• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    2015-11-24 06:57:45SangNan桑楠WeiMinxiang魏民祥BaiYu白玉
    關(guān)鍵詞:白玉

    Sang Nan(桑楠),Wei Minxiang(魏民祥),Bai Yu(白玉)

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    Sang Nan(桑楠)1,2*,Wei Minxiang(魏民祥)1,Bai Yu(白玉)2

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    A control method of active front steering(AFS)based on active disturbance rejection technique was proposed for solving the model nonlinearity and parameter decoupling control in the traditional control methods.The AFS controller consists of the proportional and derivative(PD)feed-forward controller and the active disturbance rejection feedback controller.To improve the steering response characteristics of a vehicle,a PD controller is designed to realize variable steering gear ratio,and to enhance the safety of vehicle when steering.An active disturbance rejection controller(ADRC)is designed to follow the expected yaw rate of the vehicle.According to the input and output of system,extended state observer(ESO)of ADRC can dynamically estimate internal and external disturbance of the system,thus easily realizing the model nonlinear and parameter decoupling control.The AFS controller is simulated and validated in Matlab and CarSim.The simulating results of double lane change(DLC)test and pylon course slalom(PCS)test show that the ADRC can well control the vehicle model to complete the road simulation test of DLC and PCS with small path tracking error.The simulating results of angle step test of steering wheel show that the vehicle under the control of ADRC demonstrates good lateral response characteristic.The controller regulates a wide range of parameters.The model has less precision requirements with good robustness.

    active disturbance rejection technique;active steering;variable ratio;extended state observer

    Nomenclature

    m/kg Mass of vehicle

    1z/(kg·m2)Moment of inertia about Z-axis

    k1/(N·rad-1)Front axle cornering stiffness

    k2/(N·rad-1)Rear axle cornering stiffness

    lf/m Distance between CG and front axle

    lr/m Distance between CG and rear axle

    δsw/rad Steering wheel angle

    δFF/rad Steering wheel angle of feedforward

    δFB/rad Steering wheel angle of feedback

    δp/rad Out angle of planetary gear trains

    θac/rad Angle of active front steering motor(actuator)

    θp/rad Angle of 6-gear

    δf/rad Steer angle of front wheels

    niTeeth of i-gear

    ψ/(rad·s-1)Yaw rate

    ψd/(rad·s-1)Yaw rate of reference model

    β/rad Sideslip angle of vehicle centre of mass

    βd/rad Sideslip angle of reference model

    G Mechanical steering gear ratio

    ux/(m·s-1)Longitudinal velocity

    g/(m·s-2)Acceleration due to gravity

    0 Introduction

    The traditional steering system completes the steering through the intervention of the driver. Therefore,it has the disadvantages of slow response speed,the incapability of correcting the driver's wrong operations,the helplessness in satisfying small gear ratio requirements at low speedand large gear ratio requirements at high speed,namely the so-called light and flexible contradiction.Owing to the small variation of gear ratio of traditional steering system,the steering characteristics of vehicle have nonlinear relations with vehicle speed.Therefore,the driver needs to constantly revise the vehicle direction to adapt to the steering characteristics of the vehicle so as to control the vehicle along the driver's desired track,which increases the driving burden and decreases the operability of the vehicle.Hydraulic power steering(HPS)or electric power steering(EPS)can change the transfer characteristics of steering force,but cannot change those of steering angle. Therefore,the problem that the vehicle steering characteristics change with the vehicle speed still exists.Active steering system was developed on the basis of power steering system,which includes active front steering(AFS),4 wheels steering(4WS)and steering by wire(SBW),etc. A variable gear ratio(normalized steering gear ratio)can be realized by controlling the input of the active steering motor to get better steering performance,thus improving the handling and stability of vehicle and enhaning driving safety[1,2].

    The light and flexible contradiction can be solved by variable ratio of active steering.Based on the state of the vehicle,an additional angle is applied to the front wheels for changing the lateral force to ensure that the lateral dynamics meet the requirements.According to yaw rate and sideslip angle,the feed-forward controller implements abasic variable ratio rule based on vehicle speed,and the feedback controller adjusts wheel angle[3]. Steer gain(yaw rate gain or lateral acceleration gain)is invariable with velocity[4,5];The variable ratio rule is amended based on invariable steer gain,and it is controlled by speed[6].In fact,nonlinear characteristics of the tire,the vertical load and the suspension compliance will influence the actual angle of front wheels and change the relation between gear ratio and speed,so as to affect the vehicle steering characteristics.In this paper,basic variable gear ratio is realized by using proportional and derivative(PD)feed-forward control,and the desired yaw rate is followed by using the active disturbance rejection control[7]. Known to the steering input and the output of vehicle(e.g.,steering angle,yaw rate,lateral acceleration,speed),active disturbance rejection controller(ADRC)can dynamically track targets. In order to verify the effectiveness of the proposed control methods,the drivers'commands are given by a single-point preview driver model and the driver-vehicle-road closed-loop control model is established in Matlab software.The Car Sim vehicle model is controlled by this driver model to complete the road simulating test of high-speed double lane change(DLC)and pylon course slalom(PCS).

