• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of bridge pier on the stability of ice jam*

    2015-12-01 02:12:14WANGJun王軍SHIFayi施發(fā)義CHENPangpang陳胖胖WUPengSUIJueyiCollegeofCivilandHydraulicEngineeringHefeiUniversityofTechnologyHefei0009ChinamailwangjunhfutcomDongfengMotorCorporationTechnicalCentreWuhan40058ChinaEnvironmentalEngi
    關(guān)鍵詞:王軍

    WANG Jun (王軍), SHI Fa-yi (施發(fā)義), CHEN Pang-pang (陳胖胖), WU Peng, SUI Jueyi. College of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 0009, China,E-mail:wangjunhfut@6.com. Dongfeng Motor Corporation Technical Centre, Wuhan 40058, China. Environmental Engineering Program, University of Northern British Columbia, Prince George, BC, Canada

    Impact of bridge pier on the stability of ice jam*

    WANG Jun (王軍)1, SHI Fa-yi (施發(fā)義)2, CHEN Pang-pang (陳胖胖)1, WU Peng3, SUI Jueyi3
    1. College of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China,
    E-mail:wangjunhfut@126.com
    2. Dongfeng Motor Corporation Technical Centre, Wuhan 430058, China
    3. Environmental Engineering Program, University of Northern British Columbia, Prince George, BC, Canada

    (Received September 23, 2014, Revised November 12, 2014)

    River ice jam is one of the most important issues in rivers in cold regions during winter time. With the extra solid boundary due to the ice cover, the flow condition under ice-covered conditions is completely different from that of a open channel flow. The presence of bridge piers will further change the velocity field around the bridge piers. As a consequence, the formation and the accumulation of ice jams in the vicinity of the bridge pier will be affected. On the other side, the formation of an ice jam around the piers can cause extra turbulence to reduce the stability of a river bridge. The present study focuses on the stress analysis of the ice jam in the vicinity of a bridge pier. By developing a governing equation for describing the equilibrium state of an ice jam, the stability of the ice jam around bridge piers is analyzed and determined. As seen from the field data in literature, the stability estimations of an ice jam around bridge piers determined by the present method agree well with the field observations. Therefore, the proposed approach can be used for the prediction of the formation of ice jams around bridge piers.

    bridge pier, ice jam, stress analysis, equilibrium state, stability analysis

    Introduction0F

    River ice jam is one of the most important hydraulic issues in cold region during winter. As the ice jam adds an extra solid boundary to the flowing water,it significantly affects the hydrodynamic conditions through changes of both the flow velocity fields and the sediment transport process. Furthermore, the presence of a bridge pier can further change the flow conditions. For example, a pier can initiate the formation of an ice jam and at the same time increase the possibility of ice jam flooding[1-4]. Meanwhile, a bridge pier can significantly affect the flow velocity field and result in a local scour around the bridge pier or the abutment[5]. The formation of an ice jam in the vicinity of a bridge pier can also potentially harm the safety of the bridge infrastructure, such as by the local scour around the bridge pier or by the bridge pier. Both the forces and the shear stress acting on the bridge piers(caused by the flowing water and the ice jam) can also be increased. Consequently, comparing to the flow conditions without the bridge pier, the presence of a bridge pier changes the flow field and the forces acting on the ice jam in the vicinity of the bridge pier. Hence, the stability of the ice jam will be affected. This paper investigates the characteristics of the ice jam around a bridge pier. Stability analysis is conducted for the prediction of the formation of an ice jam.

    To study the ice force on a structure, either experimental approaches[6,7], or stress analyses or numerical simulations[3]were used. Recently, the local scour around bridge piers under ice-covered conditions was studied[8]. The experimental approach is based on flume experiments to study the ice jam around bridge piers. Urroz et al.[9]conducted one small scale flume experiments to investigate the ice cube conveyance around bridge piers. It is shown that the location of the pier can affect the ice cube conveyance in sinuous channels significantly. They suggested that the deleterious effects on the ice conveyance in sinuous rivers with bridges crossing can be reduced by installing bri-dges at the apex of channel bends. In the past decades,numerical simulations for the river ice process were also significantly improved due to the advances in computer technologies. Xiong and Xu[10]presented one numerical simulation for the interaction process between the river ice and the bridge pier. They indicated that the river ice increases the lateral constraint stiffness of the bridge piers. They suggested that the proper contact stress value should be around 0.88 MPa,much less than 2.88 MPa, as indicated in the CAS guideline[11]. The stress analysis is another approach used to study the ice jam around bridge piers. Yu et al.[12]analyzed the floating ice cubes on the Huma River based on field observations. The stress acting on the bridge pier was also calculated. According to Beltaos et al.[4], if the flow drag force together with the gravity force is larger than the resistant force provided by the pier, the chance for the formation of an ice jam around pier is small. In the present paper, the interactions between the bridge piers and the ice jam around the piers are studied experimentally, by numerical simulations and stress analyses. In the interactions between the ice jam and the bridge pier, the ice jam is treated as the accumulation of a number of individual ice cubes (or ice jam elements) under the ice cover. For the stress analyses under the equilibrium state, a governing equation for describing the stability of the ice jam is developed. The developed equation is then applied by using the field data to assess the stability of the ice jam around the bridge pier. Calculated results agree well with the field observations.

