• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parametric Effect Investigation on Aerodynamic Interaction Characteristics for Tandem Rotors in Forward Flight

    2015-11-24 06:57:35HuangShuilin黃水林LinYongfeng林永峰FanFeng樊楓LiuZhangwen劉長文
    關鍵詞:黃水

    Huang Shuilin(黃水林),Lin Yongfeng(林永峰),F(xiàn)an Feng(樊楓),Liu Zhangwen(劉長文)

    Parametric Effect Investigation on Aerodynamic Interaction Characteristics for Tandem Rotors in Forward Flight

    Huang Shuilin(黃水林)*,Lin Yongfeng(林永峰),F(xiàn)an Feng(樊楓),Liu Zhangwen(劉長文)

    Science and Technology on Rotorcraft Aeromechanics Laboratory,CHRDI,Jingdezhen,P.R.China

    An iterative free-wake computational method is developed for the prediction of aerodynamic interaction characteristics between the twin rotors of a tandem helicopter.Here the mutual interaction effects between twin rotors are included,as well as those between the rotor and wake.A rotor wake model,blade aerodynamic model and rotor trim model are coupled during the process of solution.A new dual-rotor trim approach is presented to fit for the aerodynamic interaction calculations between tandem twin rotors.By the present method,the blade aerodynamic loads and rotor performance for the twin rotors under the interactional condition are calculated,and the comparisons with available experimental data are also made to indicate the capability of the proposed method.Then,the effects of such parameters as the longitudinal separation and axial separation between twin rotors on the aerodynamic interaction characteristics are analyzed.Based on the investigation,the conclusions are obtained to be of benefit to the configuration design of tandem rotors.Furthermore,the performance comparison between the tandem rotors and a single rotor is conducted.It is shown that the strongest interaction does not appear in a hover state,but in a low-speed forward flight state.

    tandem helicopter;twin rotors;aerodynamic interaction;rotor trim model;parametric effect

    0 Introduction

    Tandem helicopter has two rotors overlapping each other,making the aft rotor locate below the vortex wake of the front one easily.The front rotor wake may either impact the aft rotor directly or closely pass through the aft one,and severe aerodynamic interaction occurs between twin rotors as well as between the rotor and wake.Compared to a single rotor,the rotor wake interaction of tandem twin-rotors may cause a greater change of flow field and aerodynamic characteristics,helping distinguish its aerodynamic analysis method from that of a single rotor.As a result,such aerodynamic interaction between twin rotors will significantly affect rotor performance.Thanks to the development of the new-generation helicopter with more compact structure and bigger disk loading,the aerodynamic interaction between rotors tends to be stronger.It is essential to conduct the research on twin-rotor aerodynamic interaction of a tandem helicopter.

    The researches on aerodynamics of twin rotors for a tandem helicopter were started in 1960’s.But the early work almost aimed at the flight performance,stability and control of tandem helicopters and focused on experiments[1-2]. Aerodynamic interference and rotor performance were rarely studied.After that,aerodynamic interaction of overlapping part of two rotors was investigated by researchers through simple momentum and blade-element theory.For example,Ref.[3]derived the calculation formula of performance for tandem rotors in hover,and drew a summary on previous experiments.However,the main disadvantage of momentum theory is that the induced velocity distribution across rotor disk is uniform,which significantly differs from the reality.Since the 1980’s,researchers have triedto use the vortex theory to study the aerodynamic interference characteristics of tandem rotors.In 1995,Bagai et al.first adopted a free wake method to investigate wake dynamics of tandem rotors[4],but simply analyzed the geometry of rotor wake without involving blade load and rotor performance.Recently,many researches[5-9]on aerodynamic interaction of twin rotors have been carried out in China.However,most of them were for coaxial twin rotors[6-7]and side-by-side(tilt)twin rotors[8-9],and few studies were conducted on parametric effects on rotor performance for a tandem helicopter.In the last five years,some new researches were counducted about tandem helicopter[10-12].

    Generally speaking,accurate calculation of rotor performance for a helicopter is challenging,and this is because it has a high correlation with both blade three-dimensional effects and rotor wake.Furthermore,when blade tip Mach number is relatively large,compressibility effects have to be included in the calculation of rotor power.Even in steady forward flight,the variation of blade sectional angle of attack is still unsteady,and mutual interaction between twin rotors will complicate the performance calculation.

    Recently,computational fluid dynamics(CFD)technology has made a considerable progress in simulating rotor flow-fields,and some researchers tried to choose CFD methods to investigate flow field interaction of twin rotors[5]. However,CFD methods require so much computer resources,and numerical dissipation problem still remains,especially in capturing vortex wake of twin rotors for a tandem helicopter.Compared with the CFD method,vortex theory(wake analysis)which directly solves governing equation of vortex line may be a more convenient method,as far as the calculation of blade sectional induced velocity and loading distribution is concerned. Thus,this paper tries to develop a coupling iterative computational method of free-wake to calculate the aerodynamic characteristics and parametric effects of twin rotors.

    In order to investigate the aerodynamic interactional characteristics of tandem rotors and compare with a single rotor,this paper defines a new additional power factor of twin rotors.Based upon the definition,the variation of aerodynamic interactional characteristics with different twinrotor structure layout is emphatically studied. Additionally,different from previous researches,a twin-rotor trim analytical model is presented for wake calculation of a tandem configuration in this paper in order to improve the accuracy of calculation.

