• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional Action-Like Variational Problem and Its Noether Symmetries for a Nonholonomic System

    2015-11-24 06:57:33ZhangYi張毅LongZixuan龍梓軒
    關(guān)鍵詞:張毅

    Zhang Yi(張毅),Long Zixuan(龍梓軒)

    1.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,P.R.China

    2.College of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,P.R.China

    Fractional Action-Like Variational Problem and Its Noether Symmetries for a Nonholonomic System

    Zhang Yi(張毅)1*,Long Zixuan(龍梓軒)2

    1.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,P.R.China

    2.College of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,P.R.China

    Eor an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are studied,based on the fractional action-like approach for dynamics modeling proposed by El-Nabulsi.Eirstly,

    nonholonomic system;fractional action-like variational problem;symmetric transformation;Noether theorem;conserved quantity

    0 Introduction

    The fractional calculus has provided a powerful mathematical tool for a great number of problems in different fields of science and engineering,and has made many break-through results in mathematical physics,classical and quantum mechanics,control theory,nonlinear dynamics,signal and image processing,thermodynamics,bioengineering and other fields[1-2]. Although various fields of application of fractional calculus are already well established,some others have just started.The researches in fractional variational problems and their symmetry and conserved quantity are examples of the latter.

    The study of fractional variational problems began in the work of Riewe[3-4].In 1996,Riewe

    first applied fractional calculus to a non-conservative mechanics modeling,and the fractional Euler-Lagrange equations and the fractional Hamilton equations were formed initially.Since then,the fractional variational problems have become one of the most popular research areas in applied mathematics,physics,dynamics and control,and are increasingly attracting the attention of many scholars:Klimek[5-6], Agrawal[7-9], Atanackovic'[10-11],Jumarie[12],Baleanu[13-15], Torres[16-18],El-Nabulsi[19-24], Cresson[25], Rabei[26], Tarasov[27],and Zhang[28-29],et al.These scholars came up with a variety of fractional models and methods from different views,and established the corresponding fractional Euler-Lagrange equations and fractional Hamilton equations.Erom the point of view of both classical and quantumsystems,the existence of a number of different fractional variational problems and the need for a more precise description of the fractional model,in part,can be interpreted as the nonlocal nature of fractional order differential operators and the corresponding adjoint operators for describing the dynamics.Another reason is that there exist many different fractional integral operators,including Grünwald-Letnikov,Caputo,Riesz,Riemann-Liouville operators,and so on.The Riemann-Liouville operator is one of the most frequently used in the application of fractional calculus operators.

    In order to establish a non-conservative dynamical system model,El-Nabulsi presented a modeling method[19]in 2005,known as the fractional action-like variational approach(also called the El-Nabulsi's fractional model).In his method,the fractional integral about time only needs one parameter,and the resulting fractional Euler-Lagrange equations contain the dissipative forces depending on time.However,there are an arbitrary number of fractional parameters(the order of the derivative)in other fractional models.The novelty of El-Nabulsi dynamics model is that the derived Euler-Lagrange equations are similar to the classical ones,with no fractional derivatives,but the presence of the fractional generalized external force acts on the system.The fractional action-like approach was further extended to the situation of Lagrangian depending on Riemann-Liouville fractional derivatives[20],to the multi-dimensional fractional action-like variational problems[21],the fractional action-like variational problems with holonomic constraints or nonholonomic constraints or dissipative dynamic systems[22],the fractional action-like variational problems with exponential law[23],and the universal fractional action-like Euler-Lagrange equations from a generalized fractional derivative operator[24].Erederico and Torres studied the constant of motion for fractional action-like variational problems,gave Noether's theorem[30]for nonconservative system under El-Nabulsi's fractional model,and extended to the situation of Lagrangian containing higher-order derivatives[31].Recently,authors have obtained the Noether's theorem for Birkhoffian system[32]under El-Nabulsi's fractional model,the Noether's theorems for Lagrange systems[33]and Hamilton systems[34]based on the extended exponentially fractional integral.

    Here the Noether theory for holonomic systems and nonholonomic systems is further studied under the framework of fractional action-like variational approach.The definitions and criteria of fractional action-like Noether symmetric transformations and Noether quasi-symmetric transformations are provided.The fractional action-like Noether theorems of holonomic systems and nonholonomic systems are derived.And the conserved quantities led by the fractional action-like Noether symmetries are given.