    1 Variable Ratio Steering System Configuration and Model

    1.1 Variable ratio steering system configuration

    After adding the planetary gear mechanism in HPS or EPS,the variability of steering gear ratio was implemented by superposition of the movement of steering wheel and active front steering motor.Such system[8]was first applied in the BMW 5 series.The configuration of the variable ratio steering system is shown in Fig.1.

    Fig.1 Variable ratio steering system configuration

    As shown in Fig.1,while the steering system is working,the rotating direction ofδpand δsware the same,where Gpis the reduction ratio of motor and part 6,Gp=θac/θp.Compound gear train has double row planetary gear train,including sun gears(part 1,2,5,6),planet gears(part 3,4)and planet carrier(part H),among which 5-sun gear is fixed.1-3-H-5 is an elementa-ry epicyclical gear train,2-4-H-6 is a differential gear train,the system degree of freedom(DOF)is 2,and the outputδpis determined byδswandθp. The relation amongδp,δswandθpsatisfies

    From Eq.(1),δpcan be expressed as

    In this system,the mechanical steering gear ratio G was set to 17.The front wheel angleδfequals toδp/G andαequals to n5/n1,then the vehicle steering gear ratio is defined as

    Whenθp=0,thenδp=δsw,the steering gear ratio i is constant.Active steering system becomes a constant ratio steering system.Whenθp≠0,i is determined by the values ofθp/δswas expressed in Eq.(3).Using the steering system as Fig.1,steering variable gear ratio can be realized by controlling the inputθpor the actual control inputθac.

    Variable gear ratio can be realized by the active front steering shown in Fig.1,and its control algorithm is shown in Fig.2.According to the driver's input and vehicle speed,feed-forward controller calculates feed-forward steering wheel angleδFF.According toψd,βd,ψandβ,feedback controller calculates feedback steering wheel angle δFB.Feed-forward control algorithm is actually a proportional&derivative(PD)algorithm,and feedback control algorithm is an active disturbance rejection algorithm.In addition,one of the effects of the active steering control is that the response characteristic of the vehicle is changeable.This function is realized by feed-forward controller of the steering control,and the detailed algorithm will be described in Section 1.2.Another effect of the active steering control is that the vehicle response is less than the safety threshold.This function is realized by the feedback controller of the steering control,and the detailed algorithm will be described in Section 2.4.

    1.2 Basic variable gear ratio control

    Fig.2 Vehicle active steering control algorithm

    The active front steering control system is designed to realize the functions mentioned above. The steering angle of the front wheel is determined by the driver and the actuator(motor). This angle can be controlled optionally by actively controlling the operating angle of the actuator. That is why the system is called the active front steering(AFS).

    The relation among the front wheel angle,the actuator operating angle and the steering wheel angle is shown as follows[3]

    δFFis calculated as follows

    where kvis the proportional gain,and ksthe derivative gain.kvand ksare related to the speed of vehicle.SubstitutingδFFof Eq.(5)into Eq.(4),its Laplace transform can be obtained.

    where s is the Laplace operator.By setting up the relationships of kvand kswith the speed to realize the rules of basic variable gear ratio,the vehicle response characteristics can be actively controlled. In reference to BMW and Refs.[3,9]about the range of the steering variable ratio and the relation between the variable ratio and the speed of vehicle,the kinematical function of the steering ratio is designed in this paper,as shown in Fig.3.

    Fig.3 Steering variable ratio rule

    In active front steering as shown in Fig.1,using control methods above,actual input of me-chanical steering gear isδp=δsw+δFF+δFB.Compared with Eq.(2),the value ofθpcan be determined,which equals to-(δFF+δFB)n1/n5.Then,the expected variable gear ratio and steering characteristic can be realized by controlling the angle of active steering motor.θaccan be expressed as

    2 Driver-Vehicle-Road Closed-Loop Model

    2.1 Driver model

    Driver,vehicle and road are various aspects in the manipulation of vehicle.During driving,the driver has to constantly modify the vehicle direction according to the vehicle state and road conditions.The three aspects constitute a drivervehicle-road closed-loop system.The"preview optimal curvature model"[10-12]proposed by Guo determines steering wheel angle based on single preview hypothesis and optimal curvature control. This model can simultaneously take the dynamic response characteristics of the vehicle and hysteresis of driver's response into account.It is called the single point preview driver model[10],as shown in Fig.4.

    Fig.4 Single point preview driver model

    In Fig.4,T is the preview time,c(s)=c0(1+ Tcs),c0=u2x/Gay,and Gayis the steady-state gain of lateral acceleration.For a skilled driver,T can be set to 0.8 s,Tc0.406 8 s,td0.3 s,and th0.1s[9-11].In actual application of the proposed model,the lateral speed and lateral displacement are given by the actual vehicle or the simulation model of the vehicle.In this paper,the drivers'input of the simulating vehicle is given by the single-point preview driver model.

    2.2 Linear 2-DOF vehicle model

    The 2-DOF linear vehicle model is commonly used in the study of steering movement(Fig.5). The dynamic equation is described as[13]

    Substitutingδf=(δsw+δFF+δFB)/G into Eq.(8),the following equations can be derived.

    Fig.5 2-DOF vehicle model

    where K is the understeering coefficient of vehicle andμthe adhesion coefficient of road.