    1. Internal stress of ice jam and model

    A major consequence of the ice-cover formation in many rivers is the associated jamming, particularly,during the periods of fall freeze-up or spring breakup. In fact, the ice jamming is one of the most conspicuous and momentous ice-related phenomena. Ice jams are formed when the ice transported by the current is arrested by obstacles such as the stationary ice cover, or congested, say, due to a local reduction of the ice-transport capacity[13-15]. The ice jam is normally formed by accumulation of vast amount of frazil particles and ice blocks. Due to the large thickness and the high hydraulic resistance of the aggregate ice relative to the sheet ice, the ice jams tend to disturb the riverbed, can lead to a high water stage and many other problems[16]. The formation and the development of the ice jam are related with the complicated hydraulic conditions, the thermal regime and the boundary conditions in natural rivers. Also, an ice jam evolves during its presence in the river. Therefore, it is extremely difficult to precisely describe the ice jam process by using mathematical equations.

    The equilibrium state of an ice jam in the river is the result of the joint actions of many forces. Since an ice jam consists of vast amount of individual ice jam elements, an individual ice jam element is selected for the stress analysis. Forces acting on the ice jam element include the drag force, the gravity force and the buoyant force as well as the resistant force from the pier.

    Fig.1 Stress analysis of a unit element of ice jam

    1.1 Stress analysis of the ice jam section from the ice jam toe to the front surface of pier

    The external stress of the ice jam from the ice jam toe to the front surface of the pier is not affected by the bridge pier, but is affected by the drag force on the ice jam bottom surface caused by the flowing water (τi), the gravity force component in the flow direction (siρgtSw), the supporting force from the river bank and pier (k0λc)as well as the cohesive force (τc). Following the analysis procedure of Kenedy (1958), the stress analysis of an ice jam element is carried out as shown in Fig.1.

    Hence, the force analysis for an ice jam element in equilibrium leads to the following equation:

    where siis the specific gravity of ice,tis the thickness of the ice jam,ρis the mass density of water, Swis the hydraulic slope,k0is the transverse thrust coefficient,g is the gravity acceleration,τiis the drag force on the ice jam bottom surface,B is the ice jam width, which is equal to the river width in this case,F(xiàn) is the internal force acting on a unit length of the ice jam,λcis the internal friction coefficient, τcis the internal cohesive force of the ice jam.

    Here, it is assumed that the hydraulic pressure force at the ice jam toe is f1. Equation (1) is integrated to obtain,which is also the modified Kennedy Equation from Pariset et al. (1966).

    Fig.2 Stress analysis of a unit element of ice jam affected by pier

    1.2 Stress analysis of ice jam section from the front surface of pier to the rear surface of pier

    Because the presence of the bridge pier, the stresses acting on the ice jam section are changed significantly from the front surface of the pier to the rear surface of the pier in the flow direction. Comparing to the flow condition without the pier, the forces acting on the ice jam in front of the pier include the drag force on the ice jam bottom caused by the flowing water,the gravity force component in the flow direction, the supporting force caused by the river bank and the pier,the friction forces between the pier and the ice jam as well as the cohesive force, as shown in Fig.2.

    Therefore, according to the analysis of the ice jam in equilibrium, the forces acting on an ice jam element can be expressed as

    wheren is the number of bridge piers,λpis the internal friction coefficient between the ice jam and the bridge pier[17],τpis the cohesive force between the ice jam and the bridge pier.

    According to the American Association of State Highway and Transportation Officials[18], the forces acting on the bridge pier by the ice can be calculated as follows:

    α is the angle between the pier surface and the ice cover, which should be larger than 15o,pis the effective pressure,wis the interaction area on the front pier surface with ice.

    Regarding the pressure on the bridge piers caused by the ice jam, AASHTO (2004) suggests that the range should be between 0.96×10-3MPa and 9.6× 10-3MPa, while the Canadian Highway Bridge Design Code (CSA, 2004) suggests a range from 5× 10-3MPa to 10-2MPa.

    If the location of the front surface of the pier is x=x0, Eq.(2) can be used to determine the force per unit width acting on the front face of the bridge pier

    Meanwhile, Eq.(3) is integrated, with the initial conditions of x=x0,F(xiàn)=F2, then we have

    It is clear that 0≤x-x0≤l, in which,lis the length (or thickness) of the pier in the flow direction(in this case,l is equal to the diameter of the pier). From the expression ofF , it can be found that, with the presence of the bridge pier, the supporting force due to the bridge pier is increased while the internal force of the ice jam is decreased. If x-x0=l, the internal forces of the ice jam at the rear surface of the bridge pier can be obtained as

    1.3 The stress analysis of ice jam section from the rear surface of pier to the tail section of ice jam

    The stress analysis of the ice jam section from the rear surface of the bridge pier to the tail section of the ice jam is nearly similar to the analysis for the ice jam section from the ice jam toe to the front surface of the pier (as mentioned in Section 2.1). However, as the initial condition, the supporting force on the ice jam provided by the pier will be changed. As shown in Fig.1, from the forces acting on an ice jam element,we can obtain

    Integrating the above equation with the initial conditions of x=x0+l,F(xiàn)=F3, the following equation can be obtained

    As pointed out by Beltaos, comparing to the internal friction forces on the ice jam, the cohesive forces can be neglected. Therefore,τc=0,τp=0. By analyzing Eqs.(2), (7) and (10), the following conclusions can be drawn.

