• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    2015-11-24 06:57:45SangNan桑楠WeiMinxiang魏民祥BaiYu白玉
    關(guān)鍵詞:白玉

    Sang Nan(桑楠),Wei Minxiang(魏民祥),Bai Yu(白玉)

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    Sang Nan(桑楠)1,2*,Wei Minxiang(魏民祥)1,Bai Yu(白玉)2

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    A control method of active front steering(AFS)based on active disturbance rejection technique was proposed for solving the model nonlinearity and parameter decoupling control in the traditional control methods.The AFS controller consists of the proportional and derivative(PD)feed-forward controller and the active disturbance rejection feedback controller.To improve the steering response characteristics of a vehicle,a PD controller is designed to realize variable steering gear ratio,and to enhance the safety of vehicle when steering.An active disturbance rejection controller(ADRC)is designed to follow the expected yaw rate of the vehicle.According to the input and output of system,extended state observer(ESO)of ADRC can dynamically estimate internal and external disturbance of the system,thus easily realizing the model nonlinear and parameter decoupling control.The AFS controller is simulated and validated in Matlab and CarSim.The simulating results of double lane change(DLC)test and pylon course slalom(PCS)test show that the ADRC can well control the vehicle model to complete the road simulation test of DLC and PCS with small path tracking error.The simulating results of angle step test of steering wheel show that the vehicle under the control of ADRC demonstrates good lateral response characteristic.The controller regulates a wide range of parameters.The model has less precision requirements with good robustness.

    active disturbance rejection technique;active steering;variable ratio;extended state observer

    Nomenclature

    m/kg Mass of vehicle

    1z/(kg·m2)Moment of inertia about Z-axis

    k1/(N·rad-1)Front axle cornering stiffness

    k2/(N·rad-1)Rear axle cornering stiffness

    lf/m Distance between CG and front axle

    lr/m Distance between CG and rear axle

    δsw/rad Steering wheel angle

    δFF/rad Steering wheel angle of feedforward

    δFB/rad Steering wheel angle of feedback

    δp/rad Out angle of planetary gear trains

    θac/rad Angle of active front steering motor(actuator)

    θp/rad Angle of 6-gear

    δf/rad Steer angle of front wheels

    niTeeth of i-gear

    ψ/(rad·s-1)Yaw rate

    ψd/(rad·s-1)Yaw rate of reference model

    β/rad Sideslip angle of vehicle centre of mass

    βd/rad Sideslip angle of reference model

    G Mechanical steering gear ratio

    ux/(m·s-1)Longitudinal velocity

    g/(m·s-2)Acceleration due to gravity

    0 Introduction

    The traditional steering system completes the steering through the intervention of the driver. Therefore,it has the disadvantages of slow response speed,the incapability of correcting the driver's wrong operations,the helplessness in satisfying small gear ratio requirements at low speedand large gear ratio requirements at high speed,namely the so-called light and flexible contradiction.Owing to the small variation of gear ratio of traditional steering system,the steering characteristics of vehicle have nonlinear relations with vehicle speed.Therefore,the driver needs to constantly revise the vehicle direction to adapt to the steering characteristics of the vehicle so as to control the vehicle along the driver's desired track,which increases the driving burden and decreases the operability of the vehicle.Hydraulic power steering(HPS)or electric power steering(EPS)can change the transfer characteristics of steering force,but cannot change those of steering angle. Therefore,the problem that the vehicle steering characteristics change with the vehicle speed still exists.Active steering system was developed on the basis of power steering system,which includes active front steering(AFS),4 wheels steering(4WS)and steering by wire(SBW),etc. A variable gear ratio(normalized steering gear ratio)can be realized by controlling the input of the active steering motor to get better steering performance,thus improving the handling and stability of vehicle and enhaning driving safety[1,2].

    The light and flexible contradiction can be solved by variable ratio of active steering.Based on the state of the vehicle,an additional angle is applied to the front wheels for changing the lateral force to ensure that the lateral dynamics meet the requirements.According to yaw rate and sideslip angle,the feed-forward controller implements abasic variable ratio rule based on vehicle speed,and the feedback controller adjusts wheel angle[3]. Steer gain(yaw rate gain or lateral acceleration gain)is invariable with velocity[4,5];The variable ratio rule is amended based on invariable steer gain,and it is controlled by speed[6].In fact,nonlinear characteristics of the tire,the vertical load and the suspension compliance will influence the actual angle of front wheels and change the relation between gear ratio and speed,so as to affect the vehicle steering characteristics.In this paper,basic variable gear ratio is realized by using proportional and derivative(PD)feed-forward control,and the desired yaw rate is followed by using the active disturbance rejection control[7]. Known to the steering input and the output of vehicle(e.g.,steering angle,yaw rate,lateral acceleration,speed),active disturbance rejection controller(ADRC)can dynamically track targets. In order to verify the effectiveness of the proposed control methods,the drivers'commands are given by a single-point preview driver model and the driver-vehicle-road closed-loop control model is established in Matlab software.The Car Sim vehicle model is controlled by this driver model to complete the road simulating test of high-speed double lane change(DLC)and pylon course slalom(PCS).

    1 Variable Ratio Steering System Configuration and Model

    1.1 Variable ratio steering system configuration

    After adding the planetary gear mechanism in HPS or EPS,the variability of steering gear ratio was implemented by superposition of the movement of steering wheel and active front steering motor.Such system[8]was first applied in the BMW 5 series.The configuration of the variable ratio steering system is shown in Fig.1.

