• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Navier slip on unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions*

    2015-12-01 02:12:20RUNDORALazarusMAKINDEOluwoleDanielDepartmentofMathematicsandAppliedMathematicsUniversityofLimpopoTurfloopCampusSouthAfricamaillazarusrundoraulaczaFacultyofMilitaryScienceStellenboschUniversitySaldanhaSouthAfrica

    RUNDORA Lazarus, MAKINDE Oluwole Daniel. Department of Mathematics and Applied Mathematics, University of Limpopo, Turfloop Campus, South Africa,E-mail: lazarus.rundora@ul.ac.za. Faculty of Military Science, Stellenbosch University, Saldanha, South Africa

    Effects of Navier slip on unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions*

    RUNDORA Lazarus1, MAKINDE Oluwole Daniel2
    1. Department of Mathematics and Applied Mathematics, University of Limpopo, Turfloop Campus, South Africa,E-mail: lazarus.rundora@ul.ac.za
    2. Faculty of Military Science, Stellenbosch University, Saldanha, South Africa

    (Received December 22, 2013, Revised October 12, 2015)

    A study on the effects of Navier slip, in conjunction with other flow parameters, on unsteady flow of reactive variable viscosity third-grade fluid through a porous saturated medium with asymmetric convective boundary conditions is presented. The channel walls are assumed to be subjected to asymmetric convective heat exchange with the ambient, and exothermic chemical reactions take place within the flow system. The heat exchange with the ambient obeys Newton's law of cooling. The coupled equations, arising from the law of conservation of momentum and the first law of thermodynamics, then the derived system are nondimensionalised and solved using a semi-implicit finite difference scheme. The lower wall slip parameter is observed to increase the fluid velocity profiles, whereas the upper wall slip parameter retards them because of backflow at the upper channel wall. Heat production in the fluid is seen to increase with the slip parameters. The wall shear stress increases with the slip parameters while the wall heat transfer rate is largely unaltered by the lower wall slip parameter but marginally increased by the upper wall slip parameter.

    Navier slip, saturated porous medium, third-grade fluid, temperature dependent viscosity, convective boundary conditions

    Introduction0F

    The majority of fluids encountered in industrial applications are non-Newtonian in character. Non-Newtonian is a generic term that incorporates a variety of phenomena which are highly complex and require sophisticated mathematical modelling techniques for proper description[1]. Examples of such fluids are geological materials, liquid foams, polymeric fluids,slurries, drilling mud, clay coatings, elastomers, emulsions, hydrocarbon oils and a variety of food products[2]. Theoretical consideration of the flow of such fluids in porous media has received considerable attention in recent years, and it is reasonable to pin down the interest on the wide range of scientific, technological and engineering applications as well as the theoretical complexity of the mathematical problems that arise[3]. Fluids of the differential type of third grade are an example amongst the fluids referred to[4,5].

    Although several studies involving heat and mass transfer in non-Newtonian third grade fluids have been conducted[6-8]a systematic and rational treatment of the thermodynamics of the problem with respect to the combined effects of porous media, unsteadiness,temperature dependent viscosity and asymmetric convective boundary conditions on the flow system was only carried out recently in Ref.[2]. As it has become almost the norm and tradition, the so-called no-slip boundary condition, namely the fluid velocity relative to the solid is zero on the fluid-solid interface[9], has been assumed in many such researches including in Ref.[2]. Indeed this has become a common practice despite the fact that the no-slip condition is a hypothesis rather than a condition deduced from any principle. It is due to this fact that its validity has been continuously debated in scientific literature[10]. Evidences of slip of a fluid on a solid surface were reported by many authors[11,12]. The importance of studies involving flow and heat transfer in channels with wall slipin improving the design and operation of many industrial and engineering devices cannot be overlooked.

    The present work seeks to extend the problem in Ref.[2] by investigating the effects of Navier slip on unsteady flow of a reactive temperature-dependent viscosity third grade fluid through a porous saturated medium w ith asymmetric convective boundary conditions. The mathematical formulation of the problem is given in the second section. We implement, in the third section, a semi-implicit finite difference scheme in pursuit of the solution to the problem. In the fourth section, graphical simulations are presented and analyzed quantitatively and qualitatively w ith respect to the many parameters deriving the system.

    Fig.1 Schematic diagram of the problem

    1. Mathematical formulation

    Consider an unsteady flow of an incompressible,third-grade, variable viscosity, reactive fluid through a channel filled w ith a homogeneous and isotropic porous medium as depicted in Fig.1. The plate surfaces are assumed to be subjected to asymmetric convective heat exchange w ith the surrounding medium as a result of unequal heat transfer coefficients. The fluid motion is induced by an applied axial non-constant pressure. Follow ing[4,5,13-17], and neglecting the reacting viscous fluid consumption, the governing equations for the momentum and heat balance can be w ritten as:

    The additional viscous dissipation term in Eq.(2) is due to Ref.[17] and is valid in the limit of very small and very large porous medium permeability. The appropriate initial and boundary conditions are

    here T is the absolute temperature,ρis the density, β0,β1are the lower and upper walls slip parameters, cpis the specific heat at constant pressure,t is the time,h1is the heat transfer coefficient at the lower plate,h2is the heat transfer coefficient at the upper plate,T0is the fluid initial temperature,Tais the ambient temperature,k is the thermal conductivity of the material,Q is the heat of reaction,A is the rate constant,E is the activation energy,R is the universal gas constant,C0is the initial concentration of the reactant species,a is the channel w idth,l is Planck's number,h is Boltzmann's constant,n is the vibration frequency,K is the porous medium permeability, α1and β3are the material coefficients,P is the modified pressure, and m is the numerical exponent such that m∈{-2,0,0.5}, where the three values represent numerical exponents for sensitised, Arrhenius and bimolecular kinetics respectively (see Refs.[16,18,19]). The temperature dependent viscosity(μ)can be expressed as

    where b is a viscosity variation parameter and μ0is the initial fluid dynam ic viscosity at temperature T0. We introduce the follow ing dimensionless variables into Eqs.(1)-(6),

    and obtain the following dimensionless governing equations:

    where λ represents the Frank-Kamenetskii parameter, n1,n2are the lower wall slip parameter and the upper wall slip parameter respectively,Pr is the Prandtl number,εis the activation energy parameter,δis the material parameter,γis the non-Newtonian parameter,G is the pressure gradient parameter,Dais the Darcy number,αis the variable viscosity parameter,?is the viscous heating parameter,θais the ambient temperature parameter,Sis the porous medium shape parameter,Bi1and Bi2are the Biot numbers at the lower and upper channel walls respectively. The skin friction (Cf)at the channel walls is given as

    where τw=μ(T)?u/?yis the shear stress evaluated at the wall y=0,a. The other dimensionless quantity of interest is the wall heat transfer rate(Nu)given by

    In the following section, Eqs.(8)-(14) are solved numerically using a semi-implicit finite difference scheme.

    2. Numerical solution

    Our numerical algorithm is based on the semiimplicit finite difference scheme[20-24]. Implicit terms are taken at the intermediate time level(N+ξ)where 0≤ξ≤1. The discretization of the governing equations is based on a linear Cartesian mesh and uniform grid on which finite differences are taken. We approximate both the second and first spatial derivatives with second-order central differences. The equations corresponding to the first and last grid points are modified to incorporate the boundary conditions. The semi-implicit scheme for the velocity component is

    In Eq.(15), it is understood that ?#/?t:=[#(N+1)-#(N)]/Δt. The equation for w(n+1)then becomes

    where

    with μ=exp(-αθ)and γ˙=wy. The solution procedure for w(n+1)thus reduces to inversion of tri-diagonal matrices, which is an advantage over a full implicit scheme. The semi-implicit integration scheme for the temperature equation is similar to that for the velocity component. Unmixed second partial derivatives of the temperature are treated implicitly:

    The equation for θ(N+1)thus becomes

    where r=ξΔt/Δy2. The solution procedure again reduces to inversion of tri-diagonal matrices. The schemes (16) and (18) were checked for consistency. For ξ=1, these are first order accurate in time but second-order accurate in space. The schemes in Ref.[22] have ξ=0.5which improves the accuracy in time to second order. Following the work in Refs.[23,24] we use ξ=1so that the choice of larger time steps is possible and still obtain convergence to the steady solutions.

    Fig.2 Transient and steady state velocity profiles

    Fig.3 Transient and steady state temperature profiles

    3. Results and discussion

    3.1 Transient and steady state solutions

    In Fig.2 and Fig.3 transient and steady state velocity and temperature profiles are displayed respectively. In both cases, there is a transient increase in profiles until steady state is reached. In Fig.2 negative velocity profiles signify backflow as a result of slip at the channel walls.

    Fig.4 Blow-up of fluid temperature for large λ

    Fig.5 Effects of the porous medium parameter,S, on velocity profiles

    3.2 Blow-up of solutions

    Figure 4 shows that if fluid temperature is not carefully monitored and controlled accordingly, it maynot be possible to obtain steady state profiles as depicted in Figs.2, 3. Figure 4 shows that failing to control particularly the reaction parameter λ, in conjunction with other parameter values, there will be blow-up of temperature soon after the value of λ surpasses a value of about 0.9. The consequences of this could be detrimental to life and property.

    Fig.6 Effects of the porous medium parameter,S , on temperature profiles

    3.3 Parameter dependence of solutions

    The present study is validated with the earlier result of Makinde et al.[2]in the absence of Navier slip at the channel walls i.e.,(n1=n2=0)and a perfect agreement is achieved for the velocity and temperature profiles (see Figs.13-16). Fig.5 and Fig.6 show the behaviour of the velocity and temperature profiles respectively as the porous medium parameter,S , is varied. The velocity profiles are observed to diminish rapidly with increasing values of porous medium parameter. An increase in the porous medium parameter values means that the pore spaces in the porous matrix are reduced and this has a dampening effect on the flow of the fluid particles. As the velocity is drastically reduced, the viscous heating source terms in the fluid temperature equation are reduced and fluid temperature also decreases as a result as shown in Fig.6.

    Fig.7 Effects of the temperature-dependent viscosity,α, on velocity profiles

    The effects of the temperature dependent viscosity parameter on velocity and temperature profiles is displayed in Fig.7 and Fig.8. As the temperature dependent viscosity parameter is increased, it reduces the fluid viscosity and this increases the rate of flow of the fluid particles as shown in Fig.7. Figure 8 shows that the temperature dependent viscosity parameter has no significant effect on the temperature profiles.