    (1) If the ice jam is in an equilibrium state before reaching the bridge pier, which also means thatx→∞in Eq.(2),F(xiàn)can reach its extreme value and can be expressed as

    The internal force of the ice jamFas shown by Eq.(11), which was also obtained by Pariset et al.(1966), is for an equilibrium ice jam before reaching the bridge pier (namely, when the bridge pier has no impacts on the ice jam). The force acting on a unit width of the front surface of the bridge pier can be expressed as

    (2) The unit internal force at the rear surface of the bridge pier can be described as:

    Assuming that

    Eq.(13) is turned into

    By substituting Eq.(14) into Eq.(12), we have

    Pariset et al. (1966) treated the maximum strength of the ice jam as the passive pressure of movable particles, which means that:

    It is obvious that if the external forces acting on the ice jam are smaller than the internal forces, the ice jam could stay in a stable condition. Hence,

    where the equilibrium in the extreme state can be reached if F=Kγt2. The ice jam reaches the maxipemum strength under this condition.Kpis the passive earth pressure coefficient,γeis the specific gravity of ice cubes, which is equal to

    Table 1 Parameters used in the present study

    Table 2 Ice jam and hydraulic conditions at the Utsutsu River bridge and Shokotsu River bridge in Japan

    At the location of the rear surface of the bridge pier, the equilibrium state of the ice jam can be reached under the following condition.

    Equation (18) is the governing equation for describing whether or not an ice jam around bridge piers is stable.

    2. Validation of governing equation and analysis

    Due to the lack of field observations, the field data from Beltaos et al.[4]and Shen et al.[19]are used for the validation of the governing equation for determining if the ice jam is stable. In the present study, the values of the following parameters are used, as shown in Table 1.pJis the ice cube pore rate,f0is the water underside friction coefficient,fiis the friction coefficient of the ice cubes.

    2.1 Case 1: Bridge over the Saint John River between Clair/New Brunswick, and Fort Kent/Maine

    Based on the field observations, for the bridge over the Saint John River between Clair, New Brunswick/Canada, and Fort Kent, Maine/USA, Beltaos et al.[4]suggested that τi+siρgtSw=15 Pa, B≈190 m,t =0.5 m,n=2. According to AASHTO[18], the calculated force is Fp=11040 N. Equation (18) gives:

    Sincef3>Kpγet2, it is indicated that the ice jam cannot be formed. According to Beltaos et al.[2], based on the long-term observations from 1933 to 2004, there had never been ice jams observed at this location because of the bridge piers. Thus, the governing Eq.(18) for prediction of the ice jam formation around bridge piers at this location is valid.

    2.2 Case 2: The Utsutsu River Bridge and Shokotsu River Bridge in Japan

    Shen et al.[19]collected a great number of data for ice jams and flow conditions at the Shokotsu River Bridge and the Utsutsu River Bridge in Japan, as shown in Table 2. Using Eq.(18), the stability analysis for ice jams at these 2 locations is conducted. As shown in Figure 3, the point of intersection of the line f and the curveKγt2in Figure 3 represents the3peequilibrium state of the ice jam under the critical condition. Under the condition of f>Kγt2, the ice jam3peis in an unstable state. It can also be noted from Figure 3 that, with the increase of the ice cube thickness, the value of f3decreases correspondingly, which can be attributed to the increase of the supporting force provided by the bridge piers. Meanwhile, the extreme ice cube forces increase evidently with the increase of the ice cube thickness. When the value exceeds the value of the intersection point of Kγt2and f), the valuepe3of f keeps smaller thanKγt2, in other words, the3peice cube stays in a stable state.

    From Fig.3 and Table 2, according to the governing equation for assessing the stability of an ice jam, one can see that f>Kγt2under all flow conditions.3peIt means that the ice jam cannot be formed in the vicinity of both the Utsutsu River Bridge and the Shokotsu River Bridge. Additionally, the ice coverage around the Utsutsu River Bridge is only 10%. While the ice coverage in the vicinity of the Shokotsu River Bridge is reduced from 100% (1995-02-06) to 10%(1995-03-16). It suggests that the ice cover around these two bridges are all under an unstable state. Thepredicted results show a good agreement with the field observations at these 2 bridge locations.