    1 Computational Model

    where r is the position vector of wake point;ψthe blade azimuth angle;ψWthe age angle of wake vortex;and V0the velocity of free flow.v11and v22are the self-induced velocities of rotor 1(R1)and rotor 2(R2),respectively.

    To obtain the correct wake structure,the governing equation of vortex line should be numerically discreted and solved.Although Eq.(1)is relatively simple in form,the solution is quite difficult.This is because the local velocity includes free-flow velocity,mutual induced velocity and self-induced velocity of wake vortices.In physics,helicopter rotor wake is unstable.This will result in great difficulties in solving the governing equation of rotor wake.Previous methods mostly adopt explicit time marching method[13]. One major problem of explicit time-marching method is the numerical instability.Afterwards,some researchers attempted to partly overcome this problem by introducing numerical damping. But rotor wake is strained when introducing numerical damping,and the condition of no loadbearing of wake is destroyed and the calculation results could not be reliably used.Compared mith the explicit time-marching method,semi-implicit scheme relaxation method[14]has better numerical

    1.1 Free wake model for aerodynamic interaction of tandem rotors

    In accordance with the definition of free wake,vortex lines freely move at the local velocity in the flow field.In mathematics,it can be written as the first-order ordinary differential equations(ODE)[4],namelystability.In view of this,the relaxation method is also employed here for the tandem twin-rotor configuration.

    When Eq.(1)is solved,initial values in the spatial domain and boundary conditions in the time domain need to be given,i.e.

    where rtipis the shedding location of tip vortex;β0 the coning angle of the rotor;andαsthe tip-pathplane tilt angle.

    1.2 Blade aerodynamic model for rotor performance analysis

    Blade aerodynamic force and blade circulation are closely related,and the distribution of blade circulation is solved by satisfying the impenetrable condition on control points at 3/4 chord-line position,i.e.

    whereΓis the circulation of blade bound vortex;M the total number of control point;A'the influence coefficient of blade bound circulation and wake induction;v'in right end the induced velocity of two rotors on control point;and n the normal vector.

    After solving the circulation of each blade segments through the free-wake model,the inflow of rotor disk plane can be determined,and the aerodynamic force of blade section can be further calculated.Blade aerodynamic lift and drag per unit length can be calculated.

    whereαis the sectional angle of attack,U the total sectional flow velocity.Cland Cdare the airfoil lift and drag,respectively;ρthe air density;and b the chord of blade section airfoil.

    The aerodynamic environment of rotor airfoil section is more complicated than that of wing,because the Mach number and the section angle of attack at different radial positions are different. Moreover,the Mach number and the section angle of attack at different azimuths are different in a forward flight.In the current analysis,the well-known Beddoes model[15],which can consider flow compressibility and separation effect and calculate thrust coefficients at different Mach numbers,is utilized to determine airfoil lift and drag.Lift coefficient depending on the angle of attack can be expressed as

    where Ma is the local Mach number of sectional airfoil and f the ratio of separated location to chord length

    whereαzis the zero-lift angle of attack;α0.7the stall angle of attack at 0.7 chord line;αHthe separation angle at big angle of attack;and S1,S2and fHare the parameters of airfoil static-stall characteristics.

    1.3 Twin-rotor trim model with aerodynamic interaction

    Trim analysis was almost not considered in previous research of rotor wake,and the rotor collective pitch and cyclic pitch controls are directly given in the calculation.A major reason is that the consideraton of rotor trim will greatly increase the complexity of wake solution.However,as showed in Ref.[16],it may lead to improper results without considering rotor trim.

    For the tandem two rotors with front and aft asymmetry,its trim is different from that of the single rotor and coupling of two rotors is necessary.However,it will add the time of wake solution.To improve the calculation efficiency,this section presents a new trim model for tandem rotors.Usually,the trim process for single rotor is as follows:giving inclination of rotor axis and forward flight velocity,and adjusting the collective pitchθ0.7and cyclic pitchθ1c,θ1s,then obtaining longitudinal tip-path-plane tilt angle a1and lateral tip-path-plane tilt angle b1by solving the equation of flap motion.Next,compare the calculated thrust coefficients CT,a1and b1withthe specified values,and obtain convergent solution after iterative calculations.This paper sets rotor thrust coefficient CT,rotor roll moment Mxand pitch moment Myas the target values,thus there is no need to obtain longitudinal tip-pathplane tilt angle a1and lateral tip-path-plane tilt angle b1by iteratively solving implicit equation of flap motion.a1and b1are directly given to reduce the computing time greatly.

    Meanwhile,it is necessary to consider the influence between two tandem rotors and torque trim.Tandem twin-rotor is different from single rotor in trim process,and the control inputs and outputs are of six items instead of three items. Control input and output vectors are defined as

    where superscript"tw"means twin rotors,and superscripts"1""2"refer to the aft rotor and the front one,respectively.CtwT,CtwQare the sums of the lift and torque moment of two rotors.Expanding vectors into the first-order Taylor series,one has

    Fig.1 Flowchart of aerodynamic interaction characteristics for tandem rotors

    where J is a 6×6 Jacobian matrix of twin rotors.

    During trim process,firstly,give the rotor flapping input and pre-suppose output response,then solve equations via step iteration.When Δx≤RMS(RMS is assigned as a small value),convergent trim control is considered to be achieved.In actual calculation,the solution of flapping equations and update of trimming variables is in iterative processes,and is coupled with the rotor wake solution.