    Fig.8 Effects of the temperature-dependent viscosity,α, on temperature profiles

    Fig.9 Effects of the non-Newtonian parameter,γ, on velocity profiles

    Fig.10 Effects of the non-Newtonian parameter,γ, on temperature profiles

    The effect of increasing the non-Newtonian parameter,γ, is to increase the non-Newtonian properties of the fluid, and these characteristics (such as viscoelasticity) bring resistance to the rate of flow of the fluid. Velocity profiles, as in Fig.9, are seen to retard as a result. The effects on temperature profiles, as seen in Fig.10 are less noticeable.

    Fig.11 Effects of the reaction parameter,λ, on velocity profiles

    Fig.12 Effects of the reaction parameter,λ, on temperature profiles

    The Frank-Kamenetskii parameter,λ, measures the reaction rate of the chemical reaction in the process. Since, as pointed out earlier, the reaction is exothermic, increasing λ will inevitably result in an increase in the temperature of the fluid. This is seen in Fig.12. As pointed out earlier (Fig.2), if this parameter is not carefully controlled chemical explosions will be difficult to combat. As Fig.11 shows, the coupling effect means that the velocity profiles are also increased,albeit at a lower scale, by increased reaction rate.

    Fig.13 Effects of the lower wall slip parameter,n1, on velocity profiles

    Figures 13-16 show the effects of the channel wall slip parameters on the fluid velocity profiles as well as the fluid temperature profiles. The effect of increasing the lower wall slip parameter,n1, on the velocity field is depicted by Fig.13. Fluid velocity is seen to increase with an increase in the lower wall slip parameter. On the contrary, the upper wall slip parameter n2is observed to retard fluid velocity as shown in Fig.15. Significant backflow at the upper wall which is as a result of slip at the wall is the cause of this drop in velocity. The backflow also renders rapid mixing of the fluid particles, and this results in significant friction that induces raise in the fluid temperature as observed in Fig.14 and Fig.16.

    Fig.14 Effects of the lower wall slip parameter,n1, on temperature profiles

    Fig.15 Effects of the upper wall slip parameter,n2, on velocity profiles

    Fig.16 Effects of the upper wall slip parameter,n2, on temperature profiles

    Fig.17 Effects of the parameterm on fluid temperature profiles

    Fig.18 Effects of the activation energy parameter,ε, on fluid temperature profiles:m=0.5

    Fig.19 Effects of the activation energy parameter,ε, on fluid temperature:m=0

    The numerical exponent m=0.5means that the type of exothermic chemical reaction is bimolecular, m=0means that the type of reaction is Arrhenius and m=-2means that the reaction is sensitised. Figure 17 shows that most heat is generated under a bimolecular type of exothermic chemical reaction and the least heat is generated when the reaction is one of sensitised type. Figure 18 shows that the effect of an increase in the activation energy parameter, when m=0.5, is also to increase the heat of the reaction. However when m =0and m=-2(Fig.19, Fig.20 respectively) the activation energy parameter,ε, induces effects that are exactly opposite that depicted when m=0.5. As explained in Ref.[2], this is due to the fact that in the temperature equation, when m≤0, the function (1+εθ)mexp[θ/(1+εθ)] decreases with increasingε.

    Fig.20 Effects of the activation energy parameter,ε, on fluid temperature:m=-2

    Fig.21 Effects of the Biot number Bi2on fluid temperature profiles

    Fig.22 Effects of the Prandtl number,Pr , on fluid temperature profiles

    Fluid temperature is observed to decrease significantly with an increase in the Biot number as well as an increase in the Prandtl number. It is important to note that in the limit of Bi1→0and Bi2→0, the channel walls are insulated with no heat loss while thecase of Bi1→∞and Bi2→∞correspond to a scenario where both the ambient temperature and that of the fluid at the wall are the same. Moreover, as the parameter values of Bi1and Bi2increase, the convective heat loss to the ambient from both walls increase,leading to a decrease in the fluid temperature. Hence,an increase in the Biot number signifies higher degrees of convective cooling at the channel walls and this induces a significant temperature drop in the bulk of the fluid. Figure 21 illustrates this phenomenon. A similar trend is observed in Fig.22 where fluid temperature drops with increasing Prandtl numbers. Higher Prandtl numbers generally signify a decrease in fluid thermal conductivity. Figure 23 shows the fluid temperature growing with the viscous heating parameter?.

    Fig.23 Effects of the viscous heating parameter,?, on fluid temperature profiles

    Of engineering importance are the two quantities namely, the wall shear stress (skin friction) and the wall heat transfer rate (Nusselt number). Figure 24. displays graphs showing variation of the wall shear stress with the reaction parameter λ and the variable viscosity parameter, the non-Newtonian parameter,the lower wall slip parameter and the upper wall slip parameter. The figures are plotted up to the solution blow-up values of the Frank-Kamenestkii parameter λ. Skin friction is observed to diminish with increasing values of the temperature dependent viscosity parameter and the non-Newtonian parameter. On the other hand skin friction is noted to increase with increasing wall slip parameters.