    2.4 Active disturbances rejection feedback controller

    In this section,the design of ADRC[7]will be discussed in detail.ADRC is the feedback controller,and active angleδFBoperated by target yaw rate follow-up control.The actual vehicle model is much more complicated than the linear 2-DOF vehicle model with a lot of nonlinear problems. Obviously,compared with the actual vehicle mod-

    2.3 Reference model

    The expected yaw rateψdis determined by the desired linear 2-DOF model.Considering the road adhesion conditions of vehicle driving,the expected yaw rate responseψdon steering wheel under the angle input is expressed asel,the linear model of 2-DOF is over-simplified. Therefore,the proposed model contains a lot of unmodeled dynamics and its accuracy is poor. Control method depended on the precision of model is bad at the result control.The nonlinear coupling problem related to 2-DOF model requires a large amount of calculations to be decoupled.ADRC can adopt nonlinear feedback to implement dynamic compensation only based on the input and output of the system.Therefore,the first advantage of the ADRC model is that the control system can be treated by using a unified way,no matter the system is linear or nonlinear,certain or uncertain.The second advantage of the model is that in the rejection of disturbance,a specific and observable model for external disturbance is not necessary.Other advantages include:(1)The control algorithm does not need to identify the control object.(2)The control algorithm has good portability.(3)For the coupled problem of dynamic equation,only the static coupling need to be considered instead of the dynamic coupling.

    In Eq.(5),.δswcan be obtained from.δswby a differential process,which can be obtained from δswby a differential process.The method for obtaining.δswis

    Similarly,the differential process mentioned above is adoped in the desired referenceψd,expressed in Eq.(13).This is called the transition process in ADRC technique.The first function is to increase the adjustable range of parameters; the second function is to provide error signal for ADRC.

    In Eq.(9a),f11(ψ,β)is the sum of disturbance,which includes unmodeled error,parameter error and internal-external disturbance.Extended state observer(ESO)listed in Eq.(14)estimates the system states and the sum of disturbance.

    where z1,z2,and z3estimate states x1,x2,and x3,respectively and x3equals to f11(ψ,β).In Eq.(14),function Fal(·)is expressed as

    whereξandΔare the positive numbers,and sign(·)is the signum function.

    The state errors of system e1and e2are defined as v1·(-z1)and v2·(-z2),respectively,and they are used in the design of ADRC.In this paper,the feedback control law of error u0is expressed as

    In the ADRC algorithm,δFBis dynamically calculated by ESO using u0and z3,expressed in Eq.(17).

    where f12is a known disturbance.Substituting δFBof Eq.(17)into Eq.(14),the two-order ESO can be expressed as

    Eq.(18)shows that ESO becomes a pure integrator tandem observer.δswis given by the driver model.ψdis obtained by the reference model and ESO is designed based on the linear 2-DOF model.Thanks to the fact that the nonlinear characteristics of model treated as disturbances are all included in f11,ESO can guarantee enough preci-sion.

    So far,the ADRC and the PD controller have been discussed in this section and Section 1.2,respectively.According to the above discussion,the control model of AFS is shown in Fig.6.Here,the ADRC controller is illustrated inside the dashed box in Fig.6.

    Fig.6 Control model of active front steering

    It can be seen from Eq.(8)that yaw rateψ and sideslip angleβare coupled.Using the ADRC controller,as long as y*is measurable,f11(ψ,β)can be estimated by z3and the decoupling control ofψandβis realized by ADRC without complex decoupling of matrix computation.Therefore,the algorithm of ADRC can ensure good real-time performance.

    3 Simulation Analysis

    In order to validate control effects of steering variable gear ratio and tracking performance of path of the proposed ADRC,a driver-vehicle-road closed-loop control model is established in Matlab/Simulink,which controls vehicle model of CarSim software(CS B-CLASS)to complete the tests of DLC and PCS.These two tests were carried out at speeds of 100 km/h and 120 km/h,respectively.The test path and placing of cones are adaptively set in accordance with the standard test[13,14]and the changes of speed(Technical Report of State Key Laboratory of Automobile Dynamic Simulation,Jilin University).Placing of cones for marking the pylon course slalom track is shown in Fig.7,and that for marking the double lane-change track is shown in Fig.8.

    Fig.7 Placing of cones for marking pylon course slalom track

    Fig.8 Placing of cones for marking double lanechange track

    In Figs.7,8,the center line of the trajectory surrounded by cones is a broken one,which is impossible for the vehicle to follow such a trajectory.Therefore,the non-smooth trajectory must be preview correction[11]in the simulation tests.The lines AB and GH in PCS test and the lines AB and CD in DLC test are replaced by cubic spline curves that satisfy the boundary conditions(The whole curve is smooth and continuous).The line B-G targeted trajectory in PCS test is a cosine curve,with the amplitude of d,as shown in Fig.7.The parameters of simulation vehicle are listed in Table 1.

    Table 1 Basic parameters of the vehicle

    The steering system of the existing vehicle has a feature of understeering to some degree. The actual vehicle model with a significant nonlinear characteristic is controlled by the steering wheel angle derived from the simple driver model,which can track the ideal path at the beginning of the test.However,a large error appears at the later stage of the test,which is illustrated in thesimulating results in Figs.9,10.In the test,road adhesion coefficient is 0.85.Since the vehicle exists understeering,if a vehicle bears no AFS,it is necessary for the driver to turn larger steering wheel angle to complete the test,as shown in Fig.11.In such a test,the driver needs to constantly amend the steering angle,thus increasing driving difficulty.The results in Figs.9,10 indicate that the vehicle with AFS can perform the high-speed DLC and PCS tests well,and the path tracking performance is significantly better than that with the fixed gear ratio system.Moreover,it is not necessary for the driver to change his driving habit. The active front steering system can automatically compensate understeering and correct oversteering.Therefore,the driving difficulty is reduced,the handling and stability of vehicle are enhanced,and the driving safety is greatly improved.