    1.4 Coupling model of twin rotors for aerodynamic interaction

    Fig.1 gives the flowchart of aerodynamic in-teraction characteristics combining the wake model of two rotors and aerodynamic model with rotor trim model.Calculations of the wake-point induced velocity and trim analysis need to include mutual effects of two tandem rotors.Because it needs massive computational time when the wake of two rotors is simultaneously iterated in updating the free rotor wake,here the calculation of wake points is for each rotor alone,and the influence of interaction needs to be considered after obtaining the wake of two rotors,then the wake of two rotors is iteratively calculated to get convergent solution.To do so,computational time is relatively less.

    2 Method Verification

    The model rotor with available experimental data in Ref.[2]is chosen as the numerical example for performance calculation of tandem rotors,and the main parameters are shown in Table 1.

    Table 1 Main parameters of model rotor

    In Ref.[2],the thrust and torque coefficients of a tandem model with two two-blade rotors and an isolated single rotor were measured in the same state.It was found in the experiment[2]that the measured performance of the tandem rotor is better than that for the single rotor,because the tandem rotors required less power than the single rotor at the same thrust coefficient. Fig.2 gives the current calculating results of tandem rotors and single rotor in hover as well as the comparisons with experimental data[2].As shown in Fig.2,the good correlation between calculated values and experimental data is achieved.It is also noted that although there is no overlapping area for twin rotors,the overall performance in hover is better than that of a single rotor when the longitudinal separation of twin rotors reaches 2.06 R,due to the mutual induced interaction of two rotors.

    When the longitudinal separation is 0,the layout is the same as that of coaxial twin rotors. To further verify the calculating method in this paper,coaxial twin rotors are also taken as an example,and the distribution of induced velocities is calculated.Fig.3 shows the distribution of induced velocities at 0.2R vertical station below upper rotor and its comparison with the test data[6]. The calculated results agree with experimental data reasonably.

    3 Parameter Effect and Aerodynamic Interaction Calculation

    This section chooses the full-scaled twin rotors of tandem helicopter CH-47D as an example,and the main parameters are as follows:three blades,rotor radius of 9.145 m,chord of 0.81 m,blade negative-twist of-8°,rotation speed of 23.5 rad/s and NACA0012 airfoil.

    The typical layout parameter of tandem rotors is(1.3R,0,-0.2R),as shown in Fig.4.It has no large longitudinal separation and compact airframe structure but great interaction.The hub center of aft rotor is defined as the origin of coordinate.The x-direction is along longitudinalbody,the y-direction along lateral body,and the z-direction along axial one.In Fig.4,dLis the longitudinal separation between rotors,dVthe axial separation,and v the forward velocity.

    Fig.3 Induced velocity distribution at 0.2R below rotor

    Fig.4 Coordinate for tandem twin rotors

    4 Trim Analysis and Aerodynamic Loads Calculation for Tandem Rotors

    Fig.5 gives the variation of blade section loads with azimuth angle at the radial station of 0.85R in a forward flight(μ=0.3)for tandem twin rotors and a conventional single rotor.Longitudinal coordinate denotes non-dimensional blade section load M2Cl.In Fig.5,blade loads vary with azimuth angle greatly.Besides,due to the mutual interaction between the twin rotors of a tandem helicopter,loads distribution of the front rotor and aft rotor is different from that of a conventional single rotor.

    Fig.5 Variation of blade load with azimuth angle for tandem rotors(0.85R,μ=0.3)

    To illustrate the impact of trim on rotor aerodynamic loads,F(xiàn)ig.6 gives a typical calculated result of longitudinal load distribution without and with trim of tandem rotors.From Fig.6,the blade load without trim is larger at the 180°azimuth angle,thus generating a nose-up pitching moment easily.Blade load distributions at 0°and 180°azimuth angles are nearly symmetric after trim.It is also noted that in Fig.6(b),in spite of the inclusion of trim,the load distribution fluctuates significantly at 0°azimuth angle(overlapping area)of front rotor.This is because blade of front rotor at 0°azimuth angle is under the wake of aft rotor,and the trimming has a large effect on the calculated results.

    4.1 Calculation of performance for twin rotors

    Fig.7 gives performance curves of front and aft rotors at advance ratio(μ)of 0.1 for tandem rotors with comparison of single rotor.It is shown that the performance of front rotor is similar to that of a single rotor in a forward flight(μ=0.1),but the aft rotor performance is worse than that of front rotor or single rotor,which is consistent with the calculation result in Ref.[5],with the adoption of a CFD method.

    4.2 Effects of layout parameters for tandem rotors

    To compare with the single rotor,and to investigate the effect of layout parameters for tandem rotors,an additional power factor is defined

    Fig.6 Comparisons of blade load distribution of tandem rotors with and without trim(μ=0.1)

    Fig.7 Performance comparison between tandem rotors and single rotor(μ=0.1)

    as follows

    where subscripts"twin"and"isolated"denote the tandem twin rotors and the isolated rotor,respectively.

    Fig.8 gives a variation of additional power factor with longitudinal separation for the forward flight of tandem rotors.When the longitudinal separation is 1.3R,the additional power of tandem rotors is just about 25.7%(CT=0.006)of two separate rotors,along with the increase of the longitudinal separation increasing.The additional power factor decreases first and subsequently increases.The additional power drops to the minimum when the longitudinal separation between two rotors is 1.8R.

    Fig.8 Variation of additional power factor with longitudinal separation for tandem rotors(μ=0.1,dV/R=0.2)

    Fig.9 is a variation of additional power with axial separation for tandem rotors.Axial separation sort of influences the additional power of rotors in a forward flight,and additional power decreases as the axial separation of rotors increases. Fig.9 also shows that the increase of thrust coefficient will result in the increase of additional power.