    1 Fractional Action-Like Variational Problem

    Assume that the configuration of a mechanical system is determined by generalized coordinates qk(k = 1,…,n),the Lagrangian of the system is L=L(τ,q,.q).With the fractional action-like variational approach for modeling of nonconservative dynamical system presented by El-Nabulsi[19],the fractional variational problem under Riemann-Liouville fractional integrals can be defined as follows.

    Eind the stationary points of the integral function

    with the fixed boundary conditions

    The above variational problem is called the fractional action-like variational problem.Eq.(1)can also be called the fractional action-like Hamilton action.Whenα=1,the problem becomes a classical variational problem of a dynamicalsystem.

    According to the theory of calculus of variations,the necessary condition to achieve extreme for Eq.(1)at qk=qk(τ )is its variation equal to 0,that is,δS=0.Therefore,one can have the following equation

    Using the boundary conditions Eq.(2),one has

    Substituting Eq.(4)into Eq.(3),it becomes

    Since the variationsδqk( k=1,…,n )are independent of each other for a holonomic system,therefore,by the fundamental lemma[35]of the calculus of variations,one obtains

    Erom Eq.(6),one gets

    Eq.(7)are the fractional action-like Lagrange equations of the holonomic system[19].

    Assume that the motion of the system is subjected to g bilateral ideal nonholonomic constraints of Chetaev type

    The restriction of constraints Eq.(8)exerted on the virtual displacements is

    Erom Eq.(5)and the conditions Eq.(9),by using the Lagrange multiplier method,one can obtain

    whereλβare the constraint multipliers.Eq.(10)can be called the fractional action-like differential equations of motion with multipliers for the nonholonomic system.

    Before integrating the equations of motion,by using Eqs.(8,10),one can findλβas the function of t,q and q·.Therefore,Eqs.(10)can be written in the form

    where

    Eqs.(11)are called the equations of motion of the holonomic system corresponding to the nonholonomic system,or the equations of motion of the corresponding holonomic system for short.

    If the initial conditions satisfy the equations of nonholonomic constraints Eq.(8),the motion of the corresponding holonomic system Eq.(12)will give the solution of the nonholonomic system Eqs.(8,10).

    Example 1 Consider a system whose configuration is determined by two generalized coordinates q1,q2.The Lagrangian of the system is

    and its motion is subject to a nonholonomic constraint[36]

    Erom Eqs.(10),one has

    where the first term of the right side of each equation of Eqs.(15)can be viewed as a generalized external force acting on the system,and the second one is the force corresponding to the nonholonomic constraint Eq.(14).Erom Eqs.(14,15),one can find the multiplier

    Then Eqs.(15)can be written as

    Eqs.(17)are the fractional action-like differential equations of motion of the holonomic system corresponding to the nonholonomic system Eqs.(14,15).Ifα =1,Eqs.(17)give the equations of motion in classic situation[36].

    2 Variation of Fractional Action-Like Hamilton Action

    Introduce the infinitesimal transformations of r-parameters finite transformation group

    or their expansion formulae

    whereεσ(σ=1,…,r )are the infinitesimal parameters,andhe generators or generating functions for the infinitesimal transformations.

    The difference of the fractional action-like Hamilton action Eq.(1)before and after transformation is

    whereγis the given curve andγ-a neighbor curve. Denoting the main linear part of Eq.(20)forεσ,i.e.,the part accurate to the first-order infinitesimal,asΔS,one has

    Eor an arbitrary function E,the relation between the non-isochronous variationΔand the isochronous variationδis[36]

    Therefore one has

    Erom Eq.(23),Eq.(21)can be expressed as

    Erom Eqs.(19,23),Eq.(24)can be further expressed as

    Eqs.(21,25)are basic formulae for the variation of fractional action-like Hamilton action.

    3 Fractional Action-Like Symmetric Transformation

    In this section,one establishes the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations.

    Definition 1 If the fractional action-like Hamilton action Eq.(1)is an invariant of the infinitesimal transformations of the group in Eq.(18),that is,for each of the infinitesimal transformations,the formula

    ΔS=0 (26)holds,the infinitesimal transformations are called the fractional action-like Noether symmetric transformations.

    Erom Definition 1 and Eq.(21),one can obtain the following criterion.

    Criterion 1 Eor the infinitesimal transformations of the group in Eq.(18),if the condition

    is satisfied,the infinitesimal transformations are the fractional action-like Noether symmetric transformations.

    Condition Eq.(27)can also be expressed as

    When r=1,Eq.(28)may be called the fractional action-like Noether identity.

    Erom Definition 1 and Eq.(25),one can obtain the criterion as follows.