    Fig.1 Variable ratio steering system configuration

    As shown in Fig.1,while the steering system is working,the rotating direction ofδpand δsware the same,where Gpis the reduction ratio of motor and part 6,Gp=θac/θp.Compound gear train has double row planetary gear train,including sun gears(part 1,2,5,6),planet gears(part 3,4)and planet carrier(part H),among which 5-sun gear is fixed.1-3-H-5 is an elementa-ry epicyclical gear train,2-4-H-6 is a differential gear train,the system degree of freedom(DOF)is 2,and the outputδpis determined byδswandθp. The relation amongδp,δswandθpsatisfies

    From Eq.(1),δpcan be expressed as

    In this system,the mechanical steering gear ratio G was set to 17.The front wheel angleδfequals toδp/G andαequals to n5/n1,then the vehicle steering gear ratio is defined as

    Whenθp=0,thenδp=δsw,the steering gear ratio i is constant.Active steering system becomes a constant ratio steering system.Whenθp≠0,i is determined by the values ofθp/δswas expressed in Eq.(3).Using the steering system as Fig.1,steering variable gear ratio can be realized by controlling the inputθpor the actual control inputθac.

    Variable gear ratio can be realized by the active front steering shown in Fig.1,and its control algorithm is shown in Fig.2.According to the driver's input and vehicle speed,feed-forward controller calculates feed-forward steering wheel angleδFF.According toψd,βd,ψandβ,feedback controller calculates feedback steering wheel angle δFB.Feed-forward control algorithm is actually a proportional&derivative(PD)algorithm,and feedback control algorithm is an active disturbance rejection algorithm.In addition,one of the effects of the active steering control is that the response characteristic of the vehicle is changeable.This function is realized by feed-forward controller of the steering control,and the detailed algorithm will be described in Section 1.2.Another effect of the active steering control is that the vehicle response is less than the safety threshold.This function is realized by the feedback controller of the steering control,and the detailed algorithm will be described in Section 2.4.

    1.2 Basic variable gear ratio control

    Fig.2 Vehicle active steering control algorithm

    The active front steering control system is designed to realize the functions mentioned above. The steering angle of the front wheel is determined by the driver and the actuator(motor). This angle can be controlled optionally by actively controlling the operating angle of the actuator. That is why the system is called the active front steering(AFS).

    The relation among the front wheel angle,the actuator operating angle and the steering wheel angle is shown as follows[3]

    δFFis calculated as follows

    where kvis the proportional gain,and ksthe derivative gain.kvand ksare related to the speed of vehicle.SubstitutingδFFof Eq.(5)into Eq.(4),its Laplace transform can be obtained.

    where s is the Laplace operator.By setting up the relationships of kvand kswith the speed to realize the rules of basic variable gear ratio,the vehicle response characteristics can be actively controlled. In reference to BMW and Refs.[3,9]about the range of the steering variable ratio and the relation between the variable ratio and the speed of vehicle,the kinematical function of the steering ratio is designed in this paper,as shown in Fig.3.

    Fig.3 Steering variable ratio rule

    In active front steering as shown in Fig.1,using control methods above,actual input of me-chanical steering gear isδp=δsw+δFF+δFB.Compared with Eq.(2),the value ofθpcan be determined,which equals to-(δFF+δFB)n1/n5.Then,the expected variable gear ratio and steering characteristic can be realized by controlling the angle of active steering motor.θaccan be expressed as

    2 Driver-Vehicle-Road Closed-Loop Model

    2.1 Driver model

    Driver,vehicle and road are various aspects in the manipulation of vehicle.During driving,the driver has to constantly modify the vehicle direction according to the vehicle state and road conditions.The three aspects constitute a drivervehicle-road closed-loop system.The"preview optimal curvature model"[10-12]proposed by Guo determines steering wheel angle based on single preview hypothesis and optimal curvature control. This model can simultaneously take the dynamic response characteristics of the vehicle and hysteresis of driver's response into account.It is called the single point preview driver model[10],as shown in Fig.4.

    Fig.4 Single point preview driver model

    In Fig.4,T is the preview time,c(s)=c0(1+ Tcs),c0=u2x/Gay,and Gayis the steady-state gain of lateral acceleration.For a skilled driver,T can be set to 0.8 s,Tc0.406 8 s,td0.3 s,and th0.1s[9-11].In actual application of the proposed model,the lateral speed and lateral displacement are given by the actual vehicle or the simulation model of the vehicle.In this paper,the drivers'input of the simulating vehicle is given by the single-point preview driver model.

    2.2 Linear 2-DOF vehicle model

    The 2-DOF linear vehicle model is commonly used in the study of steering movement(Fig.5). The dynamic equation is described as[13]

    Substitutingδf=(δsw+δFF+δFB)/G into Eq.(8),the following equations can be derived.

    Fig.5 2-DOF vehicle model

    where K is the understeering coefficient of vehicle andμthe adhesion coefficient of road.