    Fig.10 presents a variation of additional power factor with advanced ratio under the condition of the same thrust coefficient for tandem rotors.Obviously,when thrust coefficient keeps constant,additional power required for tandem rotors increases first and then decreases with the increment of advance ratio.Namely at low speed,as advanced ratio increases,mutual interaction between two rotors becomes stronger,and reaches the maximum at the advanced ratio of 0.1.

    Fig.9 Variation of additional power factor with axial separation for tandem rotors(μ=0.1,dL/R= 1.3)

    From middle forward speed to larger speed,mutual interaction between two rotors becomes weaker.For a larger thrust coefficient,the additional power factor of tandem rotors increases.

    Fig.10 Variation of additional power factor with advance ratio for tandem rotors

    5 Conclusions

    The aerodynamic interactional characteristics of tandem twin-rotors for the hover and typical forward flight(μ=0.1)states are calculated and analyzed,and the parametric effects of different tandem configurations are investigated.Several conclusions can be drawn as follows:

    (1)The front rotor performance of tandem rotors is similar to that of the isolated one,while the aft rotor performance is worse than that of the front one or an isolated rotor due to the wake interaction of front rotor.

    (2)Compared with two isolated rotors,the tandem twin-rotors need 25.7%more power at the longitudinal separation of 1.3R for current numerical case.The additional power will decrease first and increase later when the longitudinal separation increases,and it reaches the minimum at about 1.8R longitudinal separation.

    (3)The variation of axial separation affects the rotor power in a forward flight,and the power will decrease as the axial separation increases.

    (4)The additional power needed by tandem twin rotors will increase first and decrease later as the advance ratio increases.The most serious interaction between twin rotors does not appear in hover but in a low-speed forward flight.The interaction will increase when the rotor thrust coefficient increases.

    (5)The trim method proposed in this paper is suitable for the calculation of aerodynamic interaction on tandem rotors.

    [1] Stepniewski W Z,Keys C N.Rotary-wing aerodynamics[M].New York:Dover Publications Inc.,1981.

    [2] Dingeldein R C.Wind-tunnel studies of the performance of multirotor configurations,NACA-TN-3236[R].Langley Field,VA,U.S.:National Advisory Committee for Aeronautics.Langley Aeronautical Lab,1954.

    [3] Harris F D.Twin rotor hover performance[J]. Journal of the American Helicopter Society,1999,44(1):34-37.

    [4] Bagai A,Leishman J G.Free-wake analysis of tandem,tilt-rotor and coaxial rotor configurations[C]∥The 51st Annual Forum of the AHS.Fort Worth,TX:American.Helicopter Society International,Inc.,1995.

    [5] Zili T,Mao S.Flow analysis of twin-rotor configurations by navier-strokes simulation[J].Journal of the American Helicopter Society,2000,45(2):97-105.

    [6] Wang P,Wang S C.Aerodynamic characteristics analysis and experimental research for co-axial twin rotors[C]∥The 13th Annual Forum of the CHS. Jiujiang,China:Chinese Aeronautics Society,1997.(in Chinese)

    [7] Deng Y M,Tao R,Hu J Z.Experimental investigation of the aerodynamic interaction between upper and lower rotors of a coaxial helicopter[J].Journal of Acta Aeronautica et Astronautica Sinica,2003,24(1):10-14.(in Chinese)

    [8] Li C H,Xu G H.Free wake analysis of tilt rotor in hover and forward flight[J].Acta Aerodynamica Sinica,2005,23(2):152-156.(in Chinese)

    [9] Tong Z L,Sun M.Study of the aerodynamic properties of tandem and side-by-side twin-rotor configurations by navier-stokes simulation[J].Journal of ACTA Aeronautica et Astronautica Sinica,1999,20(6):489-492.

    [10]Silva J,Riser R.CH-47D tandem rotor outwash survey[C]∥The 67th Annual Forum of the AHS.Virginia Beach,VA:American Helicopter Society International,2011.

    [11]Cao Y,Li G,Zhong G.Tandem helicopter trim and flight characteristics in the icing condition[J].Journal of Aircraft,2010,47(5):1559-1569.

    [12]Ramasamy M.Measurements comparing hover performance of single,coaxial,tandem,and tilt-rotor configurations[C]∥The 69th Annual Forum of the AHS.Phoenix,Arizona:American Helicopter Socity International,Inc.,2013.

    [13]Leishman J G,Beddoes T S.A generalized model for unsteady airfoil behavior and dynamic stall using the indicial method[C]∥The 42nd Annual Forum of the AHS.Washington D.C.:American Helicopter Society International Inc.,1986.

    [14]Landgrebe A J.An analytical method for predicting rotor wake geometry[J].Journal of the American Helicopter Society,1969,14(4):20-32.

    [15]Xu G H,Wang S C,Zhao J G.Experimental and analytical investigation on aerodynamics of helicopter scissors tail rotor[J].Chinese Journal of Aeronautics,2001,14(4):193-199.

    [16]Bagai A,Leishman J G.Rotor free wake modeling using a relaxation technique including comparisons with experimental data[J].Journal of the American Helicopter Society,1995,40(3):29-41.