    Criterion 2 Eor the infinitesimal transformations of the group in Eq.(19),if the conditions

    are satisfied,the infinitesimal transformations are the fractional action-like Noether symmetric transformations.

    Subsequently,one establishes the definition and criteria of the fractional action-like Noether quasi-symmetry transformations.

    Suppose that L'is another Lagrangian,if the infinitesimal transformations(Eq.(18))accurate to the first-order infinitesimal satisfy the condition

    this invariance is called the quasi-invariance of the fractional action-like Hamilton action Eq.(1)under the infinitesimal transformations of the group in Eq.(18).The functions L'and L determined by Eq.(30)satisfy the same differential equations of motion.Hence the transformations are called the fractional action-like Noether quasi-symmetric transformations,and one has

    Substituting Eq.(31)into Eq.(30),one has

    The left-hand of Eq.(32)is a first-order infinitesimal under the transformations (Eq.(18)). Therefore,the right-hand should be an infinitesimal of the same-order.G can be replaced byΔG,and thus

    Hence,one has

    Definition 2 If the fractional action-like Hamilton action Eq.(1)is a quasi-invariant under the infinitesimal transformations of group (18),i.e.for each of the infinitesimal transformations,the formula

    holds,where G =G(τ,q,q·),the infinitesimal transformations are called the fractional actionlike Noether quasi-symmetric transformations.

    Erom Definition 2 and Eq.(25),one can get the following criterion.

    Criterion 3 Eor the infinitesimal transformations of group(18),if the condition

    is satisfied,the infinitesimal transformations are the fractional action-like Noether quasi-symmetric transformations.

    Condition Eq.(35)can also be expressed as

    Erom Definition 2 and Eq.(25),one can suggest the criterion as follows

    Criterion 4 Eor the infinitesimal transformations of the group in Eq.(19),if the conditions

    are satisfied,the infinitesimal transformations are the fractional action-like Noether quasi-symmetric transformations.

    By using Criterions 1,2,one can determine the fractional action-like Noether symmetry. Likewise,by using Criterions 3,4,one can define the fractional action-like Noether quasi-symmetry.

    4 Fractional Action-Like Noether Theorem of Holonomic System

    The conserved quantity of a holonomic system under the El-Nabulsi's fractional model is firstly defined.

    Definition 3 A function I(τ,q,q·)is said to be a conserved quantity of a holonomic system under El-Nabulsi's fractional model if

    is along all the solution curves of the fractional action-like Lagrange equations.(7).

    Eor a holonomic system,if one can find a fractional action-like Noether symmetric transformation or a Noether quasi-symmetric transformation,one can find a corresponding conserved quantity.Here is the obtained theorem.

    Theorem 1 Eor the holonomic system Eq.(7),if the infinitesimal transformations of group Eq.(19)are the fractional action-like Noether symmetric transformations under Definition 1,the system has r linear and independent conserved quantities,that is

    Proof Since the infinitesimal transformations of group are the fractional action-like Noether symmetric transformations of the system.By Definition 1,one hasΔS=0,namely

    Substituting Eq.(7)into Eq.(40),and considering the independence of parametersεσ,one has

    Integrating it,Eq.(39)is obtained,and then it ends.

    Theorem 2 Eor the holonomic system Eq.(7),if the infinitesimal transformations of the group in Eq.(19)are the fractional action-like Noether quasi-symmetric transformations under Definition 2,the system exists r linear independent conservation quantities,such as

    Theorems 1,2 can be called the fractional action-like Noether theorem for the holonomic system.According to the Noether theorem,for the holonomic system under El-Nabulsi's fractional model,if one can find a fractional actionlike Noether symmetric transformation or a quasisymmetric transformation,one can get a conserved quantity of the system.

    Example 2 The Lagrangian of the planar Kepler problem is

    Here one tries to study the fractional action-like Noether symmetries and conserved quantities of the system.

    Eirst,one finds the fractional action-like Noether quasi-symmetric transformations.Eractional action-like generalized Noether identity Eq.(36)gives

    Eq.(44)has the following solutions

    Eq.(47)is a conserved quantity led by the fractional action-like Noether symmetry Eq.(45)of the system.Whenα=1,Eq.(47)gives

    This is the conserved quantity of a classical Kepler problem[36].

    Erom the generator Eq.(46),according to Theorem 2,one obtains

    Therefore,the infinitesimal transformation corresponding to the generator Eq.(46)is trivial.

    The generator Eq.(45)is corresponding to a fractional action-like Noether symmetric transformation of the system,and the generator Eq.(46)is corresponding to a fractional action-like Noether quasi-symmetric transformation of the system.