    Fig.9 High speed double lane change test

    Fig.10 High speed pylon course slalom test

    For checking the performance of the ADRC model,the test of angle step input of steering wheel was conducted.The test results are shown in Fig.12,where the solid line is the yaw rate step response curve without AFS,and the dashed line the yaw rate step response curve with AFS. The results in Fig.12 show that the overshoot and the response time of yaw rate of the vehicle with AFS are obviously smaller than that without AFS.Hence,the response performance of vehicle with AFSis improved,which alsoindicates that AFS can improve the handling and stability of vehicle.

    It is interesting that the same control parameters of ADRC are used to implement the DLC test,the PCS test and the step response test.The controlling effects of all tests are satisfying,which indicates that the ADRC controller has good robustness.

    Fig.11 Driver's input

    Fig.12 Yaw rate step response

    4 Conclusions

    An AFS model of feed-forward control and feedback control is proposed.Feed-forward controller using the known PD algorithm has realized the changeable response characteristic of the vehicle.The feedback controller using active disturbance rejection technology has enhanced the controllability and stability of vehicle when steering. In the active disturbance rejection control,since the nonlinear characteristic of vehicle regarded as a disturbance can be estimated in real time and be dynamically compensated by ESO,the precise nonlinear dynamic equation is not necessary.The simulation results show that ADRC using 2-DOF model has good control effects.Here the nonlinear control problem and the decoupling problem of parameters are solved.Vehicle with AFS performs well in path tracking,characteristic of lateral response,and robustness.

    Since the unmodeled dynamics,known or unknown disturbance and non-linear characteristic can be treated by using a unified way,the control method of ADRC is simple.Simultaneously,the design of ADRC controller does not need precise model and has no specific object,thus the controller has good the portability and adaptability.

    The AFS without considering the influence of longitudinal force is investigated.In the ADRC controller designed for AFS the influence of longitudinal force,and the influences of suspension and other control system should be addressed in the further research,as well as the integrated control of AFS with other systems.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(No.51205191).

    [1] Reinelt W,Klier W,Reimann G,et al.Active front steering(part 2):Safety and functionality[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1101.

    [2] Wang Chunyan,Zhao Wanzhong,et al.Parameter optimization of electric power steering integrated with active front steering function[J].Transaction of Nanjing University of Aeronautics and Astronautics, 2012,29(1):96-102.

    [3] Kojo T,Suzumura M,Tsuchiya Y,et al.Development of active front steering control system[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2005-01-0404.

    [4] Shang Gaogao,Hong Ze,Zhang hongdang,et al. Modeling of variable steering ratio with steady-state gain for active steering system[J].Journal of Jiangsu University:Natural Science Edition,2010,31(3):278-282.(in Chinese)

    [5] Liao Linqing,Wang Wei,Qu Xiang.Variable steer ratio of dynamic steering system based on yaw velocity gain[J].Journal of Chongqing University of Technology:Natural Science Edition,2011,25(4):1-5.(in Chinese)

    [6] Wei Jianwei,Wei Minxiang,Zhao Wanzhong.Control law of varied steering ratio based on driver-vehicleroad closed-loop system[J].Journal of Jiangsu University:Natural Science Edition,2011,32(6):652-657.(in Chinese)

    [7] Han Jingqing.Active disturbance rejection control technique the technique for estimating and compensating the uncertainties[M].Beijing:National Defense Industry Press,2008.(in Chinese)

    [8] Willy Klier,Wolfgang Reinelt.Active front steering(Part 1):Mathematical modeling and parameter estimation[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1102.

    [9] Jeonghoon Song.Design and evaluation of active front wheel steering system model and controller[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2014-01-2000.

    [10]Guo K H.Drivers-vehiele closed-loop simulation of handling by“preselect optimal curvature method”[J]. Automotive Engineering,1984,3:1-16.(in Chinese)

    [11]Guo K H,Guan H.Modeling of driver/vehicle direction control system[J].Vehicle System Dynamics,1993,22(3-4):141-184.

    [12]Guo K H.The principle of vehicle handling dynamics[M].Nanjing:Science and Technology of Jiangsu Press,2011.(in Chinese)

    [13]National Bureau of Technical Supervision.GB/ T6323.1-94,Controllability and stability test procedure for automobiles Pylon course slalom test[S]. Beijing,1994.(in Chinese)

    [14]International Standardization Organization.ISO/FDIS 3888-1,Passenger cars Test track for a severe lane change manoeuvre part 1:Double lane change[S]. Beijing,1999.

    (Executive editor:Zhang Tong)

    U461.4 Document code:A Article ID:1005-1120(2015)04-0461-08

    *Corresponding author:Sang Nan,Associate Professor,E-mail:sangn@czu.cn.