    Figure 25 illustrates variation of the wall heat transfer rate, up to blow-up values of λ, withλ and the variable viscosity parameter, the non-Newtonian parameter, the wall slip parameters and the porous medium parameter. While the wall heat transfer rate is largely unaltered by the variable viscosity parameter,the non-Newtonian parameter, the lower wall slip parameter and the porous medium parameter, the upper wall slip parameter marginally increases it. It is reasonable to tie this observation with the observed backflow at the upper wall that tend to rigorously mix fluid particles resulting in increased heat production at the wall.

    Fig.24 Variation with λ and α,γ,n1,n2of the wall shear stress

    Fig.25 Variation with λ andα,γ,n1,n2,Sof the wall heat transfer rate

    Table 1 displays thermal critical values of the reaction parameter λ for various parameter variations. It is important to do this exercise as, depending on other flow parameters, values of the reaction parameter above a certain threshhold leads to blow up of solutions. It is therefore a safety precaution to know in advance the blow up values of λ in relation to other parameter values. We particularly note from the table that increasing the Biot number increases the blow up value of the reaction parameter. However the general trend that is noted is that the blow up values of the reaction parameter are not affected by slight changes in most parameter values.

    4. Conclusion

    We computationally investigate the effects of Navier slip on unsteady flow of a reactive variable viscosity third-grade fluid through a porous saturated medium with asymmetric convective boundary conditions. It has been concluded that the lower wall slip parameter increases the fluid velocity profiles, whereas because of backflow at the upper channel wall, the upper wall slip parameter retards them. Heat production in the fluid increases with the magnitude of the slip parameters. This is also the case with the wall shear stress. The wall heat transfer rate is largely unaltered by the lower wall slip parameter but marginally increased by the upper wall slip parameter. Our results will no doubt be of significant interest in the area of petroleum exploration and refinery. Petroleum is very reactive and non-Newtonian in nature. Its reservoir can be found within porous rocks, such as sandstonewhile the refinery is made up of several pipes with porous matrix. Moreover, both exploration and refining process of petroleum involve slip flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium.

    Table 1 Thermal criticality values of λ for different parameter values

    [1] SOCHI T. Non-Newtonian flow in porous media[J]. Polymer, 2010, 51(22): 5007-5023.

    [2] MAKINDE O. D., CHINYOKA T. and RUNDORA L. Unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions[J]. Computers and Mathematics with Applications,2011, 62(9): 3343-3352.

    [3] RUNDORA L. Laminar flow in a channel filled with saturated porous media[D]. Doctoral Thesis, Cape Town, South Africa: Cape Peninsula University of Technology, 2013.

    [4] RAJAGOPAL K. R. On boundary conditions for fluids of the differential type: Navier-Stokes equations and related non-linear problems[M]. New York, USA:Plenum Press, 1995, 273.

    [5] FOSDICK R. L., RAJAGOPAL K. R. Thermodynamics and stability of fluids of third grade[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1980, 369(1738): 351-377.

    [6] SIDDIQUI A. M., MAHMOOD R. and GHORI Q. K. Thin film flow of a third grade fluid on a moving belt by He's homotopy perturbation method[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7(1): 1-8.

    [7] MASSOUDI M., CHRISTE I. Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe[J]. International Journal of Non-Linear Mechanics, 1995, 30(5): 687-699.

    [8] YüRüSOY M., PAKDEMIRLI M. Approximate analytical solutions for the flow of a third grade fluid in a pipe[J]. International Journal of Non-Linear Mechanics, 2002, 37(2): 187-195.

    [9] SCHLICHTING H. Boundary layer theory[M]. New York, USA: McGraw-Hill, 1968.

    [10] MAKINDE O. D., CHINYOKA T. MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navier slip condition[J]. Computers and Mathematics with Applications,2010, 60(3): 660-669.

    [11] MATHEWS M. T., HILL J. M. Newtonian flow with nonlinear Navier boundary condition[J]. Acta Mechanica, 2007, 191(3-4): 195-217.

    [12] ZHU Y. X., GRANICK S. Rate-dependent slip of Newtonian liquid at smooth surfaces[J]. Physical Review Letters, 2001, 87(9): 096105.

    [13] BRINKMAN H. C. On the permeability of media consisting of closely packed porous particles[J]. Applied Scientific Research, 1949, 1(1): 81-86.

    [14] TRUESDELL C., NOLL W. The non-linear field theories of mechanics (FLUGGE S. Eds. Handbuch der physik)[M]. Berlin, Germany: Springer, 1965, 111: 3.

    [15] SOM S. K., MONDAL S. S., DASH S. K. Energy and energy balance in the process of pulverized coal combustion in a tubular combustor[J]. Journal of Heat Transfer, 2005, 127(12): 1322-1333.

    [16] FRANK-KAMENETSKII D. A. Diffusion and heat transfer in a chemical kinetics[M]. New York, USA:Plenum Press, 1969.

    [17] AL-HADHRAMI A. K., ELLIOTT L. and INGHAM D. B. A new model for viscous dissipation in porous media across a range of permeability values[J]. Transport in porous media, 2003, 53(1): 117-122.

    [18] MAKINDE O. D. Thermal ignition in a reactive viscous flow through through a channel filled with a porous medium[J]. Journal of Heat Transfer, 2006, 128(6): 601-604.

    [19] MAKINDE O. D. Thermal stability of a reactive viscous flow through a porous-saturated channel with convective boundary conditions[J]. Applied Thermal Engineering, 2009, 29(8): 1773-1777.

