• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis*

    2015-12-01 02:12:25ABDELMABOUDMEKHEIMERKhMOHAMEDMohamedMathematicsDepartmentFacultyofScienceandArtsKhulaisUniversityOfJeddahSaudiArabia2MathematicsDepartmentFacultyofScienceAlAzharUniversityAssiutBranchAssiutEgyptmailyassmathyahoocom3Math

    ABD ELMABOUD Y., MEKHEIMER Kh. S., MOHAMED Mohamed S.1. Mathematics Department, Faculty of Science and Arts, Khulais, University Of Jeddah, Saudi Arabia2. Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt,E-mail: yass_math@yahoo.com3. Mathematics Department, Faculty of Science, Taif University Hawia, P.O. Box 888, Taif, Saudi Arabia4. Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt

    Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis*

    ABD ELMABOUD Y.1,2, MEKHEIMER Kh. S.3,4, MOHAMED Mohamed S.3,4
    1. Mathematics Department, Faculty of Science and Arts, Khulais, University Of Jeddah, Saudi Arabia
    2. Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt,E-mail: yass_math@yahoo.com
    3. Mathematics Department, Faculty of Science, Taif University Hawia, P.O. Box 888, Taif, Saudi Arabia
    4. Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt

    (Received August 31, 2014, Revised Ocotober 27, 2014)

    An analysis has been achieved to study the natural convection of a non-Newtonian fluid (namely a Carreau fluid) in a vertical channel with rhythmically contracting walls. The Navier-Stokes and the energy equations are reduced to a system of nonlinear PDE by using the long wavelength approximation. The optimal homotopy analysis method (OHAM) is introduced to obtain the exact solutions for velocity and temperature fields. The convergence of the obtained OHAM solution is discussed explicitly. Numerical calculations are carried out for the pressure rise and the features of the flow and temperature characteristics are analyzed by plotting graphs and discussed in detail.

    homotopy analysis method (HAM), peristaltic transport, carreau fluid, heat transfer, natural convection flow

    Introduction0F

    Peristaltic transport is a physical mechanism for the flow induced by the traveling wave. This mechanism is found in the body of living creatures, and it frequently occurs in organs such as ureter, intestines and arterioles (small arteries). The mechanism of peristaltic transport has also been found in the industrial. There are many industrial applications such as sanitary fluid transport, blood pumps in heart lung machine and transport of corrosive fluids where the contact of the fluid with the machinery parts is prohibited. The first attempt was done by Latham[1]. Following this experimental work, Barton and Raynor[2]established a mathematical model for homogeneous fluids in a channel idealized under the assumption of inertia due to an infinite train of peristaltic waves. Shapiro et al.[3]used infinite wavelength instead of the small-amplitude assumption. Recently, a considerable attention has been devoted to the problem of peristaltic transport with Newtonian or non-Newtonian fluid in channel or a tube[4-6].

    In recent years, the study of non-Newtonian fluids especially with peristaltic transport[7,8]has obtained great importance, because this class of fluid simulates the fluid found in living creatures. In this paper, we choose rheological constitutive equation of Carreau fluid. The Carreau model has a four parameter beside helpful properties of a truncated power law model that does not have a discontinuous first derivative. It possesses a shear thinning (i.e. the viscosity reduces by increasing shear rate). El Shehawy et al.[9]investigated peristaltic transport of Carreau fluid through non-uniform channel. Recently, some contributions are made to the study of Carreau fluid with the effect of magnetic field[10,11].

    The study of the heat transfer problems draws the attention of researchers especially in biology, because the transport of heat plays a vital role in life processes. In convection, heat transport occurs in a fluid with a combination of molecular diffusion and the fluid's bulk motion or flow. Natural convection is a type of heat transfer wherein non-human forces influence thecooling and heating of fluids. The interaction between peristalsis and heat transfer has been investigated recently, Mekheimer and Abd elmaboud[12]studied the influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus. Srinivas and Kothandapani[13]have investigated the peristaltic transport in an asymmetric channel with heat transfer. Mekheimer et al.[14]discussed the effect of heat transfer on the peristaltic flow of a Newtonian fluid through a porous space in a vertical asymmetric channel.

    The common perturbation methods have some limitations, and also depended on the existence of a small parameter. Recently, many different methods have been introduced to eliminate the small parameter;one of these methods is called the homotopy analysis method (HAM). The homotopy analysis method(HAM) is a new analytical technique, which has attracted special attention of researchers as it is both flexible in applying and give sufficiently accurate results with modest effort. This method has been first introduced in 1992 by Liao[15-17]. Recently, many authors[18,19]have been using HAM in a wide variety of scientific and engineering applications to solve different types of differential equations: linear and nonlinear, homogeneous and non-homogeneous.

    With the above discussion in mind, the goal of this investigation is to study the effect of heat transfer on peristaltic flow of a Carreau fluid in a two-dimensional vertical channel. The governing equations are modeled and then solved using the HAM. The analysis for the stream function, the axial pressure gradient,the pressure rise and the heat transfer across the channel have been discussed for various values of the problem parameters. Also, the pumping characteristics and the trapping phenomena are discussed in detail. Finally, the main conclusions are summarized in the last section.