    How to cite this article:Sang Nan,Wei Minxiang,Bai Yu.Control of vehicle active front steering based on active disturbance rejection feedback controller[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):461-468.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.461

    (Received 21 November 2014;revised 26 January 2015;accepted 28 February 2015)

    猜你喜歡
    白玉
    古朗月行(節(jié)選)
    一蒂千花白玉團(tuán) 彭楹文 中國畫 181cm x 97cm 2023年
    春 筍
    春筍
    白玉羊首瓜棱形壺
    紫禁城(2020年1期)2020-08-13 09:37:02
    白玉花盆
    華夏太白玉 絲綢之路情——陜西省首屆絲綢之路“太白玉文化節(jié)”暨第二屆“太白玉研討會(huì)”盛大舉行
    寶藏(2018年1期)2018-04-18 07:40:05
    A White Heron
    青春歲月(2016年21期)2016-12-20 21:05:24
    Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system*
    Oliver Twist
    久久青草综合色| av专区在线播放| 国产成人freesex在线| 人妻夜夜爽99麻豆av| 99久久精品热视频| 一二三四中文在线观看免费高清| 美女视频免费永久观看网站| 中国美白少妇内射xxxbb| 亚洲欧美一区二区三区黑人 | 亚洲国产成人一精品久久久| 亚洲欧美日韩东京热| 国产免费一级a男人的天堂| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 一级av片app| 日韩欧美一区视频在线观看 | 五月天丁香电影| 三上悠亚av全集在线观看 | 91精品伊人久久大香线蕉| 在线观看www视频免费| 99久久精品一区二区三区| 大话2 男鬼变身卡| 夫妻午夜视频| 亚洲欧美一区二区三区国产| 青春草视频在线免费观看| 日本免费在线观看一区| 亚洲综合色惰| 在现免费观看毛片| 亚洲丝袜综合中文字幕| freevideosex欧美| 人人妻人人添人人爽欧美一区卜| 欧美丝袜亚洲另类| 久久精品国产亚洲av涩爱| 国产精品国产三级专区第一集| 免费av中文字幕在线| 男人爽女人下面视频在线观看| 精品亚洲成a人片在线观看| 女人久久www免费人成看片| av免费观看日本| 视频中文字幕在线观看| 香蕉精品网在线| 亚洲在久久综合| 只有这里有精品99| 国产综合精华液| 精品久久久精品久久久| 嘟嘟电影网在线观看| 日韩欧美一区视频在线观看 | 好男人视频免费观看在线| 亚洲国产欧美日韩在线播放 | 午夜老司机福利剧场| 亚洲精品一区蜜桃| 在线天堂最新版资源| 99热网站在线观看| 我要看黄色一级片免费的| 日本91视频免费播放| 久久久久久久久久人人人人人人| 最新中文字幕久久久久| 国模一区二区三区四区视频| 国产高清三级在线| 亚洲欧美精品自产自拍| 欧美另类一区| 国产精品久久久久久精品古装| 内射极品少妇av片p| 欧美精品一区二区免费开放| 亚洲欧美日韩卡通动漫| 亚洲美女搞黄在线观看| 插逼视频在线观看| 国模一区二区三区四区视频| 亚洲av成人精品一区久久| 九九在线视频观看精品| 亚洲一级一片aⅴ在线观看| 中文字幕精品免费在线观看视频 | 亚洲精品成人av观看孕妇| 精品一区二区三卡| 22中文网久久字幕| 18禁在线播放成人免费| 中文字幕免费在线视频6| 伦理电影大哥的女人| 最新中文字幕久久久久| 亚洲四区av| 日本欧美视频一区| 亚洲av国产av综合av卡| 亚洲精品国产色婷婷电影| 亚洲国产色片| 亚洲在久久综合| 精品国产乱码久久久久久小说| 高清不卡的av网站| 在线观看一区二区三区激情| 人妻夜夜爽99麻豆av| 男女边吃奶边做爰视频| 如何舔出高潮| 国产白丝娇喘喷水9色精品| 亚洲怡红院男人天堂| 精品卡一卡二卡四卡免费| 精品亚洲成a人片在线观看| 日本-黄色视频高清免费观看| 各种免费的搞黄视频| 国产片特级美女逼逼视频| 日韩精品免费视频一区二区三区 | 人人妻人人看人人澡| 亚洲精品自拍成人| 亚洲情色 制服丝袜| 天堂俺去俺来也www色官网| 丁香六月天网| 精品酒店卫生间| 69精品国产乱码久久久| √禁漫天堂资源中文www| 最近2019中文字幕mv第一页| 国产成人freesex在线| 免费观看在线日韩| 久久人妻熟女aⅴ| 老女人水多毛片| 又黄又爽又刺激的免费视频.