    [20] MAKINDE O. D., CHINYOKA T. Numerical investigation of transient heat transfer to hydromagnetic channel flow with radiative heat and convective cooling[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12): 3919-3930.

    [21] MAKINDE O. D., CHINYOKA T. Transient analysis of pollutant dispersion in a cylindrical pipe with nonlinear waste discharge concentration[J]. Computers and Mathematics with Applications, 2010, 60(3): 642-652.

    [22] CHINYOKA T. Computational dynamics of a thermally decomposable viscoelastic lubricant under shear[J]. Journal of Fluids Engineering, 2008, 130(12):121201.

    [23] CHINYOKA T. Poiseuille flow of reactive Phan-Thien-Tanner liquids in 1D channel flow[J]. Journal of Heat Transfer, 2010, 132(11): 111701.

    [24] CHINYOKA T. Suction-injection control of shear banding in non-isothermal and exothermic channel flow of Johnson-Segalman liquids[J]. Journal of Fluids Engineering, 2011, 133(7): 071205.

    * Biography: RUNDORA Lazarus (1972-), Male,Ph. D., Senior Lecturer

    国产一区二区三区视频了| 久久中文字幕一级| 久9热在线精品视频| 日本在线视频免费播放| 级片在线观看| 欧美乱色亚洲激情| 大型黄色视频在线免费观看| 国产精品久久久av美女十八| 亚洲av美国av| 黑人巨大精品欧美一区二区mp4| 桃红色精品国产亚洲av| 99国产综合亚洲精品| av在线天堂中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 美女高潮到喷水免费观看| 成人亚洲精品一区在线观看| 亚洲国产看品久久| 亚洲成人精品中文字幕电影| 一级a爱视频在线免费观看| 精品国产国语对白av| 欧美日本视频| 变态另类成人亚洲欧美熟女| 国产又色又爽无遮挡免费看| 日韩 欧美 亚洲 中文字幕| 听说在线观看完整版免费高清| 久久久久九九精品影院| 怎么达到女性高潮| 成人av一区二区三区在线看| АⅤ资源中文在线天堂| 1024手机看黄色片| 久久人妻av系列| 午夜两性在线视频| 少妇被粗大的猛进出69影院| 人成视频在线观看免费观看| 国内久久婷婷六月综合欲色啪| 亚洲一区中文字幕在线| 丰满的人妻完整版| 国产成人影院久久av| 亚洲男人的天堂狠狠| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久久人妻精品电影| 好男人在线观看高清免费视频 | 精品熟女少妇八av免费久了| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美免费精品| 久久久国产精品麻豆| 免费观看人在逋| 日韩av在线大香蕉| 免费在线观看黄色视频的| 欧美中文综合在线视频| 激情在线观看视频在线高清| 国产91精品成人一区二区三区| 1024视频免费在线观看| 久久青草综合色| 国产成人欧美| 嫩草影院精品99| 日本撒尿小便嘘嘘汇集6| 一区二区三区国产精品乱码| 婷婷精品国产亚洲av在线| 亚洲狠狠婷婷综合久久图片| 在线av久久热| 老司机深夜福利视频在线观看| 亚洲成人精品中文字幕电影| 亚洲aⅴ乱码一区二区在线播放 | 在线十欧美十亚洲十日本专区| 成人三级黄色视频| 一夜夜www| 免费看日本二区| 日韩国内少妇激情av| www日本黄色视频网| 亚洲欧美一区二区三区黑人| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区精品视频观看| 精品乱码久久久久久99久播| 国产麻豆成人av免费视频| 精品高清国产在线一区| 18禁黄网站禁片免费观看直播| 亚洲七黄色美女视频| 成熟少妇高潮喷水视频| 午夜两性在线视频| 精品久久久久久久毛片微露脸| 国产日本99.