    2.4 Active disturbances rejection feedback controller

    In this section,the design of ADRC[7]will be discussed in detail.ADRC is the feedback controller,and active angleδFBoperated by target yaw rate follow-up control.The actual vehicle model is much more complicated than the linear 2-DOF vehicle model with a lot of nonlinear problems. Obviously,compared with the actual vehicle mod-

    2.3 Reference model

    The expected yaw rateψdis determined by the desired linear 2-DOF model.Considering the road adhesion conditions of vehicle driving,the expected yaw rate responseψdon steering wheel under the angle input is expressed asel,the linear model of 2-DOF is over-simplified. Therefore,the proposed model contains a lot of unmodeled dynamics and its accuracy is poor. Control method depended on the precision of model is bad at the result control.The nonlinear coupling problem related to 2-DOF model requires a large amount of calculations to be decoupled.ADRC can adopt nonlinear feedback to implement dynamic compensation only based on the input and output of the system.Therefore,the first advantage of the ADRC model is that the control system can be treated by using a unified way,no matter the system is linear or nonlinear,certain or uncertain.The second advantage of the model is that in the rejection of disturbance,a specific and observable model for external disturbance is not necessary.Other advantages include:(1)The control algorithm does not need to identify the control object.(2)The control algorithm has good portability.(3)For the coupled problem of dynamic equation,only the static coupling need to be considered instead of the dynamic coupling.

    In Eq.(5),.δswcan be obtained from.δswby a differential process,which can be obtained from δswby a differential process.The method for obtaining.δswis

    Similarly,the differential process mentioned above is adoped in the desired referenceψd,expressed in Eq.(13).This is called the transition process in ADRC technique.The first function is to increase the adjustable range of parameters; the second function is to provide error signal for ADRC.

    In Eq.(9a),f11(ψ,β)is the sum of disturbance,which includes unmodeled error,parameter error and internal-external disturbance.Extended state observer(ESO)listed in Eq.(14)estimates the system states and the sum of disturbance.

    where z1,z2,and z3estimate states x1,x2,and x3,respectively and x3equals to f11(ψ,β).In Eq.(14),function Fal(·)is expressed as

    whereξandΔare the positive numbers,and sign(·)is the signum function.

    The state errors of system e1and e2are defined as v1·(-z1)and v2·(-z2),respectively,and they are used in the design of ADRC.In this paper,the feedback control law of error u0is expressed as

    In the ADRC algorithm,δFBis dynamically calculated by ESO using u0and z3,expressed in Eq.(17).

    where f12is a known disturbance.Substituting δFBof Eq.(17)into Eq.(14),the two-order ESO can be expressed as

    Eq.(18)shows that ESO becomes a pure integrator tandem observer.δswis given by the driver model.ψdis obtained by the reference model and ESO is designed based on the linear 2-DOF model.Thanks to the fact that the nonlinear characteristics of model treated as disturbances are all included in f11,ESO can guarantee enough preci-sion.

    So far,the ADRC and the PD controller have been discussed in this section and Section 1.2,respectively.According to the above discussion,the control model of AFS is shown in Fig.6.Here,the ADRC controller is illustrated inside the dashed box in Fig.6.

    Fig.6 Control model of active front steering

    It can be seen from Eq.(8)that yaw rateψ and sideslip angleβare coupled.Using the ADRC controller,as long as y*is measurable,f11(ψ,β)can be estimated by z3and the decoupling control ofψandβis realized by ADRC without complex decoupling of matrix computation.Therefore,the algorithm of ADRC can ensure good real-time performance.

    3 Simulation Analysis

    In order to validate control effects of steering variable gear ratio and tracking performance of path of the proposed ADRC,a driver-vehicle-road closed-loop control model is established in Matlab/Simulink,which controls vehicle model of CarSim software(CS B-CLASS)to complete the tests of DLC and PCS.These two tests were carried out at speeds of 100 km/h and 120 km/h,respectively.The test path and placing of cones are adaptively set in accordance with the standard test[13,14]and the changes of speed(Technical Report of State Key Laboratory of Automobile Dynamic Simulation,Jilin University).Placing of cones for marking the pylon course slalom track is shown in Fig.7,and that for marking the double lane-change track is shown in Fig.8.

    Fig.7 Placing of cones for marking pylon course slalom track

    Fig.8 Placing of cones for marking double lanechange track

    In Figs.7,8,the center line of the trajectory surrounded by cones is a broken one,which is impossible for the vehicle to follow such a trajectory.Therefore,the non-smooth trajectory must be preview correction[11]in the simulation tests.The lines AB and GH in PCS test and the lines AB and CD in DLC test are replaced by cubic spline curves that satisfy the boundary conditions(The whole curve is smooth and continuous).The line B-G targeted trajectory in PCS test is a cosine curve,with the amplitude of d,as shown in Fig.7.The parameters of simulation vehicle are listed in Table 1.

    Table 1 Basic parameters of the vehicle

    The steering system of the existing vehicle has a feature of understeering to some degree. The actual vehicle model with a significant nonlinear characteristic is controlled by the steering wheel angle derived from the simple driver model,which can track the ideal path at the beginning of the test.However,a large error appears at the later stage of the test,which is illustrated in thesimulating results in Figs.9,10.In the test,road adhesion coefficient is 0.85.Since the vehicle exists understeering,if a vehicle bears no AFS,it is necessary for the driver to turn larger steering wheel angle to complete the test,as shown in Fig.11.In such a test,the driver needs to constantly amend the steering angle,thus increasing driving difficulty.The results in Figs.9,10 indicate that the vehicle with AFS can perform the high-speed DLC and PCS tests well,and the path tracking performance is significantly better than that with the fixed gear ratio system.Moreover,it is not necessary for the driver to change his driving habit. The active front steering system can automatically compensate understeering and correct oversteering.Therefore,the driving difficulty is reduced,the handling and stability of vehicle are enhanced,and the driving safety is greatly improved.