| 国产精品久久久久久av不卡| 王馨瑶露胸无遮挡在线观看| 日本欧美国产在线视频| 18禁动态无遮挡网站| 免费人成在线观看视频色| 亚洲中文av在线| 天堂中文最新版在线下载| 最黄视频免费看| 久久午夜综合久久蜜桃| 成年人午夜在线观看视频| 久久精品国产鲁丝片午夜精品| 亚洲无线观看免费| 欧美精品一区二区大全| 极品人妻少妇av视频| 视频中文字幕在线观看| 人妻少妇偷人精品九色| 亚洲成人一二三区av| 乱人伦中国视频| 在线播放无遮挡| 免费观看av网站的网址| 草草在线视频免费看| av天堂久久9| 美女内射精品一级片tv| 91精品国产九色| 亚洲成色77777| 大码成人一级视频| 免费看日本二区| 欧美最新免费一区二区三区| 亚洲综合色惰| 欧美另类一区| 精品一区在线观看国产| 日本-黄色视频高清免费观看| 一级,二级,三级黄色视频| 色婷婷av一区二区三区视频| 亚洲欧洲精品一区二区精品久久久 | 三级经典国产精品| 亚洲av福利一区| 久久精品国产亚洲网站| 大香蕉久久网| 亚洲欧洲日产国产| 蜜桃久久精品国产亚洲av| 亚洲欧美一区二区三区黑人 | 久久久国产精品麻豆| av免费在线看不卡| 久久99热6这里只有精品| 性高湖久久久久久久久免费观看| 五月玫瑰六月丁香| 51国产日韩欧美| 精品视频人人做人人爽| 久久久亚洲精品成人影院| av一本久久久久| 18禁动态无遮挡网站| 精品熟女少妇av免费看| 天美传媒精品一区二区| 十八禁高潮呻吟视频 | 国产精品国产三级国产专区5o| 久久精品国产亚洲av涩爱| 我的女老师完整版在线观看| 国产精品一二三区在线看| av福利片在线观看| 99九九线精品视频在线观看视频| 久久久久久久亚洲中文字幕| 欧美bdsm另类| 久久久久国产精品人妻一区二区| 久久久久国产网址| a级毛片免费高清观看在线播放| 中文字幕亚洲精品专区| 制服丝袜香蕉在线| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的| 国产在线免费精品| 国产精品三级大全| 国产日韩欧美亚洲二区| 欧美日韩在线观看h| 性色avwww在线观看| 国产午夜精品一二区理论片| 一本色道久久久久久精品综合| 日韩一区二区三区影片| 国产免费一级a男人的天堂| 中文资源天堂在线| 亚洲伊人久久精品综合| av女优亚洲男人天堂| 日本黄色日本黄色录像| 欧美少妇被猛烈插入视频| 内地一区二区视频在线| 在线观看av片永久免费下载| 91在线精品国自产拍蜜月| 亚洲美女搞黄在线观看| 中文欧美无线码| 国产精品久久久久成人av| 久久av网站| 亚洲综合色惰| 日韩一区二区三区影片| 欧美日韩一区二区视频在线观看视频在线| 亚洲av电影在线观看一区二区三区| 亚洲图色成人| 深夜a级毛片| 一区二区三区乱码不卡18| 少妇的逼水好多| av免费观看日本| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花| 欧美少妇被猛烈插入视频| 黑人巨大精品欧美一区二区蜜桃 | 大陆偷拍与自拍| 又大又黄又爽视频免费| 日韩中文字幕视频在线看片| 精品人妻一区二区三区麻豆| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品国产精品| 久久久精品免费免费高清| 夫妻性生交免费视频一级片| 日本wwww免费看| 国产高清国产精品国产三级| 亚洲av免费高清在线观看| 乱人伦中国视频| 国产成人午夜福利电影在线观看| 成人免费观看视频高清| 日韩大片免费观看网站| 少妇人妻精品综合一区二区| 91精品一卡2卡3卡4卡| 日本黄大片高清| 狂野欧美激情性xxxx在线观看| 国产亚洲精品久久久com| 少妇精品久久久久久久| 国产欧美亚洲国产| 大码成人一级视频| 简卡轻食公司| 免费少妇av软件| 寂寞人妻少妇视频99o| 啦啦啦在线观看免费高清www| 日韩一区二区三区影片| www.av在线官网国产| 最新的欧美精品一区二区| 国产精品一区二区在线不卡| 啦啦啦啦在线视频资源| 人体艺术视频欧美日本| 91久久精品国产一区二区三区| 丝袜在线中文字幕| 亚洲第一区二区三区不卡| 国产精品免费大片| 在线免费观看不下载黄p国产| 人人妻人人爽人人添夜夜欢视频 | 国产日韩一区二区三区精品不卡 | 在线亚洲精品国产二区图片欧美 | 黄色日韩在线| 日韩三级伦理在线观看| 另类精品久久| 欧美激情极品国产一区二区三区 | 国产免费又黄又爽又色| 精品国产露脸久久av麻豆| 七月丁香在线播放| 色婷婷久久久亚洲欧美| 亚洲精华国产精华液的使用体验| 国产一区二区在线观看av| 国产精品一区www在线观看| 久久久国产欧美日韩av| h日本视频在线播放| av在线观看视频网站免费| 欧美另类一区| 一级黄片播放器| 十八禁网站网址无遮挡 | 亚洲精品456在线播放app| 看免费成人av毛片| 