    Fig.1 The geometry of the walls surface

    1. Mathematical formulation

    Consider the peristaltic motion of a non-Newtonian fluid, modeled as a Carreau fluid in a twodimensional vertical channel, where 2a is the undeformed width of the channel and the channel is considered to be infinitely long,b represents the amplitude of the sinusoidal waves traveling along the channel at velocityc,λis the wavelength. A rectangular coordinate system is chosen for the channel with X along the centerline andY normal to it. The wall Y=-H( X, t)is maintained at temperatures T1and for the wall Y=H( X, t), Newtonian cooling law is applied considering T0as the temperature outside the region, obtaining -k(dT/dy)=γ(T-T0), wherekis the thermal conductivity andγis the heat transfer coefficient. Let (U, V)be the longitudinal and transverse velocity components, respectively. It is assumed that an infinite train of sinusoidal waves progresses along the walls in the Xdirection (see Fig.1). The equation of the channel wall is given by

    Introducing a wave frame (x, y)moving with velocity c away from fixed frame (X, Y)by the transformation

    The constitutive equation for a Carreau fluid is

    where τis the extra stress tensor,η∞is the infinite shear rate viscosity,η0is the zero shear rate viscosity, Γis the time constant,n is Power-law index andn is defined as

    whereΠis the second invariant of strain-rate tensor. Note that the above model reduces to Newtonian model for n =1or Γ=0. The equations of motion for a channel flow in a wave frame of reference are:

    whereρis the density,T is the temperature,kis the thermal conductivity,Cρis the specific heat at constant pressure,g is the acceleration due to gravity andαis the coefficient of thermal expansion of the fluid. The appropriate boundary conditions in a moving frame are:

    where β1is the slip coefficient having dimension of length. Consider the following non-dimensional variables:

    and the dimensionless parameters as follows:

    Reynolds number Re=cap/η0, wave number δ=a/λ, Prandtl number Pr=(cpη0)/k, Eckert number Ec=c2/[c(T-T)], Brickhman numberp10Br=PrEc , Grashof number Gr=[gα a3( T-1)ρ2]/, Weissenberg number We=cΓ/a, Biot number Bi=γa/ k, Slip parameter β=β1/λ.

    By using Eq.(10) (after dropping the bars) and the dimensionless parameters, we have:

    where

    Using the long wavelength approximation in Eqs.(12-19) and consider the terms free ofδonly, it follows that:

    The corresponding non-dimensional boundaryconditions are:

    2. Solution procedures

    Introducing the dimensionless stream function ψ(x, y)such that

    We find that Eq.(20) is satisfied identically. The compatibility equation, which governs the flow in terms of the stream, function ψ(x, y)after eliminating the pressure gradient from Eqs.(21) and (22), is

    and the energy Eq.(23) will be in the form

    The corresponding non-dimensional boundary conditions are:

    where

    qis the non-dimensional flow rate in the wave frame and the relation between the time-mean flowsand q in the fixed and wave frames is

    3. The HAM solution of the problem

    For HAM solutions of the governing Eqs.(26) and (27), we choose the initial approximations of ψ andθ(satisfy the boundary conditions) as follows:

    and the auxiliary linear operators are L(ψ)=d4ψ/1dy4and L(θ)=d2θ/dy2. These auxiliary linear ope-2rators satisfy:

    where c1,c2,c3,c4,c5,c6are constants. Introducing a non-zero auxiliary parameter?, we develop the zeroth-order deformation problems as follow:

    with the boundary conditions

    where the nonlinear operators,L1[ψ(y; p)]and L2[θ(y; p)]are defined as:

    whenp increases from 0 to 1,ψ(y; p)and θ(y; p) vary from ψ0(y)and θ0(y)to ψ(y)and θ(y)respectively. Using Taylor's theorem ψ(y; p)and θ(y; p)can be expanded in power series of pas follows:

    where

    a non-zero auxiliary parameter?is chosen in such a way that the series (40) and (41) are convergent at p =1. Suppose that the auxiliary parameter?is selected such that the series (40) and (41) are convergent at p =1. Then we have:

    Differentiating the zeroth-order deformation Eqs.(35) and (36),m times with respect topand then dividing them by m!and finally setting p=0, we have the following mth-order deformation problem:

    where

    are recurrence formulae, in which

    with the boundary conditions

    We use MATHEMATICA software to obtain the solution of these equations. The first deformations of the coupled solutions may be presented as follow:

    where

    The higher-order solutions of ψmand θmare too long to list here.

    To determine the auxiliary parameter?the so called ?-curves and optimization method are used. In the optimization method, the optimal convergence control parameters are fixed by demanding minimum of the square residual error integrated in the whole region. Let F( ?)denote the square residual error of the governing Eqs.(26)-(27) and express as

    whereψ,θare mentioned in Eqs.(43) and (44). The optimal value of?is given by solving a nonlinear algebraic equation

    The pressure rise Δpfor a channel of lengthL, in non-dimensional form, is given by

    The integral in Eq.(55), not integrable in closed form and is evaluated numerically using a digital computer.