    Fig.9 High speed double lane change test

    Fig.10 High speed pylon course slalom test

    For checking the performance of the ADRC model,the test of angle step input of steering wheel was conducted.The test results are shown in Fig.12,where the solid line is the yaw rate step response curve without AFS,and the dashed line the yaw rate step response curve with AFS. The results in Fig.12 show that the overshoot and the response time of yaw rate of the vehicle with AFS are obviously smaller than that without AFS.Hence,the response performance of vehicle with AFSis improved,which alsoindicates that AFS can improve the handling and stability of vehicle.

    It is interesting that the same control parameters of ADRC are used to implement the DLC test,the PCS test and the step response test.The controlling effects of all tests are satisfying,which indicates that the ADRC controller has good robustness.

    Fig.11 Driver's input

    Fig.12 Yaw rate step response

    4 Conclusions

    An AFS model of feed-forward control and feedback control is proposed.Feed-forward controller using the known PD algorithm has realized the changeable response characteristic of the vehicle.The feedback controller using active disturbance rejection technology has enhanced the controllability and stability of vehicle when steering. In the active disturbance rejection control,since the nonlinear characteristic of vehicle regarded as a disturbance can be estimated in real time and be dynamically compensated by ESO,the precise nonlinear dynamic equation is not necessary.The simulation results show that ADRC using 2-DOF model has good control effects.Here the nonlinear control problem and the decoupling problem of parameters are solved.Vehicle with AFS performs well in path tracking,characteristic of lateral response,and robustness.

    Since the unmodeled dynamics,known or unknown disturbance and non-linear characteristic can be treated by using a unified way,the control method of ADRC is simple.Simultaneously,the design of ADRC controller does not need precise model and has no specific object,thus the controller has good the portability and adaptability.

    The AFS without considering the influence of longitudinal force is investigated.In the ADRC controller designed for AFS the influence of longitudinal force,and the influences of suspension and other control system should be addressed in the further research,as well as the integrated control of AFS with other systems.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(No.51205191).

    [1] Reinelt W,Klier W,Reimann G,et al.Active front steering(part 2):Safety and functionality[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1101.

    [2] Wang Chunyan,Zhao Wanzhong,et al.Parameter optimization of electric power steering integrated with active front steering function[J].Transaction of Nanjing University of Aeronautics and Astronautics, 2012,29(1):96-102.

    [3] Kojo T,Suzumura M,Tsuchiya Y,et al.Development of active front steering control system[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2005-01-0404.

    [4] Shang Gaogao,Hong Ze,Zhang hongdang,et al. Modeling of variable steering ratio with steady-state gain for active steering system[J].Journal of Jiangsu University:Natural Science Edition,2010,31(3):278-282.(in Chinese)

    [5] Liao Linqing,Wang Wei,Qu Xiang.Variable steer ratio of dynamic steering system based on yaw velocity gain[J].Journal of Chongqing University of Technology:Natural Science Edition,2011,25(4):1-5.(in Chinese)

    [6] Wei Jianwei,Wei Minxiang,Zhao Wanzhong.Control law of varied steering ratio based on driver-vehicleroad closed-loop system[J].Journal of Jiangsu University:Natural Science Edition,2011,32(6):652-657.(in Chinese)

    [7] Han Jingqing.Active disturbance rejection control technique the technique for estimating and compensating the uncertainties[M].Beijing:National Defense Industry Press,2008.(in Chinese)

    [8] Willy Klier,Wolfgang Reinelt.Active front steering(Part 1):Mathematical modeling and parameter estimation[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1102.

    [9] Jeonghoon Song.Design and evaluation of active front wheel steering system model and controller[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2014-01-2000.

    [10]Guo K H.Drivers-vehiele closed-loop simulation of handling by“preselect optimal curvature method”[J]. Automotive Engineering,1984,3:1-16.(in Chinese)

    [11]Guo K H,Guan H.Modeling of driver/vehicle direction control system[J].Vehicle System Dynamics,1993,22(3-4):141-184.

    [12]Guo K H.The principle of vehicle handling dynamics[M].Nanjing:Science and Technology of Jiangsu Press,2011.(in Chinese)

    [13]National Bureau of Technical Supervision.GB/ T6323.1-94,Controllability and stability test procedure for automobiles Pylon course slalom test[S]. Beijing,1994.(in Chinese)

    [14]International Standardization Organization.ISO/FDIS 3888-1,Passenger cars Test track for a severe lane change manoeuvre part 1:Double lane change[S]. Beijing,1999.

    (Executive editor:Zhang Tong)

    U461.4 Document code:A Article ID:1005-1120(2015)04-0461-08

    *Corresponding author:Sang Nan,Associate Professor,E-mail:sangn@czu.cn.