    Erom the generator Eq.(45),according to Theorem 1,one has

    5 Fractional Action-Like Noether Theorem of Nonholonomic System

    The definition of fractional action-like Noether quasi-symmetric transformations of the nonholonomic system is firstly given.

    Notice that

    Substituting Eq.(50)into Eq.(9),and considering the independence ofεσ,one has

    This is the restriction of nonholonomic constraints exerted on the generating function of infinitesimal transformations,called the Appell-Chetaev conditions.Thus one has

    Definition 4 Eor the nonholonomic system Eqs.(8,10),if the infinitesimal transformations of the group in Eq.(19)are the fractional actionlike Noether quasi-symmetric transformations,satisfying the Appell-Chetaev conditions Eq.(51),the transformations are called the fractional action-like Noether quasi-symmetric transformations of the nonholonomic system.

    Secondly,one gives the definition of a conserved quantity of a nonholonomic system under El-Nabulsi's fractional model.

    Definition 5 A function I(τ,q,q·)is said to be a conserved quantity of a nonholonomic system under El-Nabulsi's fractional model if

    is along all the solution curves of the fractional action-like differential equations of motion of the nonholonomic system Eqs.(8,10).

    Einally,one establishes the fractional actionlike Noether theorem of the nonholonomic system.

    Theorem 3 Eor the nonholonomic system Eqs.(8,10),if the infinitesimal transformations of the group in Eq.(19)are the Noether quasisymmetric transformations under Definition 4,the system has r linear independent conserved quantities

    Proof Since the infinitesimal transformations of group are the fractional action-like Noether quasi-symmetric transformations of the system,by Definition 2,one has

    Eq.(34)can also be written as

    Since the infinitesimal transformations satisfy the Appell-Chetaev conditions Eq.(51),one has

    Adding Eq.(55)and Eq.(54)together,one gets

    Substituting Eq.(10)into Eq.(56),and considering the independence ofεσ,one obtains

    Integrating it,one obtains Eq.(53),and the theorem is thus proved.

    Theorem 3 can be called the fractional actionlike Noether theorem of the nonholonomic system.By the theorem,one can find a conserved quantity from a known Noether symmetry.

    If the nonholonomic constraints do not exist,then Theorem 3 degenerates to Theorem 2,and if at the same time Gσ=0 is satisfied,Theorem 3 degenerates to Theorem 1.

    Example 3 Let us study the fractional action-like Noether symmetries and the conserved quantities of the nonholonomic system discussed in Example 1.

    Eirst,one tries to find the fractional actionlike Noether quasi-symmetric transformations satisfying the Appell-Chetaev conditions.The fractional action-like generalized Noether identity Eq.(36)gives

    and the Appell-Chetaev conditions Eq.(51)give

    Eqs.(58,59)have the following solutions

    The generators Eqs.(60,61)are both corresponding to the fractional action-like Noether quasi-symmetric transformation of the nonholonomic system.By Theorem 3,the conserved quantity Eq.(53)gives

    Therefore,the infinitesimal transformation corresponding to the generator Eq.(60)is trivial.And whenα=1,the conserved quantity Eq.(63)gives

    This is a classical conserved quantity[36].

    6 Conclusions

    In recent decades,the fractional calculus has been successfully used in various fields of science and engineering.It has also been used in dynamics modeling for a non-conservative or dissipative system and so on,where some complex problems can be solved difficultly with integer order derivatives.Here the fractional action-like variational problem is further studied,based upon the fractional modeling presented by El-Nabulsi.The fractional action-like differential equations of motion for both holonomic and nonholonomic systems are established.The definitions and criteria of both fractional action-like Noether symmetric transformations and Noether quasi-symmetric transformations are given,and the fractional action-like Noether theorems of the systems are established.The presented methods and its results are of universal significance.They can be further applied to various types of constrained mechanical systems.It is noteworthy that classical Noether theory for the circumstance of integer order is a special case of this paper.

    Acknowledgement

    This work was supported by the National Natural Science Eoundation of China(No.11272227).

    [1] Podlubny I.Eractional differential equations [M]. San Diego:Academic Press,1999.

    [2] Herrmann R.Eractional calculus:An introduction for physicists[M].Singapore:World Scientific,2011.

    [3] Riewe E.Nonconservative Lagrangian and Hamiltonian mechanics [J].Physical Review E,1996,53(2):1890-1899.

    [4] Riewe E.Mechanics with fractional derivatives[J]. Physical Review E,1997,55(3):3581-3592.