    Fig.3 Stability analysis of ice jams at Utsutsu River and Shokotsu River bridges

    3. Conlcusion

    The presence of bridge piers in rivers complicate the flow field as well as the forces acting on the river ice, and the possibility of the formation of ice jams in the vicinity of bridge piers is increased. In the present study, the stress analyses of the ice jam section in the vicinity of the bridge pier (both upstream section and downstream section) are carried out. The governing equation is developed to assess the stability of an ice jam around bridge piers. Using field data collected at the Utsutsu River Bridge and the Shokotsu River Bridge, the governing equation for assessing the stability of an ice jam in the vicinity of bridge piers is validated. One can see that the predictions agree well with the field data.

    [1] BELTAOS S. Progress in the study and management of river ice jams[J]. Cold Regions Science and Technology, 2008, 51(1): 2-19.

    [2] BELTAOS S. River ice breakup processes: Recent advances and future directions[J]. Canadian Journal of Civil Engineering, 2007, 34(6): 703-716.

    [3] BELTAOS S., MILLER L. and BURRELL B. C. et al. Hydraulic effects of ice breakup on bridges[J]. Canadian Journal of Civil Engineering, 2007, 34(4):539-548.

    [4] BELTAOS S., MILLER L. and BURRELL B. C. et al.Formation of breakup ice jams at bridges[J]. Journal of Hydraulic Engineering, ASCE, 2006, 132(11): 1229-1236.

    [5] SUI J., AFZALIMEHR H. and SAMANI A. K. et al. Clear-water scour around semi-elliptical abutments with armored beds[J]. International Journal of Sediment Research, 2010, 25(3): 233-245.

    [6] BROWN T. G. Analysis of ice event loads derived from structural response[J]. Cold Regions Science and Technology, 2007, 47(3): 224-232.

    [7] SODHI D. S., HAEHNEL R. B. Crushing ice forces on structures[J]. Journal of Cold Regions Engineering,2003, 17(4):153-170.

    [8] WU P., HIRSHFIELD Faye and SUI J. Impacts of ice cover on local scour around semi-circular bridge abutment[J]. Journal of Hydrodynamics, 2014, 26(1): 10-18.

    [9] URROZ G. E.,SCHAEFER J. and ETTEMA R. Bridge-pier location and ice conveyance in curved channels[J]. Journal of Cold Regions Engineering, 1994,8(2): 66-72.

    [10] XIONG F., XU G. Numerical investigation of river icebridge pier interaction[C]. Proceedings of the Structures Congress. Austin Texas, USA, 2009, 48-57.

    [11] CANADIAN STANDARDS ASSOCIATION. Canadian highway bridge design code[S]. Toronto, Ontario,Canada: Canadian Standards Association, 2006.

    [12] YU T., LEI J. and LI C. et al. Compressive strength of floating ice and calculation of ice force on bridge piers during ice collision[C]. Cold Regions Engineering 2009: Cold Regions Impacts on Research, Design,and Construction. 2009, 609-617.

    [13] MORSE B., HICKS F. Advances in river ice hydrology 1999-2003[J]. Hydrological Processes, 2005, 19(1):247-264.

    [14] BELTAOS S. Advances in river ice hydrology[J]. Hydrological Processes, 2000, 14(9): 1613-1625.

    [15] SUI J., KARNEY B. W. and SUN Z. et al. Field investigation of frazil jam evolution: A case study[J]. Journal of Hydraulic Engineering, ASCE, 2002, 128(8):781-787.

    [16] SUI J., WANG D. and KARNEY B. W. Suspended sediment concentration and deformation of riverbed in a frazil jammed reach[J]. Canadian Journal of Civil Engineering, 2000, 27(6): 1120-1129.

    [17] BARKER A., SAYED M. and TIMCO G. Numerical simulation of ice interaction with a wide cylindrical pier[C]. Cold Regions Engineering Cold Regions Impacts on Transportation and Infrastructure, Proceedings of the Eleventh International Conference. Anchorage, AK, USA, 2014, 617-628.

    [18] AMERICAN ASSOCIATION OF STATE HIGHWAY,TRANSPORTATION OFFICIALS. Standard specifications for highway bridges[S]. AASHTO, 2004.

    [19] SHEN H. T., LIU L. Shokotsu River ice jam formation[J]. Cold Regions Science and Technology, 2003,37(3): 35-49.

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51379054, 50979021).