    How to cite this article:Sang Nan,Wei Minxiang,Bai Yu.Control of vehicle active front steering based on active disturbance rejection feedback controller[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):461-468.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.461

    (Received 21 November 2014;revised 26 January 2015;accepted 28 February 2015)

    猜你喜歡
    白玉
    古朗月行(節(jié)選)
    一蒂千花白玉團(tuán) 彭楹文 中國畫 181cm x 97cm 2023年
    春 筍
    春筍
    白玉羊首瓜棱形壺
    紫禁城(2020年1期)2020-08-13 09:37:02
    白玉花盆
    華夏太白玉 絲綢之路情——陜西省首屆絲綢之路“太白玉文化節(jié)”暨第二屆“太白玉研討會(huì)”盛大舉行
    寶藏(2018年1期)2018-04-18 07:40:05
    A White Heron
    青春歲月(2016年21期)2016-12-20 21:05:24
    Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system*
    Oliver Twist
    欧美+日韩+精品| 亚洲最大成人手机在线| 精品国产三级普通话版| 日本黄大片高清| 亚洲在线观看片| 男插女下体视频免费在线播放| 久久久久久久久大av| 夜夜看夜夜爽夜夜摸| 久久人妻av系列| 毛片女人毛片| 亚洲av电影在线观看一区二区三区 | 波多野结衣巨乳人妻| 尤物成人国产欧美一区二区三区| 色吧在线观看| 在线a可以看的网站| 日韩欧美国产在线观看| 国产淫片久久久久久久久| 久久久精品欧美日韩精品| 久久国产乱子免费精品| 在线观看66精品国产| 成人一区二区视频在线观看| 久久精品久久久久久久性| 男女视频在线观看网站免费| 国产私拍福利视频在线观看| 亚洲精品自拍成人| 国产午夜精品论理片| 国产精品久久电影中文字幕| 日韩 亚洲 欧美在线| 最后的刺客免费高清国语| 日本熟妇午夜| 国产视频首页在线观看| 精品国产三级普通话版| 波多野结衣高清无吗| 亚洲成人av在线免费| 亚洲,欧美,日韩| 欧美高清成人免费视频www| 99热这里只有精品一区| 欧美3d第一页| 日本欧美国产在线视频| 综合色av麻豆| 久久婷婷人人爽人人干人人爱| 在线a可以看的网站| 久久久久久久久中文| 久久久久久久国产电影| 99在线视频只有这里精品首页| 一区二区三区四区激情视频| 亚洲熟妇中文字幕五十中出| 欧美日本亚洲视频在线播放| 九草在线视频观看| 网址你懂的国产日韩在线| 国产在线男女| 日本黄色片子视频| 狠狠狠狠99中文字幕| 欧美性猛交黑人性爽| 最近最新中文字幕免费大全7| 男女啪啪激烈高潮av片| 国产成人freesex在线| 亚洲国产精品久久男人天堂| 偷拍熟女少妇极品色| 亚洲国产精品sss在线观看| 99视频精品全部免费 在线| 日本一本二区三区精品| 好男人视频免费观看在线| 亚洲欧美精品专区久久| 国产精品电影一区二区三区| 十八禁国产超污无遮挡网站| 久久久久久久亚洲中文字幕| 欧美另类亚洲清纯唯美| 蜜桃亚洲精品一区二区三区| 成人鲁丝片一二三区免费| 啦啦啦啦在线视频资源| 好男人在线观看高清免费视频| 亚洲最大成人av| 久久精品影院6| 婷婷六月久久综合丁香| 日日啪夜夜撸| 最近中文字幕2019免费版| 色5月婷婷丁香| 久久精品熟女亚洲av麻豆精品 | 中文欧美无线码| 中文天堂在线官网| 欧美最新免费一区二区三区| 免费看光身美女| 天堂网av新在线| 如何舔出高潮| 免费黄色在线免费观看| 少妇猛男粗大的猛烈进出视频 | 久久精品熟女亚洲av麻豆精品 | 九色成人免费人妻av| 日韩人妻高清精品专区| 国产精品久久久久久久电影| 亚洲在线观看片| 91精品国产九色| 亚洲综合精品二区| 少妇裸体淫交视频免费看高清| 亚洲国产欧美在线一区| 亚洲怡红院男人天堂| 国产精品福利在线免费观看| 男人舔奶头视频| 日产精品乱码卡一卡2卡三| 午夜福利高清视频| 人人妻人人澡欧美一区二区| 丰满人妻一区二区三区视频av| 男人舔女人下体高潮全视频| 日本与韩国留学比较| ponron亚洲| 国产精品一区二区性色av| 欧美三级亚洲精品| 国产一级毛片七仙女欲春2| 国产亚洲5aaaaa淫片| 菩萨蛮人人尽说江南好唐韦庄 | 国产视频首页在线观看| 国产免费视频播放在线视频 | 99国产精品一区二区蜜桃av| 欧美性猛交黑人性爽| 爱豆传媒免费全集在线观看| 