免费观看| 免费在线观看日本一区| 日韩免费av在线播放| 久久久久久久午夜电影| 亚洲欧美激情综合另类| 老熟妇乱子伦视频在线观看| 男女做爰动态图高潮gif福利片| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 18禁观看日本| 琪琪午夜伦伦电影理论片6080| 无人区码免费观看不卡| 国产精品乱码一区二三区的特点| 十八禁人妻一区二区| 国产高清videossex| 亚洲熟女毛片儿| 在线免费观看的www视频| 制服诱惑二区| 好看av亚洲va欧美ⅴa在| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 夜夜躁狠狠躁天天躁| 国产精品综合久久久久久久免费| 制服丝袜大香蕉在线| 精品午夜福利视频在线观看一区| 精品福利观看| 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久人妻蜜臀av| 波多野结衣高清无吗| 俄罗斯特黄特色一大片| 亚洲欧美精品综合久久99| www日本在线高清视频| 午夜a级毛片| 久久久久九九精品影院| 色综合婷婷激情| 亚洲自拍偷在线| cao死你这个sao货| 国产精品一区二区免费欧美| 久久久久久九九精品二区国产 | 美女 人体艺术 gogo| 搡老熟女国产l中国老女人| 18禁黄网站禁片免费观看直播| 精品久久久久久久末码| 亚洲欧美日韩高清在线视频| 美女大奶头视频| 一个人观看的视频www高清免费观看 | 哪里可以看免费的av片| 国产v大片淫在线免费观看| 久热爱精品视频在线9| 深夜精品福利| 在线av久久热| 国产成+人综合+亚洲专区| 黄色成人免费大全| 国产av一区在线观看免费| 亚洲国产精品久久男人天堂| 亚洲一区二区三区不卡视频| 亚洲中文字幕一区二区三区有码在线看 | 美女免费视频网站| 亚洲精品色激情综合| av视频在线观看入口| av超薄肉色丝袜交足视频| 久久午夜亚洲精品久久| 两人在一起打扑克的视频| 国产精品永久免费网站| 精品卡一卡二卡四卡免费| 亚洲成人免费电影在线观看| 亚洲国产高清在线一区二区三 | 国产精品精品国产色婷婷| 久久九九热精品免费| 欧美黄色淫秽网站| 中文字幕高清在线视频| 一a级毛片在线观看| 一区二区三区精品91| 中文字幕高清在线视频| 国产欧美日韩一区二区三| 国产欧美日韩一区二区精品| 不卡av一区二区三区| 黄色女人牲交| 精品一区二区三区四区五区乱码| 午夜两性在线视频| 国产黄色小视频在线观看| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 欧美三级亚洲精品| 日本一本二区三区精品| 国产激情偷乱视频一区二区| 超碰成人久久| 男女午夜视频在线观看| 在线免费观看的www视频| 免费看十八禁软件| 亚洲色图 男人天堂 中文字幕| 91麻豆av在线| 一区二区三区国产精品乱码| 日韩中文字幕欧美一区二区| 美女免费视频网站| 免费高清在线观看日韩| 男人的好看免费观看在线视频 | x7x7x7水蜜桃| 久久国产亚洲av麻豆专区| 黄色 视频免费看| 久久中文字幕人妻熟女| 久久久久久久久免费视频了| 巨乳人妻的诱惑在线观看| 一区二区三区精品91| 在线观看舔阴道视频| 久久精品aⅴ一区二区三区四区| 精品欧美国产一区二区三| 欧美乱码精品一区二区三区| 国产成年人精品一区二区| 97超级碰碰碰精品色视频在线观看| 黄色成人免费大全| 久久久久久大精品| xxx96com| 精品电影一区二区在线| 欧美性猛交黑人性爽| 自线自在国产av| 村上凉子中文字幕在线| a级毛片a级免费在线| 国产极品粉嫩免费观看在线| 在线观看舔阴道视频| 国产精品久久久av美女十八| 亚洲国产精品成人综合色| 午夜久久久久精精品| 久久国产精品影院| 1024香蕉在线观看| 欧美黑人巨大hd| 国产精品亚洲av一区麻豆| 国产激情偷乱视频一区二区| 黄色 视频免费看| 日韩欧美三级三区| 又大又爽又粗| 精品久久蜜臀av无| 日韩精品中文字幕看吧| 国产精品香港三级国产av潘金莲| 99热6这里只有精品| 亚洲色图av天堂| 欧美激情极品国产一区二区三区| 国内久久婷婷六月综合欲色啪| 无遮挡黄片免费观看| 免费搜索国产男女视频| 又黄又粗又硬又大视频| 天堂动漫精品| 国产av一区在线观看免费| 亚洲精品一区av在线观看| 久久久久九九精品影院| 国产精品一区二区精品视频观看| 国产黄色小视频在线观看| 夜夜躁狠狠躁天天躁| 美女午夜性视频免费| 久久久国产成人免费| 曰老女人黄片| 亚洲熟妇熟女久久| 欧美大码av| 亚洲精品一区av在线观看| 99riav亚洲国产免费| 一本大道久久a久久精品| 男女床上黄色一级片免费看| 正在播放国产对白刺激| 日本五十路高清| 十八禁人妻一区二区| 欧美乱色亚洲激情| 嫩草影院精品99| 日本在线视频免费播放| 美女免费视频网站| 国产成人一区二区三区免费视频网站| 精品国产超薄肉色丝袜足j| 亚洲欧美一区二区三区黑人| 国产熟女xx| 99精品欧美一区二区三区四区| 国产单亲对白刺激| 精品人妻1区二区| 亚洲成av人片免费观看| 黄色成人免费大全| 日日干狠狠操夜夜爽| 亚洲人成网站高清观看| 久久天堂一区二区三区四区| 91麻豆av在线| 亚洲国产精品sss在线观看| 久99久视频精品免费| 一二三四在线观看免费中文在| 天天添夜夜摸| 丁香六月欧美| 99精品欧美一区二区三区四区| 99久久综合精品五月天人人| 18禁观看日本| 