    (Executive editor:Zhang Tong)

    V271 Document code:A Article ID:1005-1120(2015)04-0390-09

    *Corresponding author:Huang Shuilin,Senior Engineer,E-mail:602hsl@gmail.com

    How to cite this article:Huang Shuilin,Lin Yongfeng,F(xiàn)an Feng,et al.Parametric effect investigation on aerodynamic interaction characteristics for tandem rotors in forward flight[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):390-398. http://dx.doi.org/10.16356/j.1005-1120.2015.04.390

    (Received 22 September 2014;revised 24 March 2015;accepted 14 April 2015)

    猜你喜歡
    黃水
    基于數(shù)據(jù)挖掘的藏藥三黃水類方治療“黃水病”用藥規(guī)律研究
    理發(fā)店店主堅守24年的“約定”
    傷科黃水制備工藝的優(yōu)化
    中成藥(2018年9期)2018-10-09 07:18:40
    黃水抗氧化活性的初步研究
    釀酒科技(2018年7期)2018-07-25 03:08:48
    傷科黃水對行全膝關節(jié)置換術患者術后膝關節(jié)功能的影響
    中成藥(2017年7期)2017-11-22 07:32:53
    傷科黃水預防斷指再植術后血管危象的臨床觀察
    中成藥(2017年5期)2017-06-13 13:01:12
    高墻內(nèi)的暖“心”人
    檢察風云(2017年3期)2017-02-20 15:03:10
    高墻內(nèi)的暖“心”人
    檢察風云(2017年3期)2017-02-20 15:02:17
    黃水是百病之源
    蒙醫(yī)溫針療法治療膝關節(jié)黃水病
    大香蕉久久成人网| 热re99久久国产66热| av网站免费在线观看视频| 久久亚洲精品不卡| 黑人巨大精品欧美一区二区mp4| 99久久综合精品五月天人人| 桃红色精品国产亚洲av| 少妇被粗大的猛进出69影院| 国产99白浆流出| 国产伦一二天堂av在线观看| 久久伊人香网站| 午夜福利在线观看吧| 国产蜜桃级精品一区二区三区| 日本黄色视频三级网站网址| 欧美国产精品va在线观看不卡| svipshipincom国产片| 在线观看免费日韩欧美大片| 久热这里只有精品99| 一边摸一边做爽爽视频免费| 高清av免费在线| 久久久精品国产亚洲av高清涩受| 亚洲五月天丁香| 深夜精品福利| 午夜视频精品福利| av免费在线观看网站| 精品卡一卡二卡四卡免费| 欧美中文综合在线视频| 久久久久久亚洲精品国产蜜桃av| 男女床上黄色一级片免费看| 亚洲少妇的诱惑av| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机午夜十八禁免费视频| 国产精品 国内视频| 国产精品自产拍在线观看55亚洲| 精品乱码久久久久久99久播| 久久久国产欧美日韩av| 亚洲成人久久性| 不卡av一区二区三区| 欧美中文综合在线视频| 成人黄色视频免费在线看| 夜夜爽天天搞| 成在线人永久免费视频| www.999成人在线观看| 欧美黑人精品巨大| 91成人精品电影| 每晚都被弄得嗷嗷叫到高潮| 国产精品1区2区在线观看.| 国产成+人综合+亚洲专区| 国产激情欧美一区二区| 欧美中文综合在线视频| 黄色片一级片一级黄色片| 欧美日韩视频精品一区| 久久天躁狠狠躁夜夜2o2o| 亚洲av熟女| 亚洲av日韩精品久久久久久密| 深夜精品福利| 亚洲精品久久成人aⅴ小说| 啦啦啦免费观看视频1| 神马国产精品三级电影在线观看 | 黑人巨大精品欧美一区二区mp4| 高清欧美精品videossex| 人人妻人人添人人爽欧美一区卜| 日韩一卡2卡3卡4卡2021年| 久久久国产成人免费| 亚洲一区二区三区欧美精品| a级毛片在线看网站| 亚洲精品中文字幕一二三四区| 一个人免费在线观看的高清视频| 精品国产美女av久久久久小说| avwww免费| 亚洲欧美日韩无卡精品| 自线自在国产av| 亚洲伊人色综图| 亚洲全国av大片| 女人被躁到高潮嗷嗷叫费观| 成年版毛片免费区| 久久精品国产综合久久久| 日日摸夜夜添夜夜添小说| 国产精品久久电影中文字幕| 精品熟女少妇八av免费久了| 1024视频免费在线观看| 久久久久久久精品吃奶| 性色av乱码一区二区三区2| 十八禁网站免费在线| 欧美黑人欧美精品刺激| 99久久99久久久精品蜜桃| 丝袜人妻中文字幕| 亚洲欧美一区二区三区黑人| 国产黄a三级三级三级人| 丰满的人妻完整版| 99re在线观看精品视频| 久久久久亚洲av毛片大全| 国产成人欧美| 精品一区二区三区视频在线观看免费 | 欧美日韩福利视频一区二区| 国产麻豆69| 国产av一区在线观看免费| 国产高清videossex| 欧美最黄视频在线播放免费 | 一级黄色大片毛片| 曰老女人黄片| 国产精品1区2区在线观看.