国产精品久久久久久精品电影| 亚洲国产精品sss在线观看| 日韩一本色道免费dvd| 亚洲精品aⅴ在线观看| ponron亚洲| 国产不卡一卡二| 国产成人免费观看mmmm| 国产精品,欧美在线| 草草在线视频免费看| 黄片wwwwww| 精品久久久久久久久亚洲| 少妇的逼好多水| 综合色丁香网| 一区二区三区乱码不卡18| 国产69精品久久久久777片| 日本免费a在线| 91久久精品国产一区二区三区| 午夜视频国产福利| 一级毛片aaaaaa免费看小| 午夜视频国产福利| 91狼人影院| 国产精品一区二区三区四区免费观看| 亚洲精华国产精华液的使用体验| 波多野结衣巨乳人妻| 赤兔流量卡办理| 日日摸夜夜添夜夜添av毛片| 91精品一卡2卡3卡4卡| 国产伦一二天堂av在线观看| 午夜视频国产福利| 18+在线观看网站| 99热精品在线国产| 大又大粗又爽又黄少妇毛片口| 亚洲精品乱码久久久v下载方式| 日本黄色片子视频| 国产精品一二三区在线看| 99热全是精品| 久久人人爽人人片av| 中文字幕精品亚洲无线码一区| 51国产日韩欧美| 非洲黑人性xxxx精品又粗又长| 久久精品久久久久久久性| 国产在线一区二区三区精 | 亚洲国产精品国产精品| 国产精品麻豆人妻色哟哟久久 | 99热这里只有是精品50| 国产综合懂色| 日本一本二区三区精品| 国产探花在线观看一区二区| 国产午夜精品一二区理论片| 免费av观看视频| 伦精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 永久网站在线| 91午夜精品亚洲一区二区三区| 欧美日韩在线观看h| 国产精品av视频在线免费观看| 日韩大片免费观看网站 | av卡一久久| 在线免费十八禁| 麻豆av噜噜一区二区三区| 欧美另类亚洲清纯唯美| 国产精品永久免费网站| 乱码一卡2卡4卡精品| 免费一级毛片在线播放高清视频| 少妇的逼水好多| 尾随美女入室| 国产精品国产高清国产av| 在线a可以看的网站| 国内精品美女久久久久久| ponron亚洲| 97人妻精品一区二区三区麻豆| 99热网站在线观看| 色吧在线观看| 亚洲精品乱久久久久久| 国产在视频线精品| 亚洲av成人精品一二三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美国产在线观看| 国产淫语在线视频| 精品久久久久久久人妻蜜臀av| 国产又色又爽无遮挡免| 一个人看视频在线观看www免费| 在线a可以看的网站| 中文字幕av成人在线电影| 亚洲成人中文字幕在线播放| 久久亚洲精品不卡| 18禁在线播放成人免费| 最近视频中文字幕2019在线8| 嫩草影院新地址| 欧美成人a在线观看| 欧美成人a在线观看| 大香蕉97超碰在线| 国产69精品久久久久777片| 亚洲精品国产av成人精品| 2021少妇久久久久久久久久久| 蜜桃亚洲精品一区二区三区| 久热久热在线精品观看| 直男gayav资源| av国产久精品久网站免费入址| 婷婷色综合大香蕉| 国产男人的电影天堂91| 亚洲aⅴ乱码一区二区在线播放| 能在线免费看毛片的网站| 国产精品嫩草影院av在线观看| 免费在线观看成人毛片| 成年av动漫网址| 十八禁国产超污无遮挡网站| 波多野结衣巨乳人妻| 99久久九九国产精品国产免费| 亚洲av中文av极速乱| 亚洲综合色惰| videossex国产| 国产69精品久久久久777片| 亚洲美女搞黄在线观看| 国产日韩欧美在线精品| 少妇熟女aⅴ在线视频| 精品人妻偷拍中文字幕| 亚洲av.av天堂| 亚洲av电影在线观看一区二区三区 | 免费看美女性在线毛片视频| 免费黄色在线免费观看| 中文字幕久久专区| 国产精品一区二区性色av| 国产亚洲91精品色在线| 亚洲国产精品成人综合色| 国产精品一区www在线观看| 午夜精品国产一区二区电影 | 白带黄色成豆腐渣| 男的添女的下面高潮视频| 最新中文字幕久久久久| 久久人人爽人人爽人人片va| 毛片一级片免费看久久久久| 亚洲欧美一区二区三区国产| 一级av片app| 麻豆一二三区av精品| 亚洲经典国产精华液单| 亚洲乱码一区二区免费版| 国产精品国产三级国产av玫瑰| 欧美性猛交╳xxx乱大交人| 午夜免费激情av| a级毛色黄片| 天堂网av新在线| 欧美激情久久久久久爽电影| 午夜福利网站1000一区二区三区| 亚洲人成网站在线观看播放| 国产精品麻豆人妻色哟哟久久 | 国产精品麻豆人妻色哟哟久久 | av在线老鸭窝| 亚洲成av人片在线播放无| 国产黄片美女视频| 午夜日本视频在线| 国内揄拍国产精品人妻在线| 国产黄a三级三级三级人| 久久韩国三级中文字幕| 亚洲成人久久爱视频| 日本黄色片子视频| videos熟女内射| 91精品一卡2卡3卡4卡| 成人亚洲欧美一区二区av| 日韩高清综合在线| 成年免费大片在线观看| 成年av动漫网址| 久久久久久久久中文| 插逼视频在线观看| 国产午夜精品久久久久久一区二区三区| 日韩制服骚丝袜av| 观看美女的网站| 国产老妇伦熟女老妇高清| 