在线观看日韩欧美| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 亚洲av中文字字幕乱码综合 | 欧美中文日本在线观看视频| 午夜免费成人在线视频| 国产成人一区二区三区免费视频网站| 亚洲成人免费电影在线观看| 国产精品久久视频播放| 国产精品99久久99久久久不卡| 成在线人永久免费视频| 久久热在线av| 国产一卡二卡三卡精品| √禁漫天堂资源中文www| av中文乱码字幕在线| 欧美成人一区二区免费高清观看 | 精品久久久久久,| 亚洲精品一区av在线观看| 香蕉丝袜av| 国产极品粉嫩免费观看在线| 亚洲最大成人中文| 老汉色av国产亚洲站长工具| 久久久国产成人精品二区| 亚洲精品一卡2卡三卡4卡5卡| av天堂在线播放| 久久久水蜜桃国产精品网| 国产极品粉嫩免费观看在线| 色综合婷婷激情| 国产三级在线视频| 国产黄a三级三级三级人| 啪啪无遮挡十八禁网站| 国产av一区在线观看免费| 亚洲专区国产一区二区| 男女做爰动态图高潮gif福利片| 大型av网站在线播放| 婷婷丁香在线五月| 成人国产综合亚洲| 欧美日本亚洲视频在线播放| 欧美黄色片欧美黄色片| 国产亚洲av嫩草精品影院| 高潮久久久久久久久久久不卡| 国产一级毛片七仙女欲春2 | 国产亚洲欧美精品永久| 色老头精品视频在线观看| av在线播放免费不卡| 可以在线观看的亚洲视频| 99国产精品一区二区三区| 精品久久久久久久毛片微露脸| 成人一区二区视频在线观看| 日韩欧美三级三区| 精品一区二区三区av网在线观看| 欧美激情 高清一区二区三区| 亚洲男人的天堂狠狠| 97人妻精品一区二区三区麻豆 | 不卡一级毛片| 欧美成狂野欧美在线观看| 变态另类成人亚洲欧美熟女| 久久精品成人免费网站| 亚洲熟女毛片儿| 久久精品91无色码中文字幕| 一级黄色大片毛片| 老鸭窝网址在线观看| 岛国在线观看网站| 满18在线观看网站| 成年版毛片免费区| 国产精品久久久久久人妻精品电影| 99国产精品一区二区三区| 免费看美女性在线毛片视频| 正在播放国产对白刺激| 一级a爱视频在线免费观看| 精品国内亚洲2022精品成人| 日本免费一区二区三区高清不卡| 听说在线观看完整版免费高清| 狂野欧美激情性xxxx| 在线观看舔阴道视频| 精华霜和精华液先用哪个| 久久人妻福利社区极品人妻图片| 操出白浆在线播放| 香蕉久久夜色| 一级a爱片免费观看的视频| a级毛片在线看网站| 国产精品一区二区免费欧美| 精品电影一区二区在线| 国产成人精品无人区| 亚洲人成网站高清观看| 午夜福利18| av超薄肉色丝袜交足视频| 黄色a级毛片大全视频| 亚洲 国产 在线| 亚洲av日韩精品久久久久久密| 色尼玛亚洲综合影院| 999久久久精品免费观看国产| 欧美亚洲日本最大视频资源| 97人妻精品一区二区三区麻豆 | 欧美色视频一区免费| 亚洲国产欧美网| 99re在线观看精品视频| www.www免费av| 国产高清videossex| 国产一区二区三区视频了| 亚洲性夜色夜夜综合| 国产精品久久电影中文字幕| 老司机在亚洲福利影院| 国产野战对白在线观看| 国产成人av教育| 亚洲自偷自拍图片 自拍| 欧美在线黄色| 在线观看免费日韩欧美大片| 男男h啪啪无遮挡| 亚洲国产看品久久| 两性夫妻黄色片| 少妇熟女aⅴ在线视频| 国产高清激情床上av| 欧美成人性av电影在线观看| 欧美最黄视频在线播放免费| 美女免费视频网站| 91麻豆av在线| 一区福利在线观看| 国产人伦9x9x在线观看| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| 欧美激情极品国产一区二区三区| 9191精品国产免费久久| 男女之事视频高清在线观看| 国语自产精品视频在线第100页| a级毛片在线看网站| 精品少妇一区二区三区视频日本电影| 午夜精品在线福利| 韩国精品一区二区三区| 国产精品亚洲av一区麻豆| 一级a爱片免费观看的视频| 校园春色视频在线观看| 久久精品国产亚洲av香蕉五月| 午夜成年电影在线免费观看| 欧美激情 高清一区二区三区| 久久久久久久久免费视频了| 国产精品日韩av在线免费观看| 精品久久久久久久人妻蜜臀av| 露出奶头的视频| 国产熟女xx| 狠狠狠狠99中文字幕| 精品福利观看| 久久九九热精品免费| 日韩欧美 国产精品| 美女 人体艺术 gogo| 欧美日本亚洲视频在线播放| 欧美另类亚洲清纯唯美| 黄片小视频在线播放| 淫妇啪啪啪对白视频| 女生性感内裤真人,穿戴方法视频| 一区二区三区国产精品乱码| 搡老妇女老女人老熟妇| 国语自产精品视频在线第100页| 丝袜人妻中文字幕| 欧美一区二区精品小视频在线| 国产精品美女特级片免费视频播放器 | 男女那种视频在线观看| 琪琪午夜伦伦电影理论片6080| 看黄色毛片网站| 欧美性猛交╳xxx乱大交人| 国产精品乱码一区二三区的特点| 免费看十八禁软件| 国产高清视频在线播放一区| 欧美日韩一级在线毛片| 亚洲精品一区av在线观看| 亚洲欧美精品综合久久99| 国产av一区二区精品久久| 男女那种视频在线观看| 久久久久久大精品| 欧美日韩瑟瑟在线播放| 又大又爽又粗| 18禁观看日本| 亚洲欧美精品综合久久99| 在线永久观看黄色视频| 成年免费大片在线观看| 亚洲精品国产区一区二| 99在线视频只有这里精品首页| 97碰自拍视频| 