| 黑人巨大精品欧美一区二区mp4| av免费在线观看网站| 色婷婷久久久亚洲欧美| 国产精品久久久久成人av| 9热在线视频观看99| 热re99久久精品国产66热6| 日韩免费av在线播放| 在线观看一区二区三区激情| 精品国产一区二区三区四区第35| 亚洲自拍偷在线| 国产一区在线观看成人免费| av视频免费观看在线观看| 国产精品二区激情视频| 黄片小视频在线播放| 国产精品一区二区三区四区久久 | 欧美精品一区二区免费开放| 波多野结衣一区麻豆| tocl精华| 香蕉国产在线看| 黄片大片在线免费观看| tocl精华| 国产精品美女特级片免费视频播放器 | 久久影院123| www.熟女人妻精品国产| 丰满迷人的少妇在线观看| 黑人猛操日本美女一级片| 法律面前人人平等表现在哪些方面| 国产日韩一区二区三区精品不卡| 免费在线观看日本一区| 久久精品国产综合久久久| 黑人猛操日本美女一级片| 精品日产1卡2卡| 后天国语完整版免费观看| 男女高潮啪啪啪动态图| 亚洲激情在线av| 宅男免费午夜| 国产精品一区二区三区四区久久 | 国产国语露脸激情在线看| 很黄的视频免费| 国产av一区在线观看免费| 最近最新中文字幕大全电影3 | 不卡一级毛片| 欧美成人午夜精品| 不卡一级毛片| 日韩欧美国产一区二区入口| 久久亚洲精品不卡| 啦啦啦 在线观看视频| 狠狠狠狠99中文字幕| 18美女黄网站色大片免费观看| 国产熟女午夜一区二区三区| 桃色一区二区三区在线观看| 校园春色视频在线观看| 怎么达到女性高潮| 99久久99久久久精品蜜桃| 亚洲欧美日韩另类电影网站| 成人av一区二区三区在线看| 国产91精品成人一区二区三区| 香蕉丝袜av| 精品无人区乱码1区二区| 亚洲在线自拍视频| 欧美成人午夜精品| 婷婷六月久久综合丁香| 欧美激情高清一区二区三区| 亚洲一码二码三码区别大吗| 中国美女看黄片| 很黄的视频免费| 夫妻午夜视频| 国产激情欧美一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 婷婷丁香在线五月| 色尼玛亚洲综合影院| 久久 成人 亚洲| 国产不卡一卡二| 日韩欧美一区二区三区在线观看| 19禁男女啪啪无遮挡网站| 日韩av在线大香蕉| 黄色片一级片一级黄色片| 级片在线观看| 又黄又粗又硬又大视频| 亚洲欧美日韩另类电影网站| 韩国精品一区二区三区| 18禁国产床啪视频网站| 91成年电影在线观看| a级毛片在线看网站| 精品国产一区二区久久| 多毛熟女@视频| 午夜日韩欧美国产| 高清欧美精品videossex| 亚洲国产欧美日韩在线播放| 一a级毛片在线观看| 露出奶头的视频| 亚洲人成电影观看| 很黄的视频免费| svipshipincom国产片| xxx96com| 亚洲中文日韩欧美视频| 身体一侧抽搐| 日韩 欧美 亚洲 中文字幕| 少妇被粗大的猛进出69影院| 90打野战视频偷拍视频| 一级,二级,三级黄色视频| 99久久国产精品久久久| 日韩欧美在线二视频| 国产成人免费无遮挡视频| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人添人人爽欧美一区卜| 99久久99久久久精品蜜桃| 国产亚洲av高清不卡| 国产亚洲精品第一综合不卡| 亚洲成人国产一区在线观看| 精品免费久久久久久久清纯| 在线观看免费午夜福利视频| 美女扒开内裤让男人捅视频| 久久久久久久久中文| 一级a爱视频在线免费观看| 日韩精品青青久久久久久| 午夜福利一区二区在线看| 午夜福利免费观看在线| 久久精品国产亚洲av高清一级| 波多野结衣一区麻豆| www.精华液| 成人精品一区二区免费| 国产亚洲精品久久久久久毛片| 免费少妇av软件| 午夜福利在线免费观看网站| 香蕉国产在线看| 色综合欧美亚洲国产小说| 色综合婷婷激情| 午夜两性在线视频| 国产精品香港三级国产av潘金莲| 极品教师在线免费播放| 制服诱惑二区| xxx96com| 一边摸一边做爽爽视频免费| 亚洲国产毛片av蜜桃av| 国产一区二区激情短视频| 免费人成视频x8x8入口观看| 女人精品久久久久毛片| 久久 成人 亚洲| 妹子高潮喷水视频| 男女下面进入的视频免费午夜 | e午夜精品久久久久久久| 色尼玛亚洲综合影院| 啦啦啦在线免费观看视频4| 美女国产高潮福利片在线看| 波多野结衣av一区二区av| 亚洲熟妇熟女久久| 国产av又大| 国产日韩一区二区三区精品不卡| 成年版毛片免费区| 亚洲国产精品999在线| 国产精品日韩av在线免费观看 | 亚洲国产精品一区二区三区在线| 中文字幕人妻熟女乱码| 在线播放国产精品三级| 亚洲欧美一区二区三区久久| 国产成人欧美| 88av欧美| 亚洲精品中文字幕一二三四区| 操美女的视频在线观看| 久久青草综合色| 欧美日韩黄片免| av中文乱码字幕在线| 婷婷六月久久综合丁香| 18禁国产床啪视频网站| videosex国产| 