区三区| 国产日韩一区二区三区精品不卡| 日韩熟女老妇一区二区性免费视频| 日韩免费高清中文字幕av| 满18在线观看网站| 狂野欧美激情性bbbbbb| 亚洲av国产av综合av卡| 亚洲欧美精品综合一区二区三区| 精品国产乱码久久久久久男人| 亚洲欧美精品自产自拍| 久久影院123| 日韩 欧美 亚洲 中文字幕| 精品久久蜜臀av无| 亚洲精品国产av蜜桃| 国产 一区精品| 久久人人爽人人片av| 日韩人妻精品一区2区三区| 久久久久网色| av.在线天堂| 国产在视频线精品| 国产高清不卡午夜福利| 国产 精品1| 香蕉国产在线看| 国产乱人偷精品视频| 亚洲精品国产一区二区精华液| 亚洲欧美成人精品一区二区| 热re99久久国产66热| 久久99一区二区三区| 国产日韩欧美视频二区| 日本vs欧美在线观看视频| 一区福利在线观看| 亚洲色图综合在线观看| 51午夜福利影视在线观看| 亚洲三区欧美一区| 国产成人91sexporn| 日韩欧美一区视频在线观看| 久久青草综合色| 欧美日韩综合久久久久久| av女优亚洲男人天堂| 一区在线观看完整版| 丝袜喷水一区| 成人18禁高潮啪啪吃奶动态图| 亚洲成色77777| 欧美日韩精品网址| 观看av在线不卡| 丝袜喷水一区| 久久久久久久久免费视频了| 在线天堂最新版资源| 97精品久久久久久久久久精品| 国产极品粉嫩免费观看在线| 国产精品香港三级国产av潘金莲 | 日本欧美国产在线视频| 91aial.com中文字幕在线观看| 涩涩av久久男人的天堂| 精品一区在线观看国产| 亚洲成色77777| 下体分泌物呈黄色| 99热国产这里只有精品6| 精品国产一区二区三区四区第35| 观看美女的网站| 肉色欧美久久久久久久蜜桃| 韩国高清视频一区二区三区| 亚洲精品乱久久久久久| 欧美人与善性xxx| 一本大道久久a久久精品| 丝袜人妻中文字幕| videos熟女内射| 国产精品一区二区在线不卡| 欧美日韩综合久久久久久| 国产亚洲av高清不卡| 99热网站在线观看| 免费看不卡的av| 久久精品国产综合久久久| 国产精品国产三级专区第一集| 亚洲av在线观看美女高潮| 精品一区在线观看国产| 黑丝袜美女国产一区| 老司机亚洲免费影院| 国产精品久久久久久人妻精品电影 | 日本黄色日本黄色录像| 成人18禁高潮啪啪吃奶动态图| 精品人妻熟女毛片av久久网站| 最近中文字幕高清免费大全6| 看免费成人av毛片| 国产成人精品福利久久| 91aial.com中文字幕在线观看| 久热爱精品视频在线9| 人成视频在线观看免费观看| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品古装| 日韩中文字幕视频在线看片| 国产在线视频一区二区| 欧美日韩av久久| 久久久精品国产亚洲av高清涩受| 亚洲视频免费观看视频| 最近手机中文字幕大全| 黄片无遮挡物在线观看| 精品一区二区三卡| 91精品国产国语对白视频| 男女边摸边吃奶| 精品人妻一区二区三区麻豆| 91老司机精品| 永久免费av网站大全| 三上悠亚av全集在线观看| 美女扒开内裤让男人捅视频| 国产成人精品在线电影| 国产精品国产三级国产专区5o| 一本—道久久a久久精品蜜桃钙片| 亚洲,欧美,日韩| 在线 av 中文字幕| 亚洲av成人精品一二三区| 1024香蕉在线观看| 亚洲四区av| 日韩伦理黄色片| 久久天堂一区二区三区四区| 一本大道久久a久久精品| 日本午夜av视频| 秋霞伦理黄片| 天天躁日日躁夜夜躁夜夜| 日本av免费视频播放| 日韩精品免费视频一区二区三区| 热re99久久国产66热| 一区二区三区精品91| 美女午夜性视频免费| 热re99久久国产66热| 国产黄频视频在线观看| 亚洲国产看品久久| 91精品国产国语对白视频| 国产极品天堂在线| 一个人免费看片子| 高清不卡的av网站| 国产精品国产三级专区第一集| 午夜影院在线不卡| 国产成人a∨麻豆精品| av在线观看视频网站免费| 亚洲欧美色中文字幕在线| 国产免费视频播放在线视频| 亚洲精品自拍成人| 国产一区有黄有色的免费视频| 国产1区2区3区精品| 久久99精品国语久久久| 男女无遮挡免费网站观看| 亚洲精品日本国产第一区| 日韩精品有码人妻一区| 欧美激情 高清一区二区三区| 老司机亚洲免费影院| 国产麻豆69| 亚洲在久久综合| 少妇人妻精品综合一区二区| 精品久久蜜臀av无| 波野结衣二区三区在线|