国产成人av教育| 老汉色∧v一级毛片| 麻豆成人午夜福利视频| 欧美日本亚洲视频在线播放| 亚洲欧美精品综合久久99| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月天丁香| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 夜夜爽天天搞| 又黄又爽又免费观看的视频| 久久香蕉国产精品| 国产片内射在线| 草草在线视频免费看| www国产在线视频色| 国产一区二区三区视频了| 欧美性猛交╳xxx乱大交人| 日日爽夜夜爽网站| 国产91精品成人一区二区三区| 久久精品国产99精品国产亚洲性色| 日韩精品青青久久久久久| 中文字幕人妻熟女乱码| 国产精品乱码一区二三区的特点| 成在线人永久免费视频| 一级毛片高清免费大全| 国产精品二区激情视频| 正在播放国产对白刺激| 两个人免费观看高清视频| 人妻久久中文字幕网| 亚洲国产精品999在线| 十分钟在线观看高清视频www| 久久精品人妻少妇| 中文字幕人妻熟女乱码| 悠悠久久av| 制服诱惑二区| 亚洲精品在线美女| 亚洲五月天丁香| 欧美日韩精品网址| 亚洲国产欧美一区二区综合| www日本在线高清视频| 亚洲av第一区精品v没综合| 中文字幕精品免费在线观看视频| 国产精品av久久久久免费| 91在线观看av| 久久精品91无色码中文字幕| 日本免费一区二区三区高清不卡| 午夜福利成人在线免费观看| 免费高清视频大片| 99国产精品一区二区三区| 黄片大片在线免费观看| 人人妻人人澡欧美一区二区| 在线播放国产精品三级| 午夜福利免费观看在线| 国产精品98久久久久久宅男小说| av福利片在线| 久久狼人影院| 久久青草综合色| 国产亚洲精品久久久久5区| 熟女电影av网| e午夜精品久久久久久久| 村上凉子中文字幕在线| 国产亚洲欧美98| 亚洲专区国产一区二区| 18禁观看日本| 后天国语完整版免费观看| 欧美成人午夜精品| 人成视频在线观看免费观看| 亚洲国产精品合色在线| 国产成人精品久久二区二区91| 欧美性长视频在线观看| 欧美成人性av电影在线观看| 色老头精品视频在线观看| 国产成人精品无人区| 成年版毛片免费区| 中亚洲国语对白在线视频| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片 | 色在线成人网| 老司机午夜福利在线观看视频| 亚洲国产精品999在线| 色综合欧美亚洲国产小说| 亚洲第一av免费看| 欧美日韩亚洲国产一区二区在线观看| 一区二区日韩欧美中文字幕| 国产精品亚洲av一区麻豆| 久热这里只有精品99| 99国产精品99久久久久| 1024视频免费在线观看| 日本免费一区二区三区高清不卡| 人人妻人人澡人人看| 少妇 在线观看| 午夜福利在线在线| 久久久国产成人免费| 麻豆久久精品国产亚洲av| 麻豆国产av国片精品| 18禁观看日本| 国产单亲对白刺激| 丁香欧美五月| 日韩欧美在线二视频| 日本精品一区二区三区蜜桃| 国产精品野战在线观看| 久久中文字幕一级| 国产精品一区二区精品视频观看| 国产成人影院久久av| 午夜福利高清视频| 老司机午夜十八禁免费视频| 久久欧美精品欧美久久欧美| 首页视频小说图片口味搜索| 国内揄拍国产精品人妻在线 | 精品国产国语对白av| 视频区欧美日本亚洲| 国产亚洲精品av在线| 叶爱在线成人免费视频播放| 激情在线观看视频在线高清| 国产成人影院久久av| 老司机靠b影院| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品999在线| 成人18禁在线播放| 亚洲精品美女久久av网站| 色综合婷婷激情| 国产黄色小视频在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲激情在线av| xxx96com| 国产精品日韩av在线免费观看| 成人永久免费在线观看视频| 午夜亚洲福利在线播放| av免费在线观看网站| 日本免费a在线| netflix在线观看网站| or卡值多少钱| 757午夜福利合集在线观看| 嫁个100分男人电影在线观看| 久久久久久人人人人人| 国产视频内射| 日韩精品免费视频一区二区三区| 黄色丝袜av网址大全| 一二三四社区在线视频社区8| 精品国产国语对白av| 久久人妻福利社区极品人妻图片| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品成人综合色| 亚洲精品中文字幕在线视频| 国产成人av教育| 男人舔女人下体高潮全视频| 两个人看的免费小视频| 日本精品一区二区三区蜜桃| 亚洲中文日韩欧美视频| 18禁美女被吸乳视频| 一二三四在线观看免费中文在| 亚洲一卡2卡3卡4卡5卡精品中文| 91成人精品电影| www.精华液| 久久精品国产亚洲av香蕉五月| 制服人妻中文乱码| 在线天堂中文资源库| 欧美乱色亚洲激情| 久久天躁狠狠躁夜夜2o2o| 成人av一区二区三区在线看| 国产单亲对白刺激| 1024香蕉在线观看| 免费一级毛片在线播放高清视频| 免费看美女性在线毛片视频| 免费无遮挡裸体视频| 两性夫妻黄色片| 国产精品影院久久| 99久久综合精品五月天人人| 91麻豆精品激情在线观看国产| 啦啦啦观看免费观看视频高清|