    Fig.2?-curve for the stream function at 5th order approximation for different values of the Weissenberg numberWe

    Fig.3?-curve for the stream function at 5th order approximation for different values of the Power-law index n

    Fig.4?-curve for the temperature at 5th order approximation for different values of the Weissenberg numberWe

    Fig.5?-curve for the temperature at 5th order approximation for different values of the Power-law indexn

    Table 1 The optimal values of?at 5th order approximation for the stream function at the fixed values of x =0.2,α=0.4,β=0.01,Bi =0.01,Br =0.5,Gr =0.5,Q=2

    4. Convergence of the solution

    It is noticed that the solutions (51) and (52) contain the auxiliary parameter? . As pointed out by Liao[16], the convergence region and rate of approximations given by the HAM are strongly dependent upon?. For fixed values of the parameters x =0.2, α=0.4,β=0.01,Bi =0.01,Br =0.5,Gr =0.5, Q =2and n=0.398and with two different values of Weissenberg numberWe (namely,We =0and We =0.2) and x =0.2,α=0.4,β=0.01,Bi =0.01, Br =0.5,Gr =0.5,Q =2and We=0.2with two different values of power-law indexn (namely,n= 0.398 and n =1) the range for admissible values of? for the stream function is -1.3≤?≤-0.7and for temperature is -1.25≤?≤-0.8(see Figs.2-5). Also, the optimal values of?for different parameters are givened in Tables 1 and 2.

    Table 2 The optimal values of ?at 5th order approximation for the temperature at the fixed values of x= 0.2,α=0.4,β=0.01,Bi =0.01,Br =0.5,Gr =0.5,Q=2

    5. Numerical results and discussion

    This section is divided into three subsections. In the first subsection, the effects of various parameters on the pumping characteristics are investigated. The heat characteristics are discussed in the second subsection. The trapping phenomenon is illustrated in the last subsection.

    Fig.6 The velocity distributionu , across the channel with different values of βandGrat x =0.2,We =0.3,n =0.398,Bi =0.1,Q =2,Br =1and φ=0.4

    5.1 Distribution of velocity

    For different values of Grashof numberGr , slip parameterβ, Weissenberg numberWe , Biot number Bi , and the Power-law indexn, Figs.6-9 present the distribution of axial velocity. Figure 6 shows the effect of Grashof numberGr and slip parameterβonthe velocity through the channel with other parameters fixed. It is clear that the velocity profile distributes symmetrically about the center of the channel when Gr =0and β=0, because there is no natural convection and no slip velocity on the walls of the channel. However, with the values ofGrandβelevating, we notice that the velocity is less or large than -1 on the walls (slip condition) and the velocity decreases from near the wall y=hto the center of the channel, but it increases in the other half for increasingGr . Figures 7 and 8 reveal that the magnitude of the axial velocity is large in a Newtonian fluid (We =0or n=1) compared with a non-Newtonian fluid. However, the forward flow region is predominant here since the time averaged flow rate is positive. The effect of Biot numberBi on the axial velocity is shown in Fig.9. It is evident that near the wall y=hthe magnitude of axial velocity is enhanced by increasing the Biot numberBi , because the convection process offers much buoyancy force which leads to the increase in the magnitude of axial velocity. But in the other half of the channel the convection process offers little resistance to the flow therefore the magnitude of axial velocity diminishes.

    Fig.7 The velocity distribution u, across the channel with different values of We at x =0.2,Gr =0,β=0.01,n =0.398,Bi =0.4,Q =2,Br =1and φ=0.4

    Fig.8 The velocity distributionu , across the channel with different values ofn at x =0.2,Gr =0,β=0,We =0.4,Bi =0.3,Q =2,Br =1and φ=0.4

    Fig.9 The velocity distribution u, across the channel with different values of Bi at x =0.2,Gr =1,β=0,n =0.398,We =0.4,Q =2,Br =1and φ=0.4

    Fig.10 Variation of pressure rise Δpover the length versus Q with different values of We at Gr =1,β=0.01,n =0.398,Bi =0.01,Br =1and φ=0.4

    Fig.11 Variation of pressure rise over the length versusQ with different values of n at Gr =2,β=0.01,We =0.3,Bi =0.01,Br =1and φ=0.4

    5.2 Pumping characteristics

    In this subsection, we aim to study the influence of the apparent parameters on the different pumping regions. To discuss this phenomenon we prepared Figs.10-12. For our study of the peristaltic transport of a non-Newtonian fluid, the relationship between the pressure rise and the flow rate is found to be nonlinear. Moreover, for a Newtonian fluid (We =0orn=1) the flow rate averaged over one wave varies linearly with the pressure rise as shown in Figs.10 and 11. Plots in Figs.10 and 11 indicate that the peristaltic pumping region (Δp>0 and Q>0) enhances in a New tonian fluid (We =0 or n=1) and become little in a non-New tonian fluid, that is because the shear thickening appears in the non-New tonian fluid. The effect of Grashof number Gr and the Biot number Bi on the pressure rise Δp is illustrated in Fig.12. It is clear that the peristaltic pumping region increases by increasing the Grashof number Gr while it decreases by increasing the Biot number Bi . Moreover, the rate of the reduce in the peristaltic pumping by the effect of the Biot number Bi in the case of the low values of Grashof number Gr is small, compared w ith the large values of Grashof number Gr.

    Fig.12 Variation of pressure rise Δp over the length versus Q w ith different values of Gr and Bi at n =0.398,β=0.01,We =0.2,Br =1 and φ=0.4

    Fig.13 Temperature distribution θversus y for different values of We at x =0.2,Gr =1,β=0.01,n= 0.398,Br =0.2,Br =1,Q =2 and φ=0.4

    5.3 Heat characteristics

    A ll figures representing the temperature are plotted at the cross section of the channel (i.e,x=0.2). To study the behavior of emerging parameters in the temperature distribution some figures (Figs.13-15)have been displayed. It may be observed from Figs.13 and 14 that at a fixed cross section of the channel the temperature distribution is higher in the case of the New tonian fluid (We =0 or n=1) compared w ith a non-New tonian fluid. This behavior is related to the thermal properties of the non-New tonian fluids. The effects of Grashof number Gr and the Biot number Bi on the temperature distribution are shown in Fig.15. It is clear that the temperature distribution increases through the channel by increasing the Biot number Bi while it increases near the wall y=h by increasing the Grashof number Gr but away from this wall the temperature decreases.