    Biography: WANG Jun (1962-), Male, Ph. D., Professor

    SUI Jueyi, E-mail: jueyi.sui@unbc.ca

    猜你喜歡
    王軍
    HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELD
    石榴樹想法妙
    我要好好來欣賞
    好孩子畫報(2020年5期)2020-06-27 14:08:05
    黃陵祭
    不下戰(zhàn)場的士兵——王軍
    活力(2019年19期)2020-01-06 07:34:36
    蜜蜂和油菜花
    可愛的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    Revisit submergence of ice blocks in front of ice cover-an experimental study *
    Simulations of ice jam thickness distribution in the transverse direction*
    av国产免费在线观看| 欧美又色又爽又黄视频| 激情 狠狠 欧美| 看免费成人av毛片| 国产av一区在线观看免费| 午夜免费激情av| 欧美性猛交黑人性爽| 午夜福利在线在线| 久久久久国产网址| 在线播放国产精品三级| 最近的中文字幕免费完整| 深爱激情五月婷婷| 欧美bdsm另类| 欧美最新免费一区二区三区| 色5月婷婷丁香| 成人毛片a级毛片在线播放| 毛片一级片免费看久久久久| 女人被狂操c到高潮| 成人毛片a级毛片在线播放| a级毛色黄片| 男女边吃奶边做爰视频| 亚洲美女视频黄频| 2021天堂中文幕一二区在线观| 日本黄色视频三级网站网址| 国产免费男女视频| 国产精品野战在线观看| 精品人妻一区二区三区麻豆| 国产单亲对白刺激| 国产精品嫩草影院av在线观看| 最近视频中文字幕2019在线8| 久久婷婷人人爽人人干人人爱| 神马国产精品三级电影在线观看| 熟女电影av网| www.av在线官网国产| 国产又色又爽无遮挡免| 老师上课跳d突然被开到最大视频| 特大巨黑吊av在线直播| 亚洲av免费高清在线观看| 99九九线精品视频在线观看视频| 美女黄网站色视频| www日本黄色视频网| 在线观看av片永久免费下载| 日本黄色视频三级网站网址| 网址你懂的国产日韩在线| 赤兔流量卡办理| 国产一区有黄有色的免费视频 | 日本五十路高清| 日本免费在线观看一区| 搞女人的毛片| 中文字幕av在线有码专区| 欧美高清成人免费视频www| 国产 一区 欧美 日韩| 少妇人妻精品综合一区二区| 亚洲欧美清纯卡通| 99久国产av精品国产电影| 国产亚洲午夜精品一区二区久久 | 一区二区三区乱码不卡18| 午夜亚洲福利在线播放| 国产精品精品国产色婷婷| 久久久久久久午夜电影| 五月玫瑰六月丁香| 久久99热这里只有精品18| 欧美日本亚洲视频在线播放| 欧美日韩一区二区视频在线观看视频在线 | 免费观看性生交大片5| 男女国产视频网站| 一边亲一边摸免费视频| 久久亚洲精品不卡| 欧美bdsm另类| 久久欧美精品欧美久久欧美| 大话2 男鬼变身卡| 国产午夜福利久久久久久| 女人久久www免费人成看片 | 亚洲av免费在线观看| 亚洲av成人精品一二三区| 村上凉子中文字幕在线| 22中文网久久字幕| 在线天堂最新版资源| 国产黄片美女视频| 免费看光身美女| 看免费成人av毛片| 欧美人与善性xxx| 色5月婷婷丁香| 啦啦啦韩国在线观看视频| 久久这里有精品视频免费| 中文字幕av在线有码专区| 国产高清三级在线| 天堂影院成人在线观看| 国产在线一区二区三区精 | 国产亚洲精品av在线| 国产探花极品一区二区| 欧美+日韩+精品| 日韩国内少妇激情av| 天天一区二区日本电影三级| 女人久久www免费人成看片 | 欧美zozozo另类| 六月丁香七月| 丝袜美腿在线中文| 嫩草影院入口| 欧美zozozo另类| 国产精品久久久久久av不卡| 免费观看人在逋| av视频在线观看入口| 最近中文字幕高清免费大全6| 国产精品女同一区二区软件| 一个人看视频在线观看www免费| 天堂影院成人在线观看| 尤物成人国产欧美一区二区三区| 成人午夜精彩视频在线观看| av在线亚洲专区| 人体艺术视频欧美日本| 亚洲av日韩在线播放| 免费看a级黄色片| 爱豆传媒免费全集在线观看| 男女国产视频网站| 欧美zozozo另类| 午夜精品在线福利| 久久久久性生活片| 亚洲图色成人| 免费一级毛片在线播放高清视频| 搞女人的毛片| 国产精品一区二区性色av| 黄片无遮挡物在线观看| 久久热精品热| 国内少妇人妻偷人精品xxx网站| av在线观看视频网站免费| 日韩制服骚丝袜av| 国产精品不卡视频一区二区| 99久久成人亚洲精品观看| 国产精品野战在线观看| www.av在线官网国产| 欧美区成人在线视频| av.