中文字幕免费在线视频6| 亚洲国产日韩欧美精品在线观看| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 99在线视频只有这里精品首页| 乱码一卡2卡4卡精品| 人妻制服诱惑在线中文字幕| 少妇丰满av| 国产高清有码在线观看视频| 免费在线观看成人毛片| 国产精品野战在线观看| 欧美一区二区精品小视频在线| 国产精品一区二区三区四区久久| 久久久国产成人免费| 亚洲在线观看片| 在线a可以看的网站| 国产成人91sexporn| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 亚洲国产日韩欧美精品在线观看| 永久网站在线| 国产精品一及| 嫩草影院入口| 特大巨黑吊av在线直播| 国产在线男女| 亚洲激情五月婷婷啪啪| 免费电影在线观看免费观看| 天美传媒精品一区二区| 高清毛片免费看| h日本视频在线播放| 国产精品久久久久久精品电影| 国内精品宾馆在线| 亚洲美女搞黄在线观看| 久久久久久久久久久免费av| 99久久精品一区二区三区| 亚洲成色77777| 国产成人91sexporn| 亚洲av熟女| 色视频www国产| 中文字幕av在线有码专区| 亚洲电影在线观看av| 美女国产视频在线观看| 亚洲国产精品成人综合色| 久久久久性生活片| 国产在线男女| 亚洲第一区二区三区不卡| 在线观看一区二区三区| 久久久久久大精品| 国产精品久久久久久精品电影小说 | 久久精品影院6| 男人的好看免费观看在线视频| 九九爱精品视频在线观看| 免费看光身美女| 亚洲真实伦在线观看| 91久久精品国产一区二区三区| 久久精品夜色国产| av专区在线播放| 99视频精品全部免费 在线| 搡女人真爽免费视频火全软件| 日本av手机在线免费观看| 麻豆av噜噜一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲综合色惰| 久久久久网色| 人人妻人人看人人澡| 国产极品天堂在线| 99九九线精品视频在线观看视频| 国产精品国产三级国产专区5o | 国产精品国产三级专区第一集| 有码 亚洲区| 三级毛片av免费| 啦啦啦韩国在线观看视频| 神马国产精品三级电影在线观看| 男女边吃奶边做爰视频| 18禁裸乳无遮挡免费网站照片| 欧美另类亚洲清纯唯美| 国产精品1区2区在线观看.| 久久99热这里只有精品18| 国产在视频线精品| 国产在线男女| 国产精品国产三级专区第一集| 偷拍熟女少妇极品色| 如何舔出高潮| h日本视频在线播放| 亚洲国产精品专区欧美| 成人av在线播放网站| kizo精华| 免费播放大片免费观看视频在线观看 | 久久这里只有精品中国| 精品久久久久久久末码| 国产亚洲av片在线观看秒播厂 | 建设人人有责人人尽责人人享有的 | 日韩三级伦理在线观看| 一级毛片我不卡| 国产在视频线在精品| 国产精品久久久久久久电影| 亚洲av.av天堂| 大香蕉97超碰在线| 啦啦啦韩国在线观看视频| 久久热精品热| 国产亚洲最大av| a级毛色黄片| 精品少妇黑人巨大在线播放 | 国产精品美女特级片免费视频播放器| 午夜免费男女啪啪视频观看| 国产三级在线视频| 视频中文字幕在线观看| 特大巨黑吊av在线直播| 女人久久www免费人成看片 | 啦啦啦啦在线视频资源| 内射极品少妇av片p| 精华霜和精华液先用哪个| 我要搜黄色片| 亚洲精品乱码久久久v下载方式| 国产av码专区亚洲av| 国产精品人妻久久久影院| 少妇人妻精品综合一区二区| 欧美日韩国产亚洲二区| 亚洲欧美日韩无卡精品| 亚洲在线自拍视频| 欧美日韩一区二区视频在线观看视频在线 | 久久久亚洲精品成人影院| 国产亚洲最大av| 成人二区视频| 看十八女毛片水多多多| 日韩大片免费观看网站 | 别揉我奶头 嗯啊视频| 国产熟女欧美一区二区| 黑人高潮一二区| 国产麻豆成人av免费视频| 日韩欧美在线乱码| 黄片无遮挡物在线观看| 精品久久久久久久末码| 国产精品电影一区二区三区| 亚洲成人精品中文字幕电影| 国产免费视频播放在线视频 | 一卡2卡三卡四卡精品乱码亚洲| 波野结衣二区三区在线| 亚洲熟妇中文字幕五十中出| 晚上一个人看的免费电影| 亚洲中文字幕一区二区三区有码在线看| 日本猛色少妇xxxxx猛交久久| 特大巨黑吊av在线直播| 亚洲欧美精品专区久久| 欧美成人一区二区免费高清观看| 久久精品熟女亚洲av麻豆精品 | 18禁在线播放成人免费| 99久国产av精品| 色网站视频免费| 五月玫瑰六月丁香| 国产乱来视频区| 国产精品一区二区在线观看99 | 日本黄色视频三级网站网址| 床上黄色一级片| 啦啦啦啦在线视频资源| 你懂的网址亚洲精品在线观看 | 别揉我奶头 嗯啊视频| 夫妻性生交免费视频一级片| 亚洲av福利一区| 免费黄色在线免费观看| 免费无遮挡裸体视频| 九九热线精品视视频播放| 日本午夜av视频| 久久精品综合一区二区三区| 国产一级毛片在线| 美女脱内裤让男人舔精品视频| 亚洲av福利一区| 