    Fig.14 Tem perature distribution θversus y for different values of We at x =0.2,Gr =1,β=0.01,n= 0.398,Bi =0.2,Br =1,Q =2 and φ=0.4

    Fig.15 Tem perature distribution θversus y for different values of Bi and Gr at x =0.2,β=0.01,We= 0.2,n =0.398,Br =1,Q =2 and φ=0.4

    5.4 Stream lines and fluid trapping

    It is well known that, one of the significant features of peristaltic transport is the phenomenon of trapping. It occurs when stream lines on the central line are split to enclose a bolus of fluid particles circulating along closed stream lines in the wave frame of reference. The trapped bolus moves w ith a speed equal to that of the wave. Figure 16 is an illustration of the stream lines for different values of Weissenberg number(We).Two different areas of trapped bolus appearing abo ut the ce nter, but they are different in number and size.As Weissenberg number(We),increases (non-Newtonian fluid) some sort of rigidity appears and the number of bolus decreases. Streamlines for different Grashof numberGr and Biot numberBi are depicted in Figs.17 and 18. These figures indicate that occurrence and number of trapping is strongly influenced by the value of the Grashof number Gr and Biot numberBi.

    Fig.16 Streamlines for different values ofWe The other parameters chosen are φ=0.4,Q =2,Br =1,Bi =0.3,β=0.01,Gr =1and n =0.398where y∈[-h, h]

    Fig.17 Streamlines for different values of GrThe other parameters chosen are φ=0.4,Q =2,Br =1,Bi =0.3,β=0.01,We =0.2 and n =0.398 where y∈[-h, h]

    Fig.18 Streamlines for different values ofBi the other parameters chosen are φ=0.4,Q =2,Br =1,Gr =1,β=0.01,We =0.2and n =0.398where y∈[-h,h]

    6. Concluding remarks

    The present paper deals with the peristaltic motion of a non-Newtonian fluid (namely a Carreau fluid)through a vertical channel. Thus the present investigation bears the potential of significant application in biomedical engineering and technology. The system of governing equations is reduced to a system of nonlinear PDE by using the long wavelength approximation. A homotopy analysis method (HAM) is used to obtain the solutions for velocity and temperature fields. The convergence region and the optimal values of the auxiliary parameter are discussed explicitly. The present study reveals that the velocity profiles distributes symmetrically about the center of the channel when there is no natural convection and also no slip velocity on the walls of the channel. The region of peristaltic flow advances, if the value of the Grashof number is raised. Moreover, the present study shows that in anon-Newtonian fluid the peristaltic pumping has small effect compared with Newtonian fluid. The region of retrograde flow (the upper left-hand quadrant denotes the region of retrograde pumping (or backward pumping) where Q<0and Δp>0) depreciate at a faster rate, if the values of(We)are raised.

    [1] LATHAM T. W. Fluid motion in a peristaltic pump[D]. Master Thesis, Cambridge, MA, USA: Massachusetts Institute of Technology, 1966.

    [2] BARTON C., RAYNOR S. Peristaltic flow in tubes[J]. Bulletin of Mathematical Biophysics, 1968, 30(4):663-680.

    [3] SHAPIRO A. H., JAFFRIN M. Y. and WEINBERG S. L. peristaltic pumping with long wavelengths at low Reynoleds number[J]. Journal of Fluid Mechanics,1969, 37: 799-825.

    [4] ABD ELMABOUD Y. Thermomicropolar fluid flow in a porous channel with peristalsis[J]. Journal of Porous Media, 2011, 14(11): 1033-1045.

    [5] ABD ELMABOUD Y., MEKHEIMER Kh. S. Nonlinear peristaltic transport of a second-order fluid through a porous medium[J]. Applied Mathematical Modelling, 2011, 35(6): 2695-2710.

    [6] YLDRM A., SEZER S. A. Effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel[J]. Mathematical and Computer Modelling, 2010, 52(3): 618-625.

    [7] HAYAT T., ASFAR A. and KHANA M. et al. Peristaltic transport of a third order fluid under the effect of a magnetic field[J]. Computers and Mathematics with Applications, 2007, 53(7): 1074-1087.

    [8] HAYAT T., ALI N. On mechanism of peristaltic flows for power-law fluids[J]. Physica A: Statistical Mechanics and Its Applications, 2006, 371(2): 188-194.

    [9] ELSHEHAWEY E. F., EL MISERY A. M. and HAKEEM A. A. Peristaltic motion of generalized Newtonian fluid in a non-uniform channel[J]. Journal of the Physical Society of Japan, 1998, 67(2): 434-440.

    [10] HAYAT T., SALEEM N. and ASGHAR S. et al. Influence of induced magnetic field and heat transfer on peristaltic transport of a carreau fluid[J]. Communications in Nonlinear Science and Numerical Simula- tion, 2011, 16(9): 3559-3577.

    [11] HAYAT T., SALEEM N. and ALI N. Effect of induced magnetic field on peristaltic transport of a Carreau fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(9): 2407-2423.