在线天堂| 精华霜和精华液先用哪个| 99热网站在线观看| АⅤ资源中文在线天堂| 99国产精品一区二区蜜桃av| 亚洲四区av| 久热久热在线精品观看| 日韩视频在线欧美| 亚洲最大成人中文| 亚洲第一区二区三区不卡| 少妇人妻一区二区三区视频| 亚洲国产欧洲综合997久久,| 日日干狠狠操夜夜爽| 亚洲av免费高清在线观看| 人妻系列 视频| 99久久人妻综合| 亚洲人成网站在线观看播放| 久久久久国产网址| 欧美一区二区精品小视频在线| 亚洲怡红院男人天堂| 国产黄色小视频在线观看| 一本久久精品| 免费看日本二区| 成人午夜精彩视频在线观看| 色网站视频免费| 汤姆久久久久久久影院中文字幕 | 能在线免费观看的黄片| 亚洲国产成人一精品久久久| 亚洲丝袜综合中文字幕| 成年版毛片免费区| 日韩av不卡免费在线播放| 色噜噜av男人的天堂激情| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 嫩草影院入口| 国产视频内射| 国产探花在线观看一区二区| 亚洲经典国产精华液单| av在线观看视频网站免费| 高清日韩中文字幕在线| 一个人免费在线观看电影| 人妻少妇偷人精品九色| 精品久久久久久久久久久久久| 久久久久久久久久成人| 久久热精品热| 高清日韩中文字幕在线| 丝袜美腿在线中文| 成人av在线播放网站| av在线老鸭窝| 国产精品.久久久| 2021天堂中文幕一二区在线观| 亚洲内射少妇av| 美女cb高潮喷水在线观看| 久久久久久久久久久丰满| 久久精品国产亚洲av涩爱| 纵有疾风起免费观看全集完整版 | 小说图片视频综合网站| 国产三级在线视频| 国产av不卡久久| 狠狠狠狠99中文字幕| 欧美丝袜亚洲另类| 黄色欧美视频在线观看| 三级男女做爰猛烈吃奶摸视频| 久久国产乱子免费精品| 97在线视频观看| 国产人妻一区二区三区在| 久久久精品大字幕| 国产熟女欧美一区二区| 日本色播在线视频| 亚洲精品国产成人久久av| 熟女人妻精品中文字幕| 国产免费又黄又爽又色| 欧美日韩一区二区视频在线观看视频在线 | 中文欧美无线码| 精品久久久久久久久av| 午夜老司机福利剧场| 99久国产av精品| 国产伦理片在线播放av一区| 国产乱人视频| 长腿黑丝高跟| 成人漫画全彩无遮挡| 久久久色成人| 国产精品永久免费网站| 亚洲欧美日韩东京热| 欧美又色又爽又黄视频| 九九热线精品视视频播放| 麻豆成人午夜福利视频| 观看免费一级毛片| 成人亚洲欧美一区二区av| 最新中文字幕久久久久| 综合色丁香网| 国产单亲对白刺激| 国产精品人妻久久久久久| 国内精品美女久久久久久| 97超视频在线观看视频| 国产成人a∨麻豆精品| 欧美成人精品欧美一级黄| 国产午夜精品论理片| 只有这里有精品99| 国产精品三级大全| 亚洲综合精品二区| 国产成人a∨麻豆精品| 18禁在线无遮挡免费观看视频| 欧美激情在线99| 麻豆av噜噜一区二区三区| 日韩在线高清观看一区二区三区| 国产乱人偷精品视频| 中国美白少妇内射xxxbb| 天天躁夜夜躁狠狠久久av| 色哟哟·www| 午夜激情福利司机影院| 国产在视频线在精品| 夫妻性生交免费视频一级片| 亚洲精品成人久久久久久| 一个人免费在线观看电影| 建设人人有责人人尽责人人享有的 | 午夜免费激情av| 国产在线一区二区三区精 | 高清日韩中文字幕在线| 免费搜索国产男女视频| 高清毛片免费看| .国产精品久久| 亚洲怡红院男人天堂| 2021少妇久久久久久久久久久| 99久久精品一区二区三区| 久久99蜜桃精品久久| 一个人免费在线观看电影| 啦啦啦韩国在线观看视频| 久久99热这里只有精品18| 麻豆av噜噜一区二区三区| 国产女主播在线喷水免费视频网站 | 日韩高清综合在线| 亚洲国产精品合色在线| 亚洲av一区综合| 日韩一区二区视频免费看| 久久久成人免费电影| 建设人人有责人人尽责人人享有的 | 麻豆国产97在线/欧美| 亚洲精品一区蜜桃| 美女大奶头视频| 亚洲欧美一区二区三区国产| 午夜福利网站1000一区二区三区| 大香蕉97超碰在线| 你懂的网址亚洲精品在线观看 | 日本免费在线观看一区| 性插视频无遮挡在线免费观看| 亚洲精华国产精华液的使用体验| 久久久精品94久久精品| 日韩一区二区视频免费看| 色吧在线观看| 精品人妻一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 成人二区视频| 午夜福利在线在线| 99热6这里只有精品| 大话2 男鬼变身卡| 日本欧美国产在线视频| 天堂中文最新版在线下载 | 色吧在线观看| 亚洲天堂国产精品一区在线| 久久99热这里只有精品18| 免费看日本二区| 