极品人妻少妇av视频| 丝袜美足系列| 成人国产一区最新在线观看| 亚洲精品美女久久av网站| 一级片免费观看大全| 欧美另类亚洲清纯唯美| 午夜日韩欧美国产| 天天躁夜夜躁狠狠躁躁| 亚洲男人天堂网一区| 午夜福利在线观看吧| 免费av中文字幕在线| 美女国产高潮福利片在线看| 村上凉子中文字幕在线| 国产一区二区三区在线臀色熟女 | 国产亚洲精品久久久久久毛片| 亚洲国产看品久久| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美在线观看| 亚洲 欧美 日韩 在线 免费| 午夜影院日韩av| 欧美激情高清一区二区三区| 久久久久久亚洲精品国产蜜桃av| 在线观看舔阴道视频| 三上悠亚av全集在线观看| 国产欧美日韩精品亚洲av| 精品福利永久在线观看| 一级片'在线观看视频| 亚洲一区中文字幕在线| 日本 av在线| 亚洲av熟女| 免费av中文字幕在线| 亚洲欧美精品综合一区二区三区| 日韩精品免费视频一区二区三区| 性色av乱码一区二区三区2| aaaaa片日本免费| 一本综合久久免费| 97碰自拍视频| 淫秽高清视频在线观看| 久久香蕉激情| 99精品在免费线老司机午夜| 国产高清视频在线播放一区| 免费在线观看完整版高清| 久久精品91无色码中文字幕| 久久影院123| 国产一区二区三区视频了| 老汉色av国产亚洲站长工具| 午夜免费激情av| 精品一区二区三区av网在线观看| 在线观看66精品国产| 精品乱码久久久久久99久播| 麻豆国产av国片精品| 国产日韩一区二区三区精品不卡| 女同久久另类99精品国产91| 男女做爰动态图高潮gif福利片 | 91麻豆精品激情在线观看国产 | 热99国产精品久久久久久7| 在线视频色国产色| 亚洲av电影在线进入| 国产极品粉嫩免费观看在线| 丁香六月欧美| 国产视频一区二区在线看| 18禁国产床啪视频网站| 国产精华一区二区三区| 黄色怎么调成土黄色| 国产av在哪里看| 亚洲av熟女| 国产片内射在线| 老司机靠b影院| 国产午夜精品久久久久久| 免费不卡黄色视频| 久久久久国产精品人妻aⅴ院| 国产xxxxx性猛交| 亚洲一区二区三区欧美精品| 夜夜躁狠狠躁天天躁| 午夜精品国产一区二区电影| 成人亚洲精品一区在线观看| 国产97色在线日韩免费| 亚洲va日本ⅴa欧美va伊人久久| avwww免费| 午夜免费激情av| 国产精品野战在线观看 | 在线观看免费日韩欧美大片| 国产99久久九九免费精品| 亚洲少妇的诱惑av| 欧美成人性av电影在线观看| 国产精品 欧美亚洲| 999久久久精品免费观看国产| 露出奶头的视频| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 五月开心婷婷网| 国产亚洲欧美98| 九色亚洲精品在线播放| 日韩欧美三级三区| 国产精品成人在线| 一级毛片精品| 波多野结衣av一区二区av| 亚洲人成电影观看| 男男h啪啪无遮挡| av在线播放免费不卡| 久久精品亚洲av国产电影网| 亚洲色图综合在线观看| 日韩免费av在线播放| 亚洲欧美一区二区三区黑人| 国产精品永久免费网站| 中文亚洲av片在线观看爽| 国产精品一区二区三区四区久久 | 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 欧美成人性av电影在线观看| 黑人猛操日本美女一级片| 久久久久久人人人人人| 99精国产麻豆久久婷婷| 成人亚洲精品av一区二区 | 久久人妻福利社区极品人妻图片| av网站在线播放免费| 亚洲成人免费电影在线观看| 深夜精品福利| 美女 人体艺术 gogo| 国产精品乱码一区二三区的特点 | 精品人妻在线不人妻| 91国产中文字幕| 免费观看精品视频网站| 久久人人97超碰香蕉20202| 国产一区二区三区在线臀色熟女 | 乱人伦中国视频| 亚洲av熟女| 人人澡人人妻人| 日本五十路高清| 91av网站免费观看| 日本三级黄在线观看| av中文乱码字幕在线| 欧美色视频一区免费| 水蜜桃什么品种好| 亚洲久久久国产精品| 一二三四社区在线视频社区8| 熟女少妇亚洲综合色aaa.| 新久久久久国产一级毛片| 很黄的视频免费| 午夜福利影视在线免费观看| 久久久久久大精品| 亚洲国产中文字幕在线视频| 国产精品影院久久| 日本一区二区免费在线视频| 亚洲精品在线美女| 亚洲性夜色夜夜综合| 亚洲成国产人片在线观看| www.