    [12] MEKHEIMER Kh. S., ABD ELMABOUD Y. The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annlus: Application of endoscope[J]. Physics Letters A, 2008,372(10): 1657-1665.

    [13] SRINIVAS S., KOTHANDAPANI M. Peristaltic transport in an asymmetric channel with heat transfer-A note[J]. International Communications in Heat and Mass Transfer, 2008, 35(4): 514-522.

    [14] MEKHEIMER Kh. S., HUSSENY S. Z. A. and ABD ELMABOUD Y. Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel[J]. Numerical Methods for Partial Differential Equations, 2010, 26(4): 747-770.

    [15] LIAO Shi-jun. The proposed homotopy analysis technique for the solution of nonlinear problems[D]. Doctoral Thesis, Shanghai, China: Shanghai Jiao Tong University, 1992(in Chinese).

    [16] LIAO S. Beyond perturbation: Introduction to the homotopy analysis method[M]. Boca Raton, USA:Chapman and Hall/CRC Press, 2003.

    [17] LIAO S. Homotopy analysis method in nonlinear differential equations[M]. Heidelberg, Germany: Springer and Beijing, China: Higher Education Press, 2012.

    [18] ESMAEILPOUR M., DOMAIRRY G. and SADOUGHI N. et al. Homotopy analysis method for the heat transfer of a non-Newtonian fluid flow in an axisymmetric channel with a porous wall[J]. Communications in Nonlinear Science and Numerical Simulations, 2010, 15(9):2424-2430.

    [19] XU H., LIAO S. and YOU X. Analysis of nonlinear fractional partial differential equations with the homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4):1152-1156.