久久欧美精品欧美久久欧美| 免费黄色在线免费观看| 国产爱豆传媒在线观看| 亚洲欧美中文字幕日韩二区| 国产高潮美女av| 日本一二三区视频观看| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 一个人看的www免费观看视频| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 最近视频中文字幕2019在线8| 欧美97在线视频| 高清日韩中文字幕在线| 国产综合懂色| 在线免费观看的www视频| 国产久久久一区二区三区| 美女大奶头视频| 国产视频内射| 村上凉子中文字幕在线| 国产成人aa在线观看| 精品熟女少妇av免费看| 亚洲精品国产av成人精品| 国产黄片美女视频| 18禁在线无遮挡免费观看视频| 国内精品一区二区在线观看| 一区二区三区四区激情视频| 国产精品一区二区三区四区免费观看| 亚洲国产精品成人综合色| 99久久成人亚洲精品观看| 在线观看一区二区三区| 亚洲美女搞黄在线观看| 九九久久精品国产亚洲av麻豆| 18禁动态无遮挡网站| 日韩欧美精品v在线| 久久久久性生活片| av播播在线观看一区| 久久久久性生活片| 亚洲欧美精品专区久久| 建设人人有责人人尽责人人享有的 | 欧美性猛交黑人性爽| 国产探花在线观看一区二区| 日本猛色少妇xxxxx猛交久久| 亚洲精品一区蜜桃| 高清日韩中文字幕在线| 国产一区有黄有色的免费视频 | 嫩草影院精品99| 国产在线男女| 中国国产av一级| 小蜜桃在线观看免费完整版高清| 国产高清国产精品国产三级 | 99国产精品一区二区蜜桃av| 国产毛片a区久久久久| 嫩草影院新地址| 国产伦理片在线播放av一区| 少妇裸体淫交视频免费看高清| 亚洲欧美成人精品一区二区| 一级毛片久久久久久久久女| 高清视频免费观看一区二区 | 桃色一区二区三区在线观看| 只有这里有精品99| 国产精品伦人一区二区| 亚洲精品日韩在线中文字幕| 免费在线观看成人毛片| 婷婷色麻豆天堂久久 | 精华霜和精华液先用哪个| 超碰97精品在线观看| 国产午夜精品久久久久久一区二区三区| 免费黄色在线免费观看| 国产极品天堂在线| 久久精品久久久久久久性| 久久99精品国语久久久| 男人狂女人下面高潮的视频| 欧美bdsm另类| 99久久成人亚洲精品观看| 菩萨蛮人人尽说江南好唐韦庄 | av免费观看日本| 极品教师在线视频| 色噜噜av男人的天堂激情| 欧美另类亚洲清纯唯美| 久久久久久伊人网av| 天堂影院成人在线观看| 亚洲国产欧洲综合997久久,| 免费一级毛片在线播放高清视频| 嫩草影院精品99| 日日摸夜夜添夜夜添av毛片| 日本免费a在线| 国产精品乱码一区二三区的特点| 男女视频在线观看网站免费| 一级黄色大片毛片| 午夜免费激情av| 亚洲第一区二区三区不卡| 99久久精品国产国产毛片| 三级经典国产精品| 一个人免费在线观看电影| 精品少妇黑人巨大在线播放 | 大话2 男鬼变身卡| 亚洲人与动物交配视频| 国产午夜精品久久久久久一区二区三区| 超碰97精品在线观看| 精华霜和精华液先用哪个| 午夜福利成人在线免费观看| 免费av毛片视频| 老师上课跳d突然被开到最大视频| 成人漫画全彩无遮挡| 国产亚洲精品av在线| 国产精品女同一区二区软件| 精品酒店卫生间| 久久午夜福利片| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 午夜福利高清视频| 美女高潮的动态| www日本黄色视频网| 蜜桃久久精品国产亚洲av| 久久久久久久久大av| 国产色爽女视频免费观看| 又粗又硬又长又爽又黄的视频| 可以在线观看毛片的网站| 成人特级av手机在线观看| 中国美白少妇内射xxxbb| 久久99热这里只频精品6学生 | 欧美性感艳星| 欧美激情久久久久久爽电影| 亚洲国产最新在线播放| 国产免费一级a男人的天堂| 乱系列少妇在线播放| 午夜福利在线在线| 成人亚洲精品av一区二区| www.色视频.com| 老女人水多毛片| 色吧在线观看| 成人午夜精彩视频在线观看| 国产黄色小视频在线观看| 女人久久www免费人成看片 | 人人妻人人澡欧美一区二区| 老司机福利观看| 国产成人91sexporn| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 国产成人一区二区在线| 亚洲精品影视一区二区三区av| 国产熟女欧美一区二区| 日韩 亚洲 欧美在线| 亚洲乱码一区二区免费版| 久久人人爽人人片av| 亚洲成人中文字幕在线播放| 久久精品国产鲁丝片午夜精品| 国产一区亚洲一区在线观看| 国产又色又爽无遮挡免| 岛国在线免费视频观看| 中文亚洲av片在线观看爽| 99在线视频只有这里精品首页| 亚洲精品日韩在线中文字幕| 国产91av在线免费观看| 精品午夜福利在线看| 午夜视频国产福利| 