自偷自拍.com| 精品一区二区三区四区五区乱码| 亚洲国产欧美日韩在线播放| 久久久久国内视频| 国产精品亚洲一级av第二区| 亚洲国产精品一区二区三区在线| av福利片在线| 亚洲欧美精品综合一区二区三区| 亚洲九九香蕉| 国产精品野战在线观看 | 精品久久久久久电影网| 色哟哟哟哟哟哟| 又大又爽又粗| a级毛片黄视频| 欧美日韩亚洲综合一区二区三区_| 国产精品电影一区二区三区| 国产精品免费一区二区三区在线| 亚洲精品国产一区二区精华液| 91成人精品电影| 美女 人体艺术 gogo| 欧美亚洲日本最大视频资源| 这个男人来自地球电影免费观看| a级毛片黄视频| 午夜亚洲福利在线播放| 亚洲午夜理论影院| 亚洲中文av在线| 一级毛片女人18水好多| 亚洲第一青青草原| 夫妻午夜视频| 一a级毛片在线观看| 欧美中文日本在线观看视频| 黑丝袜美女国产一区| 国产欧美日韩一区二区精品| 亚洲熟女毛片儿| 国产精品久久视频播放| a级毛片黄视频| 男女之事视频高清在线观看| 韩国av一区二区三区四区| 亚洲中文av在线| 精品国产乱子伦一区二区三区| 欧美午夜高清在线| 多毛熟女@视频| 亚洲第一av免费看| 精品久久蜜臀av无| 涩涩av久久男人的天堂| 极品人妻少妇av视频| 老熟妇仑乱视频hdxx| 国产av又大| 身体一侧抽搐| 免费看十八禁软件| 美女国产高潮福利片在线看| 久久精品人人爽人人爽视色| 亚洲人成伊人成综合网2020| 国产区一区二久久| 妹子高潮喷水视频| 人成视频在线观看免费观看| 热re99久久国产66热| 亚洲熟妇中文字幕五十中出 | 国产精品99久久99久久久不卡| 琪琪午夜伦伦电影理论片6080| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费成人在线视频| 久久性视频一级片| 老熟妇乱子伦视频在线观看| 91成年电影在线观看| 夜夜躁狠狠躁天天躁| 男女做爰动态图高潮gif福利片 | 高清黄色对白视频在线免费看| 在线观看舔阴道视频| 亚洲中文av在线| 淫妇啪啪啪对白视频| 少妇被粗大的猛进出69影院| 两人在一起打扑克的视频| 999精品在线视频| 大香蕉久久成人网| 欧美日韩av久久| 天堂中文最新版在线下载| 久久精品国产综合久久久| 黄色视频不卡| 精品一区二区三区av网在线观看| 久久精品aⅴ一区二区三区四区| 日韩一卡2卡3卡4卡2021年| 亚洲一区二区三区色噜噜 | 午夜久久久在线观看| 日韩精品免费视频一区二区三区| 大码成人一级视频| 91字幕亚洲| 欧美午夜高清在线| 首页视频小说图片口味搜索| 女人高潮潮喷娇喘18禁视频| 午夜老司机福利片| 人人妻,人人澡人人爽秒播| av网站免费在线观看视频| 欧美日韩av久久| 中国美女看黄片| 一区二区三区激情视频| 国产色视频综合| 老熟妇仑乱视频hdxx| 国产麻豆69| 国产在线观看jvid| 高清av免费在线| 国产精品香港三级国产av潘金莲| 校园春色视频在线观看| 巨乳人妻的诱惑在线观看| 成熟少妇高潮喷水视频| 精品一区二区三区av网在线观看| 亚洲精品一区av在线观看| 精品熟女少妇八av免费久了| 日本黄色视频三级网站网址| 这个男人来自地球电影免费观看| 水蜜桃什么品种好| 69av精品久久久久久| 咕卡用的链子| 免费高清在线观看日韩| 黄色毛片三级朝国网站| 五月开心婷婷网| 国产精品野战在线观看 | 成人国语在线视频| 亚洲美女黄片视频| 两人在一起打扑克的视频| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 18禁观看日本| 久久香蕉激情| 99久久久亚洲精品蜜臀av| tocl精华| 欧美亚洲日本最大视频资源| 久9热在线精品视频| 亚洲中文字幕日韩| 99riav亚洲国产免费| 亚洲专区国产一区二区| 久久精品91无色码中文字幕| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 国产精品99久久99久久久不卡| 母亲3免费完整高清在线观看| 色老头精品视频在线观看| 亚洲国产精品一区二区三区在线| 女性被躁到高潮视频| 一夜夜www| 99国产精品一区二区三区| 免费观看人在逋| 超碰成人久久| 亚洲aⅴ乱码一区二区在线播放 | 日本黄色视频三级网站网址| 欧美乱妇无乱码| 亚洲成人久久性| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区| 国产区一区二久久| 免费少妇av软件| 欧美日韩亚洲国产一区二区在线观看| 国产真人三级小视频在线观看| 亚洲男人的天堂狠狠| 国产av一区二区精品久久| 伦理电影免费视频| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 99精国产麻豆久久婷婷| 中文字幕精品免费在线观看视频| 日本免费a在线| 亚洲国产精品合色在线| 1024视频免费在线观看| 久久久久久免费高清国产稀缺| 99精品欧美一区二区三区四区| 中出人妻视频一区二区| av在线播放免费不卡| 法律面前人人平等表现在哪些方面| 男女下面进入的视频免费午夜 | 变态另类成人亚洲欧美熟女 | 亚洲黑人精品在线| 国产精品1区2区在线观看.| 午夜免费激情av| 动漫黄色视频在线观看| 波多野结衣一区麻豆| 91字幕亚洲| 亚洲成国产人片在线观看| 亚洲国产看品久久| 正在播放国产对白刺激| 中文字幕人妻丝袜一区二区| 黄色怎么调成土黄色| 色综合站精品国产| 中文字幕高清在线视频| 久久久精品欧美日韩精品| 99国产精品一区二区三区| 欧美在线一区亚洲| 一二三四在线观看免费中文在| 亚洲五月天丁香| 久久精品91蜜桃| 久99久视频精品免费| 亚洲精品在线观看二区| 欧美一级毛片孕妇| 精品国产美女av久久久久小说| 精品国产乱子伦一区二区三区| 久久久久久久午夜电影 | 国产精品自产拍在线观看55亚洲| 女性被躁到高潮视频| 久久久久国内视频|