国产乱来视频区| 国产午夜福利久久久久久| 在线观看美女被高潮喷水网站| 天堂影院成人在线观看| 国产极品天堂在线| 亚洲精品影视一区二区三区av| 国产探花在线观看一区二区| 狠狠狠狠99中文字幕| 特大巨黑吊av在线直播| 日本-黄色视频高清免费观看| 国产亚洲最大av| 亚洲天堂国产精品一区在线| 精品久久久久久久久亚洲| 久久久久网色| 亚洲最大成人中文| 国产一区亚洲一区在线观看| 欧美3d第一页| 国产免费福利视频在线观看| 久久综合国产亚洲精品| 精品久久久久久久久久久久久| 国产极品天堂在线| 免费观看的影片在线观看| 不卡视频在线观看欧美| 日本wwww免费看| 亚洲人与动物交配视频| 国语自产精品视频在线第100页| 一级毛片电影观看 | 青春草视频在线免费观看| eeuss影院久久| 午夜激情福利司机影院| 色网站视频免费| 精品免费久久久久久久清纯| 国产免费又黄又爽又色| 3wmmmm亚洲av在线观看| 日韩 亚洲 欧美在线| 最近中文字幕2019免费版| 天美传媒精品一区二区| 欧美潮喷喷水| 日韩大片免费观看网站 | 人妻制服诱惑在线中文字幕| 国产一区二区在线av高清观看| 色尼玛亚洲综合影院| 自拍偷自拍亚洲精品老妇| 久久久色成人| 在线观看66精品国产| 少妇裸体淫交视频免费看高清| 黄色欧美视频在线观看| 搡女人真爽免费视频火全软件| 中文字幕精品亚洲无线码一区| 在线观看66精品国产| 久久久精品欧美日韩精品| 国产 一区 欧美 日韩| 久久国产乱子免费精品| 久99久视频精品免费| 国产白丝娇喘喷水9色精品| 久久久精品欧美日韩精品| 久久久久久久亚洲中文字幕| 日韩中字成人| 中文字幕精品亚洲无线码一区| 插逼视频在线观看| 搡老妇女老女人老熟妇| 秋霞伦理黄片| 97超视频在线观看视频| 女的被弄到高潮叫床怎么办| 国产乱人视频| 国内精品宾馆在线| 欧美不卡视频在线免费观看| 中文字幕熟女人妻在线| 亚洲在线自拍视频| 精华霜和精华液先用哪个| 日韩 亚洲 欧美在线| 国产熟女欧美一区二区| 1000部很黄的大片| 视频中文字幕在线观看| 欧美潮喷喷水| 久久久久久伊人网av| 国产精品蜜桃在线观看| 蜜臀久久99精品久久宅男| 日本欧美国产在线视频| 成年版毛片免费区| 欧美一区二区亚洲| 日韩一区二区视频免费看| 国产精品,欧美在线| 国产一级毛片在线| 男人舔奶头视频| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站 | 在线a可以看的网站| 一区二区三区四区激情视频| 伊人久久精品亚洲午夜| 噜噜噜噜噜久久久久久91| 精品国内亚洲2022精品成人| 国产精品国产三级国产av玫瑰| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 久久精品国产亚洲网站| 国产爱豆传媒在线观看| 能在线免费看毛片的网站| 亚洲成色77777| 久久精品久久精品一区二区三区| 麻豆一二三区av精品| 久久久久久久久久黄片| 亚洲不卡免费看| 久久婷婷人人爽人人干人人爱| 99热这里只有是精品在线观看| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 你懂的网址亚洲精品在线观看 | 一个人看视频在线观看www免费| 少妇裸体淫交视频免费看高清| 伊人久久精品亚洲午夜| 超碰av人人做人人爽久久| 国产成人freesex在线| 我要搜黄色片| 亚洲国产日韩欧美精品在线观看| 国产一区二区在线av高清观看| 国产日韩欧美在线精品| 国产色爽女视频免费观看| 精华霜和精华液先用哪个| 一级av片app| 哪个播放器可以免费观看大片| 久久精品久久久久久久性| 欧美日本亚洲视频在线播放| 99热6这里只有精品| 少妇人妻一区二区三区视频| 99久国产av精品| 精品久久久久久久久亚洲| 中文字幕亚洲精品专区| 国产一区二区在线观看日韩| 极品教师在线视频| 免费观看a级毛片全部| 99久国产av精品| 婷婷色综合大香蕉| 九九爱精品视频在线观看| 成人国产麻豆网| 亚洲国产精品久久男人天堂| 99久久精品热视频| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 99热精品在线国产| 色哟哟·www| 欧美变态另类bdsm刘玥| 一级毛片电影观看 | 国产高清不卡午夜福利| videossex国产| 亚洲国产高清在线一区二区三| 禁无遮挡网站| 精品一区二区三区人妻视频| 久久久色成人| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产色片| av在线观看视频网站免费| 亚洲国产成人一精品久久久| 久久久久久久久大av| 美女被艹到高潮喷水动态| 在线观看美女被高潮喷水网站| 国产白丝娇喘喷水9色精品| 国语对白做爰xxxⅹ性视频网站| ponron亚洲| 久久精品久久久久久久性| 色噜噜av男人的天堂激情| 国产日韩欧美在线精品| 中文字幕熟女人妻在线|