精品免费久久久久久久清纯| 精品不卡国产一区二区三区| 亚洲成人久久爱视频| 美女脱内裤让男人舔精品视频| 女人十人毛片免费观看3o分钟| 老司机影院毛片| 亚洲欧美日韩高清专用| 久久99蜜桃精品久久| 成年av动漫网址| 亚州av有码| 欧美变态另类bdsm刘玥| 久久6这里有精品| 在线a可以看的网站| 久久久国产成人免费| 久久99精品国语久久久| 直男gayav资源| 国产成人精品婷婷| 麻豆成人av视频| 欧美成人a在线观看| 亚洲av日韩在线播放| 青春草国产在线视频| 热99在线观看视频| 久久久精品大字幕| 我要搜黄色片| 一个人看的www免费观看视频| 久久久色成人| 国产精品无大码| 国产乱人偷精品视频| 精品久久国产蜜桃| 人妻制服诱惑在线中文字幕| 国内精品宾馆在线| 中文欧美无线码| 久久久久久久久久久丰满| 变态另类丝袜制服| 久久鲁丝午夜福利片| 免费观看的影片在线观看| 日日啪夜夜撸| 久久精品国产鲁丝片午夜精品| 国产黄a三级三级三级人| 亚洲无线观看免费| 久久午夜福利片| 国内少妇人妻偷人精品xxx网站| 一级av片app| 亚洲一级一片aⅴ在线观看| 欧美变态另类bdsm刘玥| 91精品伊人久久大香线蕉| 午夜福利网站1000一区二区三区| 一级av片app| 在线免费观看的www视频| 免费av观看视频| 六月丁香七月| 久久久亚洲精品成人影院| 午夜福利成人在线免费观看| 又粗又硬又长又爽又黄的视频| 欧美+日韩+精品| 最近手机中文字幕大全| av播播在线观看一区| 老师上课跳d突然被开到最大视频| 九九热线精品视视频播放| 白带黄色成豆腐渣| 久久久国产成人免费| 免费观看a级毛片全部| 亚洲人成网站高清观看| 偷拍熟女少妇极品色| 精品国产露脸久久av麻豆 | 亚洲av不卡在线观看| 亚洲国产欧洲综合997久久,| 伊人久久精品亚洲午夜| 国产老妇伦熟女老妇高清| 91av网一区二区| 天堂网av新在线| 日本免费a在线| 国产午夜福利久久久久久| 干丝袜人妻中文字幕| 日韩欧美三级三区| 中文资源天堂在线| 丰满少妇做爰视频| 国产亚洲5aaaaa淫片| 中文字幕人妻熟人妻熟丝袜美| 中文字幕熟女人妻在线| 国产高清不卡午夜福利| 国产视频内射| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕精品亚洲无线码一区| 黄片wwwwww| 国产精品电影一区二区三区| 亚洲国产精品成人综合色| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 变态另类丝袜制服| 三级经典国产精品| 午夜激情福利司机影院| 亚洲av.av天堂| 久久久久免费精品人妻一区二区| 国产精华一区二区三区| 美女大奶头视频| 中文字幕久久专区| 亚洲aⅴ乱码一区二区在线播放| 午夜福利高清视频| av线在线观看网站| 中国国产av一级| av.在线天堂| 婷婷色av中文字幕| 国产精品一区二区三区四区久久| 人妻制服诱惑在线中文字幕| 能在线免费观看的黄片| 精品一区二区免费观看| kizo精华| 午夜福利视频1000在线观看| 欧美日韩在线观看h| 欧美97在线视频| 国产免费视频播放在线视频 | 一级二级三级毛片免费看| 欧美三级亚洲精品| 国产精品蜜桃在线观看| 少妇的逼好多水| 亚洲经典国产精华液单| 麻豆精品久久久久久蜜桃| 亚洲一级一片aⅴ在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品成人久久小说| 亚洲欧洲国产日韩| kizo精华| 亚洲av免费高清在线观看| 精品久久久久久久久亚洲| 日韩一区二区视频免费看| 一区二区三区免费毛片| 国产午夜精品久久久久久一区二区三区| 午夜精品一区二区三区免费看| 国产高清有码在线观看视频| 日韩一本色道免费dvd| av黄色大香蕉| 校园人妻丝袜中文字幕| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久久丰满| 我要搜黄色片| 欧美一区二区精品小视频在线| 久久精品国产鲁丝片午夜精品| 我要搜黄色片| 午夜福利高清视频| 中文在线观看免费www的网站| 一夜夜www| 久久久亚洲精品成人影院| 老师上课跳d突然被开到最大视频| 嫩草影院新地址| 久久精品人妻少妇| 国产大屁股一区二区在线视频| 最近中文字幕高清免费大全6| 中文字幕av成人在线电影| 日韩欧美国产在线观看| 校园人妻丝袜中文字幕| 又粗又爽又猛毛片免费看| av在线老鸭窝| 久久韩国三级中文字幕| 国产亚洲5aaaaa淫片| 青春草视频在线免费观看| 成人无遮挡网站| 少妇人妻一区二区三区视频| 天堂av国产一区二区熟女人妻| 国产在视频线精品| www日本黄色视频网| 免费av观看视频| 欧美精品国产亚洲| 亚洲色图av天堂| 亚洲一区高清亚洲精品|