桃花免费在线播放| 日本欧美国产在线视频| 亚洲国产精品999| 97超视频在线观看视频| 热re99久久精品国产66热6| 国产av码专区亚洲av| 亚洲美女视频黄频| 老司机影院成人| 国产探花极品一区二区| 国产欧美日韩综合在线一区二区 | 久久精品久久久久久久性| 国产探花极品一区二区| 亚洲欧美成人综合另类久久久| 婷婷色综合www| 精品视频人人做人人爽| 寂寞人妻少妇视频99o| av一本久久久久| 亚洲精品中文字幕在线视频 | 我的女老师完整版在线观看| 成年人午夜在线观看视频| 国产精品不卡视频一区二区| 亚洲熟女精品中文字幕| av卡一久久| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 免费观看无遮挡的男女| 精品亚洲成国产av| 两个人的视频大全免费| 老司机亚洲免费影院| 欧美最新免费一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲,欧美,日韩| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 国产男女内射视频| 国产一区有黄有色的免费视频| 日韩精品有码人妻一区| 天堂俺去俺来也www色官网| 日韩人妻高清精品专区| 水蜜桃什么品种好| 日韩av不卡免费在线播放| 久久国内精品自在自线图片| 国产黄片美女视频| 18禁在线无遮挡免费观看视频| 黄色配什么色好看| 国精品久久久久久国模美| 91精品一卡2卡3卡4卡| 多毛熟女@视频| 精品视频人人做人人爽| 午夜久久久在线观看| 免费少妇av软件| av免费在线看不卡| 国产精品麻豆人妻色哟哟久久| 99国产精品免费福利视频| 色吧在线观看| 一级爰片在线观看| 大片电影免费在线观看免费| 成年女人在线观看亚洲视频| 亚洲精品色激情综合| 精品亚洲成a人片在线观看| 亚洲怡红院男人天堂| 狠狠精品人妻久久久久久综合| 深夜a级毛片| 久久精品久久久久久久性| 久久久午夜欧美精品| 熟女人妻精品中文字幕| 亚洲一区二区三区欧美精品| a级毛色黄片| 日本黄大片高清| 精品少妇久久久久久888优播| 亚洲av成人精品一区久久| 91久久精品电影网| 国产精品女同一区二区软件| 亚洲国产欧美日韩在线播放 | 国产黄片视频在线免费观看| 又爽又黄a免费视频| 男的添女的下面高潮视频| 黄色怎么调成土黄色| 亚洲av成人精品一区久久| 国产黄频视频在线观看| 少妇猛男粗大的猛烈进出视频| 欧美一级a爱片免费观看看| 国产午夜精品久久久久久一区二区三区| 大片免费播放器 马上看| 99热这里只有是精品50| 日韩av在线免费看完整版不卡| 国产免费视频播放在线视频| 成年女人在线观看亚洲视频| 日本色播在线视频| 老司机影院成人| 亚洲久久久国产精品| 777米奇影视久久| 18禁动态无遮挡网站| 高清黄色对白视频在线免费看 | h视频一区二区三区| 婷婷色麻豆天堂久久| 精品少妇内射三级| 国产淫语在线视频| 亚洲熟女精品中文字幕| 丰满少妇做爰视频| 人人妻人人看人人澡| 亚洲怡红院男人天堂| 熟女人妻精品中文字幕| 大香蕉久久网| 国产精品三级大全| av线在线观看网站| 亚洲精品乱码久久久久久按摩| 久久青草综合色| 美女中出高潮动态图| 3wmmmm亚洲av在线观看| 中文乱码字字幕精品一区二区三区| 国产成人一区二区在线| 亚州av有码| 特大巨黑吊av在线直播| 国产成人精品无人区| 观看美女的网站| 精品亚洲成a人片在线观看| 高清黄色对白视频在线免费看 | 免费人成在线观看视频色| 成人黄色视频免费在线看| 欧美日韩av久久| 亚洲经典国产精华液单| 国产亚洲午夜精品一区二区久久| 纯流量卡能插随身wifi吗| 交换朋友夫妻互换小说| 国产综合精华液| 国产色婷婷99| 欧美日韩精品成人综合77777| 男人和女人高潮做爰伦理| 十八禁网站网址无遮挡 | 日韩欧美一区视频在线观看 | 亚洲精品一区蜜桃| 免费人妻精品一区二区三区视频| 一本久久精品| 成人午夜精彩视频在线观看| av免费在线看不卡| 亚洲精品456在线播放app| 日韩人妻高清精品专区| 王馨瑶露胸无遮挡在线观看| 插逼视频在线观看| 99久国产av精品国产电影| 午夜福利网站1000一区二区三区| 99热全是精品| 欧美bdsm另类| tube8黄色片| 亚洲内射少妇av| 国产成人午夜福利电影在线观看| 91在线精品国自产拍蜜月| 亚洲av二区三区四区| 国产在视频线精品| 美女大奶头黄色视频| 亚洲欧美日韩另类电影网站| av免费观看日本| 99久久人妻综合| 国产欧美另类精品又又久久亚洲欧美| 午夜免费观看性视频| 国产高清国产精品国产三级| 黄色配什么色好看| 中文字幕精品免费在线观看视频 | 老司机影院毛片| 亚洲av免费高清在线观看| 久久热精品热| 另类精品久久| 日本vs欧美在线观看视频 | 亚洲av电影在线观看一区二区三区| 免费看光身美女| 亚洲成人手机| 永久网站在线| 麻豆精品久久久久久蜜桃| 一区在线观看完整版| 丝瓜视频免费看黄片| 久久久久视频综合| 蜜桃在线观看..