    * Biography: ABD ELMABOUD Y. (1976-), Male, Ph. D.,Associate Professor

    久久久精品欧美日韩精品| 麻豆一二三区av精品| 少妇的丰满在线观看| 一进一出抽搐动态| 欧美日韩一级在线毛片| 99riav亚洲国产免费| 精品国产乱码久久久久久男人| av在线天堂中文字幕| 亚洲无线在线观看| 十八禁网站免费在线| av欧美777| 搡老岳熟女国产| 婷婷精品国产亚洲av在线| 久久久久亚洲av毛片大全| 人人妻人人澡欧美一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出抽搐gif免费好疼| 精品一区二区三区视频在线观看免费| av福利片在线观看| 99久久99久久久精品蜜桃| 9191精品国产免费久久| 一本大道久久a久久精品| 成人高潮视频无遮挡免费网站| 亚洲一区二区三区不卡视频| 亚洲专区字幕在线| 国产精品乱码一区二三区的特点| 无限看片的www在线观看| 在线十欧美十亚洲十日本专区| 欧美日韩瑟瑟在线播放| 国产成+人综合+亚洲专区| 日本 av在线| 男女下面进入的视频免费午夜| 男女下面进入的视频免费午夜| 国产高清激情床上av| av欧美777| 99热只有精品国产| 日本精品一区二区三区蜜桃| 免费在线观看完整版高清| 久久伊人香网站| 国产精品亚洲av一区麻豆| 国产亚洲欧美98| 国产v大片淫在线免费观看| 欧美极品一区二区三区四区| 美女扒开内裤让男人捅视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美国产一区二区入口| 99国产极品粉嫩在线观看| 午夜福利18| 少妇人妻一区二区三区视频| 国产不卡一卡二| 99久久精品热视频| 久久中文看片网| 波多野结衣高清作品| 他把我摸到了高潮在线观看| 深夜精品福利| 亚洲国产欧美人成| 亚洲18禁久久av| 两个人免费观看高清视频| 亚洲精品一卡2卡三卡4卡5卡| xxx96com| 久久人妻av系列| 黄色a级毛片大全视频| 免费一级毛片在线播放高清视频| 成人精品一区二区免费| 91在线观看av| 欧美日韩瑟瑟在线播放| 国产精品免费视频内射| 精品电影一区二区在线| 97人妻精品一区二区三区麻豆| 在线永久观看黄色视频| 美女黄网站色视频| 日韩三级视频一区二区三区| 露出奶头的视频| 亚洲一码二码三码区别大吗| 免费看十八禁软件| 欧美成狂野欧美在线观看| 日本撒尿小便嘘嘘汇集6| 欧美极品一区二区三区四区| 国产v大片淫在线免费观看| 法律面前人人平等表现在哪些方面| 99热这里只有是精品50| 久久 成人 亚洲| 国产精品乱码一区二三区的特点| 精品一区二区三区视频在线观看免费| 久久人人精品亚洲av| 日韩欧美 国产精品| 日韩精品青青久久久久久| 成人三级黄色视频| www.999成人在线观看| 淫秽高清视频在线观看| 狠狠狠狠99中文字幕| 中亚洲国语对白在线视频| 精品欧美国产一区二区三| 性欧美人与动物交配| 久久人妻av系列| 两性午夜刺激爽爽歪歪视频在线观看 | 中亚洲国语对白在线视频| 亚洲人与动物交配视频| 亚洲av片天天在线观看| av国产免费在线观看| 亚洲七黄色美女视频| 又爽又黄无遮挡网站| 免费在线观看视频国产中文字幕亚洲| 国产一区二区在线观看日韩 | 最好的美女福利视频网| 欧美成人性av电影在线观看| 日本三级黄在线观看| 黄色成人免费大全| 国产欧美日韩一区二区三| 18禁裸乳无遮挡免费网站照片| 伦理电影免费视频| 国产高清视频在线播放一区| 舔av片在线| 国产日本99.免费观看| 亚洲成av人片在线播放无| 最好的美女福利视频网| 亚洲精华国产精华精| 成人18禁在线播放| 每晚都被弄得嗷嗷叫到高潮| 国产精品av久久久久免费| 桃色一区二区三区在线观看| 熟妇人妻久久中文字幕3abv| 男女下面进入的视频免费午夜| 最近最新免费中文字幕在线| 久久热在线av| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 亚洲国产精品久久男人天堂| 亚洲成人免费电影在线观看| or卡值多少钱| 欧美国产日韩亚洲一区| 久久久久久免费高清国产稀缺| 免费高清视频大片| 久久久精品国产亚洲av高清涩受| 老熟妇乱子伦视频在线观看| 高清在线国产一区| 一进一出抽搐gif免费好疼| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 成人永久免费在线观看视频| 国产成人系列免费观看| 亚洲国产精品成人综合色| 日韩欧美在线二视频| 精品不卡国产一区二区三区| 香蕉久久夜色| 免费在线观看影片大全网站| 久久久国产精品麻豆| av片东京热男人的天堂| 欧美精品啪啪一区二区三区| 亚洲av美国av| 国产成人aa在线观看| 黑人操中国人逼视频| 在线视频色国产色| 欧美乱妇无乱码| 天堂av国产一区二区熟女人妻 | 国产精华一区二区三区| 日韩欧美在线乱码| av在线播放免费不卡| 午夜福利在线观看吧| 精品国产乱子伦一区二区三区| 成人国产一区最新在线观看| 国产精品av久久久久免费| 校园春色视频在线观看| 两个人的视频大全免费| 51午夜福利影视在线观看| 日本三级黄在线观看| 国产99白浆流出| 天堂√8在线中文| 久久这里只有精品19| 日本熟妇午夜| 免费高清视频大片| 欧美日韩亚洲国产一区二区在线观看| 国产精品综合久久久久久久免费| 丝袜美腿诱惑在线| 国产aⅴ精品一区二区三区波| 国产爱豆传媒在线观看 | 欧美日韩精品网址| 国产91精品成人一区二区三区| 99在线视频只有这里精品首页| 亚洲av片天天在线观看| 美女黄网站色视频| 狂野欧美激情性xxxx| av福利片在线观看| 国产精品精品国产色婷婷| 人妻久久中文字幕网| 黑人巨大精品欧美一区二区mp4| 变态另类丝袜制服| 日本三级黄在线观看| 国产99白浆流出| 90打野战视频偷拍视频| 午夜久久久久精精品| 一进一出抽搐gif免费好疼| av有码第一页| 久9热在线精品视频| 国产人伦9x9x在线观看| 搞女人的毛片| 精品福利观看| 国产在线观看jvid| 亚洲中文av在线| 一本久久中文字幕| 成人三级做爰电影| 成人欧美大片| 在线观看www视频免费| 欧美黑人精品巨大| 日日干狠狠操夜夜爽| 精品一区二区三区四区五区乱码| 国产探花在线观看一区二区| 麻豆成人av在线观看| 男人舔女人下体高潮全视频| 精品免费久久久久久久清纯| 老司机午夜十八禁免费视频| 中文在线观看免费www的网站 | 国产亚洲精品久久久久5区| 夜夜夜夜夜久久久久| 777久久人妻少妇嫩草av网站| 国产黄a三级三级三级人| 少妇的丰满在线观看| 亚洲专区国产一区二区| 舔av片在线| www.