| 国产高清有码在线观看视频| 全区人妻精品视频| 亚洲欧美日韩另类电影网站| 久久精品国产自在天天线| 乱码一卡2卡4卡精品| 九色成人免费人妻av| 欧美老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 亚洲成人av在线免费| 一区二区三区乱码不卡18| 中文字幕人妻丝袜制服| 亚洲欧美日韩另类电影网站| 99热国产这里只有精品6| 免费黄频网站在线观看国产| 欧美少妇被猛烈插入视频| 欧美激情国产日韩精品一区| 一区二区三区免费毛片| 永久免费av网站大全| 国产精品国产三级国产专区5o| 日韩中字成人| 国产免费又黄又爽又色| 久久综合国产亚洲精品| 老司机影院毛片| 曰老女人黄片| 免费观看a级毛片全部| 中文字幕人妻熟人妻熟丝袜美| 有码 亚洲区| 久久精品国产亚洲av涩爱| 午夜91福利影院| 中文天堂在线官网| 久热久热在线精品观看| 一本—道久久a久久精品蜜桃钙片| 日韩一区二区视频免费看| 校园人妻丝袜中文字幕| 欧美三级亚洲精品| 人妻系列 视频| 欧美bdsm另类| 大又大粗又爽又黄少妇毛片口| 99九九线精品视频在线观看视频| 久久国产精品大桥未久av | 婷婷色综合大香蕉| 国产成人精品一,二区| 伦理电影免费视频| 人人妻人人澡人人爽人人夜夜| 亚洲精品日本国产第一区| 亚洲欧美精品专区久久| 精品亚洲成国产av| 青春草亚洲视频在线观看| 亚洲经典国产精华液单| 欧美精品亚洲一区二区| 久久综合国产亚洲精品| 国产高清不卡午夜福利| 在线免费观看不下载黄p国产| 国产欧美日韩综合在线一区二区 | 国产一区二区在线观看av| h视频一区二区三区| av国产精品久久久久影院| 欧美三级亚洲精品| 国产69精品久久久久777片| 日日撸夜夜添| 日韩成人伦理影院| 最后的刺客免费高清国语| 亚洲精品自拍成人| 久久精品国产a三级三级三级| 有码 亚洲区| www.av在线官网国产| 老司机亚洲免费影院| 如日韩欧美国产精品一区二区三区 | 亚洲精品第二区| 日韩伦理黄色片| 免费人成在线观看视频色| 最近中文字幕高清免费大全6| 欧美xxⅹ黑人| 亚洲av综合色区一区| 日韩制服骚丝袜av| 久久精品熟女亚洲av麻豆精品| 久久青草综合色| 男女免费视频国产| 欧美日韩亚洲高清精品| 在线观看三级黄色| 国产一区二区三区综合在线观看 | 一区二区三区免费毛片| freevideosex欧美| 精品亚洲成a人片在线观看| 久久午夜综合久久蜜桃| 九九在线视频观看精品| 性色av一级| 久久久久视频综合| 国产成人freesex在线| 五月天丁香电影| 3wmmmm亚洲av在线观看| 日韩一区二区视频免费看| 国产免费视频播放在线视频| 天天躁夜夜躁狠狠久久av| 亚洲美女搞黄在线观看| 国产亚洲最大av| 久久久久久久久久人人人人人人| 日韩一区二区三区影片| 丰满人妻一区二区三区视频av| 久久av网站| 久久国内精品自在自线图片| 亚洲天堂av无毛| 亚洲三级黄色毛片| 国产免费视频播放在线视频| 男女边摸边吃奶| 高清在线视频一区二区三区| 18禁在线播放成人免费| 亚洲欧美精品自产自拍| 中文字幕制服av| 有码 亚洲区| 色94色欧美一区二区| 少妇熟女欧美另类| 国产精品国产三级国产av玫瑰| 人人妻人人爽人人添夜夜欢视频 | 国产高清不卡午夜福利| 色视频www国产| 在线观看三级黄色| 伦理电影大哥的女人| 国产成人aa在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜视频国产福利| 欧美日韩视频高清一区二区三区二| 大香蕉久久网| 女性被躁到高潮视频| 99热国产这里只有精品6| 久久精品熟女亚洲av麻豆精品| 久久午夜综合久久蜜桃| 大香蕉久久网| 国产精品久久久久久精品电影小说| 日韩精品有码人妻一区| 日韩在线高清观看一区二区三区| 一本大道久久a久久精品| 精华霜和精华液先用哪个| 99久久精品一区二区三区| av国产久精品久网站免费入址| 国产精品福利在线免费观看| 黄色欧美视频在线观看| 男男h啪啪无遮挡| 午夜日本视频在线| av在线老鸭窝| 久久6这里有精品| 日日啪夜夜撸| 一级爰片在线观看| 久久韩国三级中文字幕| 国产亚洲5aaaaa淫片| 在线观看一区二区三区激情| 高清不卡的av网站| 日日啪夜夜撸| 国产色婷婷99| 一区二区三区免费毛片| 国产真实伦视频高清在线观看| h视频一区二区三区| 午夜老司机福利剧场| 日本色播在线视频| 少妇被粗大的猛进出69影院 | 久久人人爽人人爽人人片va| 国产精品一区二区在线观看99| 久久精品久久久久久久性| 精品久久久久久久久av| 亚洲成人av在线免费| 亚洲国产欧美日韩在线播放 | 久久久国产精品麻豆| 性色av一级| √禁漫天堂资源中文www| 你懂的网址亚洲精品在线观看|