熟女人妻精品国产| 久久人人精品亚洲av| 中国美女看黄片| 国产精品野战在线观看| 欧美黑人精品巨大| 亚洲人与动物交配视频| 一级黄色大片毛片| 天堂√8在线中文| 国产v大片淫在线免费观看| 熟女电影av网| 欧美zozozo另类| 久久久久久久久免费视频了| 亚洲精品久久成人aⅴ小说| 一级作爱视频免费观看| 99国产精品一区二区三区| 亚洲18禁久久av| 久久久久久亚洲精品国产蜜桃av| 国产精品亚洲一级av第二区| 搡老妇女老女人老熟妇| 可以在线观看毛片的网站| 午夜a级毛片| 久9热在线精品视频| 757午夜福利合集在线观看| 天堂动漫精品| 国产久久久一区二区三区| 久久久久久人人人人人| 男插女下体视频免费在线播放| 中文资源天堂在线| 黄片小视频在线播放| aaaaa片日本免费| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 精品久久久久久久久久免费视频| 午夜a级毛片| bbb黄色大片| 白带黄色成豆腐渣| 亚洲av日韩精品久久久久久密| 亚洲国产中文字幕在线视频| 不卡一级毛片| cao死你这个sao货| 人人妻人人看人人澡| 亚洲激情在线av| 日韩有码中文字幕| 亚洲中文字幕日韩| 久久亚洲真实| 国产精品亚洲美女久久久| 亚洲精品美女久久久久99蜜臀| 国产区一区二久久| 精品一区二区三区视频在线观看免费| 黄频高清免费视频| 国产亚洲精品综合一区在线观看 | 日本一本二区三区精品| 午夜福利欧美成人| e午夜精品久久久久久久| 国产视频一区二区在线看| 免费观看人在逋| 男女那种视频在线观看| 久久精品aⅴ一区二区三区四区| 日本一区二区免费在线视频| 国产精品99久久99久久久不卡| 久久久精品欧美日韩精品| 高清在线国产一区| 精品福利观看| 国产一区二区三区在线臀色熟女| 国产高清videossex| 午夜福利18| 日韩大码丰满熟妇| 中文字幕久久专区| 久久精品国产亚洲av香蕉五月| 在线看三级毛片| 色哟哟哟哟哟哟| 日韩欧美免费精品| 午夜日韩欧美国产| 变态另类丝袜制服| 久久久精品大字幕| 国产私拍福利视频在线观看| 日本在线视频免费播放| 在线视频色国产色| 欧美丝袜亚洲另类 | 国产一区二区在线观看日韩 | 亚洲精品粉嫩美女一区| 最近最新中文字幕大全电影3| 国产三级在线视频| 中文字幕精品亚洲无线码一区| 日本成人三级电影网站| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 黄片小视频在线播放| 特大巨黑吊av在线直播| 日本五十路高清| tocl精华| 亚洲一区二区三区色噜噜| 老鸭窝网址在线观看| 一本大道久久a久久精品| 久久香蕉国产精品| 国产精品电影一区二区三区| 日韩欧美三级三区| 正在播放国产对白刺激| 国内揄拍国产精品人妻在线| 欧美另类亚洲清纯唯美| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 国产一区二区三区视频了| 中国美女看黄片| 亚洲va日本ⅴa欧美va伊人久久| 哪里可以看免费的av片| 精品一区二区三区av网在线观看| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 国产成人系列免费观看| 国产69精品久久久久777片 | 91成年电影在线观看| 精品第一国产精品| 国产私拍福利视频在线观看| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 国产三级在线视频| 亚洲免费av在线视频| 天天躁夜夜躁狠狠躁躁| 一进一出抽搐动态| 18禁观看日本| 在线观看免费午夜福利视频| 亚洲电影在线观看av| 日韩av在线大香蕉| 岛国在线观看网站| 最近最新中文字幕大全免费视频| 天天一区二区日本电影三级| 色综合站精品国产| 国产成人精品久久二区二区免费| 国产一区二区激情短视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲av美国av| 午夜精品一区二区三区免费看| 99久久精品热视频| 操出白浆在线播放| 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 我的老师免费观看完整版| 在线观看免费日韩欧美大片| 亚洲成人免费电影在线观看| 午夜福利视频1000在线观看| 成人特级黄色片久久久久久久| 18美女黄网站色大片免费观看| 激情在线观看视频在线高清| 国产亚洲精品久久久久5区| 欧美乱码精品一区二区三区| 最近视频中文字幕2019在线8| 一级毛片高清免费大全| 亚洲人成77777在线视频| 日日摸夜夜添夜夜添小说| 国产精品一区二区三区四区久久| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 欧美大码av| 伊人久久大香线蕉亚洲五| 欧美在线一区亚洲| 久久久久国产精品人妻aⅴ院| 极品教师在线免费播放| 国产精品亚洲美女久久久| 琪琪午夜伦伦电影理论片6080| 国产成人一区二区三区免费视频网站| 亚洲中文字幕一区二区三区有码在线看 | 91字幕亚洲| 久久香蕉激情| 一二三四在线观看免费中文在| 欧美日韩中文字幕国产精品一区二区三区| 欧美丝袜亚洲另类 | 丰满人妻一区二区三区视频av | 一级毛片高清免费大全| 成人三级黄色视频| 国模一区二区三区四区视频 | 在线观看舔阴道视频| 色综合亚洲欧美另类图片| 国产成人aa在线观看| 午夜激情av网站| 亚洲精品粉嫩美女一区| 91麻豆av在线| 国产爱豆传媒在线观看 | 特级一级黄色大片| 99热只有精品国产| 国产单亲对白刺激| 国产精品综合久久久久久久免费| 免费人成视频x8x8入口观看| 亚洲av电影不卡..在线观看| 天天躁夜夜躁狠狠躁躁| 免费搜索国产男女视频| 亚洲av片天天在线观看| 男女做爰动态图高潮gif福利片| 久久九九热精品免费| 欧美激情久久久久久爽电影| 黄色视频不卡| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| a在线观看视频网站| 天天一区二区日本电影三级| 一个人免费在线观看的高清视频| 一级毛片精品| 亚洲熟妇中文字幕五十中出| 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 99在线视频只有这里精品首页| 亚洲精品一卡2卡三卡4卡5卡| 亚洲黑人精品在线| 亚洲成人免费电影在线观看| 久久九九热精品免费| 两个人的视频大全免费| x7x7x7水蜜桃| 精品久久久久久,| 人妻久久中文字幕网| 两个人免费观看高清视频| 亚洲第一电影网av| 美女黄网站色视频| 国产探花在线观看一区二区| 嫩草影院精品99| 人人妻人人看人人澡| 香蕉丝袜av| www日本在线高清视频| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 天堂动漫精品| 亚洲av成人一区二区三| 一个人免费在线观看电影 | 成人国产一区最新在线观看| 亚洲五月天丁香| 少妇熟女aⅴ在线视频| 国内揄拍国产精品人妻在线| 曰老女人黄片| 久久香蕉国产精品| 99热这里只有是精品50| 亚洲真实伦在线观看| 久久久国产成人免费| 日韩中文字幕欧美一区二区| 亚洲精品中文字幕一二三四区| 一级片免费观看大全| 久久九九热精品免费| 舔av片在线| 一进一出抽搐动态| 真人一进一出gif抽搐免费| 亚洲avbb在线观看| 激情在线观看视频在线高清| 亚洲精品久久成人aⅴ小说| 18美女黄网站色大片免费观看| 欧美大码av| 日本黄大片高清| 久久久国产精品麻豆| 亚洲欧洲精品一区二区精品久久久| av国产免费在线观看| 国产成人aa在线观看| 精品不卡国产一区二区三区| 男女之事视频高清在线观看| 日韩大尺度精品在线看网址| 久久婷婷人人爽人人干人人爱| 久久久久国产一级毛片高清牌| 最好的美女福利视频网| 老司机午夜十八禁免费视频| 精品一区二区三区视频在线观看免费| www.www免费av| 99国产精品99久久久久| 中文字幕人妻丝袜一区二区| 丰满人妻熟妇乱又伦精品不卡| 久久久久亚洲av毛片大全| 午夜精品久久久久久毛片777| 全区人妻精品视频| 悠悠久久av| 大型av网站在线播放| 丁香六月欧美| 国产精品,欧美在线| 色av中文字幕| 国产精品综合久久久久久久免费| 十八禁人妻一区二区| 亚洲欧美日韩东京热| 国产欧美日韩精品亚洲av| 国产高清videossex| 婷婷六月久久综合丁香| 成人亚洲精品av一区二区| 18禁黄网站禁片免费观看直播| 狂野欧美白嫩少妇大欣赏| 天天躁夜夜躁狠狠躁躁| 岛国在线免费视频观看| 免费在线观看黄色视频的| av福利片在线观看| 国产成人影院久久av| 国产伦在线观看视频一区| 99国产综合亚洲精品| 可以在线观看毛片的网站| 88av欧美| 午夜精品一区二区三区免费看| 亚洲国产欧洲综合997久久,| xxx96com| 国产精品av视频在线免费观看| 国产69精品久久久久777片 | 欧美丝袜亚洲另类 | 国产精品免费一区二区三区在线| 国产精品久久电影中文字幕| 国产又色又爽无遮挡免费看| 美女扒开内裤让男人捅视频| 久久这里只有精品中国| 老司机午夜福利在线观看视频| 国产精品99久久99久久久不卡| 国产真人三级小视频在线观看| 女警被强在线播放| 国产爱豆传媒在线观看 | 午夜视频精品福利| 国产成人精品无人区| 亚洲专区字幕在线| 免费人成视频x8x8入口观看| 国产精品一区二区三区四区免费观看 | 91麻豆精品激情在线观看国产| 午夜久久久久精精品| 亚洲精品色激情综合| 丁香六月欧美| 91麻豆精品激情在线观看国产| 久久久精品大字幕| 国产高清视频在线观看网站| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三| xxx96com| 香蕉av资源在线| 观看免费一级毛片| 美女黄网站色视频| 久久午夜亚洲精品久久| 曰老女人黄片| 亚洲精品中文字幕一二三四区| 免费在线观看视频国产中文字幕亚洲| 精品久久久久久久毛片微露脸| 亚洲一区二区三区不卡视频| 丝袜美腿诱惑在线| 99久久99久久久精品蜜桃| 久久精品综合一区二区三区| 1024视频免费在线观看| 特级一级黄色大片| 18禁美女被吸乳视频| 好看av亚洲va欧美ⅴa在| 黄频高清免费视频| 在线观看舔阴道视频| 亚洲九九香蕉| 亚洲专区字幕在线| 18禁美女被吸乳视频| av免费在线观看网站| 久久午夜亚洲精品久久| 悠悠久久av| 很黄的视频免费| 欧美又色又爽又黄视频| 久久久久性生活片| 国产精品影院久久| 99久久精品国产亚洲精品| 少妇人妻一区二区三区视频| 亚洲精品国产一区二区精华液| 久久婷婷人人爽人人干人人爱| 级片在线观看| 长腿黑丝高跟| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲| 亚洲自偷自拍图片 自拍| 99久久无色码亚洲精品果冻| 日本成人三级电影网站| 日本一二三区视频观看| 亚洲全国av大片| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩无卡精品| 欧美另类亚洲清纯唯美| 18禁国产床啪视频网站| 可以在线观看毛片的网站| 久久人妻福利社区极品人妻图片| 又黄又爽又免费观看的视频| 1024视频免费在线观看| 三级国产精品欧美在线观看 | 日韩av在线大香蕉| 曰老女人黄片| 老鸭窝网址在线观看| 757午夜福利合集在线观看| 51午夜福利影视在线观看| 国内精品一区二区在线观看| 禁无遮挡网站| 亚洲av成人不卡在线观看播放网| 精品久久蜜臀av无| 国产精品一及| 日韩欧美在线乱码| 少妇裸体淫交视频免费看高清 | 久久精品国产清高在天天线| 最近最新中文字幕大全电影3| 色综合站精品国产| 国内精品一区二区在线观看| 久久九九热精品免费| 女人高潮潮喷娇喘18禁视频| 色av中文字幕| 久久天堂一区二区三区四区| 午夜精品一区二区三区免费看| 舔av片在线| 久久国产精品影院| 制服诱惑二区| 亚洲自拍偷在线| 日本在线视频免费播放| 日韩三级视频一区二区三区| 香蕉久久夜色|