    [5] Klimek M.Eractional sequential mechanics-modelswith symmetric fractional derivative[J].Czechoslovak Journal of Physics,2001,51(12):1348-1354.

    [6] Klimek M.Lagrangian and Hamiltonian fractional sequential mechanics [J].Czechoslovak Journal of Physics,2002,52(11):1247-1253.

    [7] Agrawal O P.Eormulation of Euler-Lagrange equations for fractional variational problems[J].Journal of Mathematical Analysis and Applications,2002,272(1):368-379.

    [8] Agrawal O P.Generalized Euler-Lagrange equations and transversality conditions for EVPs in terms of the Caputo derivative[J].Journal of Vibration and Control,2007,13(9/10):1217-1237.

    [9] Agrawal O P,Muslih S I,Baleanu D.Generalized variational calculus in terms of multi-parameters fractional derivatives[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(12):4756-4767.

    [10]Atanackovic'T M,Konjik S,Pilipovic'S.Variational problems with fractional derivatives:Euler-Lagrange equations[J].Journal of Physics A:Mathematical and Theoretical,2008,41(9):095201.

    [11]Atanackovic'T M,Konjik S,Pilipovic'S,et al.Variational problems with fractional derivatives:Invariance conditions and Noether's theorem [J].Nonlinear Analysis:Theory, Methods & Applications,2009,71(5/6):1504-1517.

    [12]Jumarie G.Eractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost functions[J].Journal of Applied Mathematics and Computing,2007,23(1/2):215-228.

    [13]Baleanu D,Avkar T.Lagrangians with linear velocities within Riemann-Liouville fractional derivatives[J].Nuovo Cimento B,2003,119(1):73-79.

    [14]Baleanu D,Trujillo J I.A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(5):1111-1115.

    [15]Baleanu D,Muslih S I,Rabei E M,et al.On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives[J].Romanian Reports in Physics,2011,63(1):3-8.

    [16]Almeida R,Torres D E M.Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives [J].Communications in Nonlinear Science and Numerical Simulation,2011,16(3):1490-1500.

    [17]Odzijewicz T,Malinowska A B,Torres D E M. Eractional variational calculus with classical and combined Caputo derivatives [J].Nonlinear Analysis:Theory,Methods & Applications,2012,75(3),1507-1515.

    [18]Malinowska A B,Torres D E M.Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative[J].Computers and Mathematics with Applications,2010,59(9):3110-3116.

    [19]El-Nabulsi A R.A fractional approach to nonconservative Lagrangian dynamical systems[J].Eizika A,2005,14(4):289-298.

    [20]El-Nabulsi A R.Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α,β)[J].Mathematical Models & Methods in Applied Sciences,2007,30(15):1931-1939.

    [21]El-Nabulsi A R,Torres D E M.Eractional actionlike variational problems[J].Journal of Mathematical Physics,2008,49(5):053521.

    [22]El-Nabulsi A R.Eractional action-like variational problems in holonomic,non-holonomic and semi-holonomic constrained and dissipative dynamical systems[J].Chaos,Solitons and Eractals,2009,42(1):52-61.

    [23]El-Nabulsi A R.Eractional variational problems from extended exponentially fractional integral[J].Applied Mathematics and Computation,2011,217(22):9492-9496.

    [24]El-Nabulsi R A.Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator[J].Central European Journal of Physics,2011,9(1):250-256.

    [25]Cresson J.Eractional embedding of differential operators and Lagrangian systems[J].Journal of Mathematical Physics,2007,48(3):033504.

    [26]Rabei E M,Rawashdeh I M,Muslih S,et al.Hamilton-Jacobi formulation for systems in terms of Riesz's fractional derivatives[J].International Journal of Theoretical Physics,2011,50(5):1569-1576.

    [27]Tarasov V E.Eractional dynamics[M].Beijing:Higher Education Press,2010.

    [28]Zhou Y,Zhang Y.Eractional Pfaff-Birkhoff principle and Birkhoff's equations in terms of Riesz fractional derivatives[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(1):63-69.

    [29]Zhou Y,Zhang Y.Noether's theorems of a fractional Birkhoffian system within Riemann-Liouville deriva-tives [J].Chinese Physics B,2014,23(12):124502.

    [30]Erederico G SE,Torres D E M.Constants of motion for fractional action-like variational problems[J].International Journal of Applied Mathematics,2006,19(1):97-104.

    [31]Erederico G S E,Torres D E M.Non-conservative Noether's theorem for fractional action-like problems with intrinsic and observer times[J].International Journal of Ecological Economics&Statistics,2007,9(E07):74-82.

    [32]Zhang Y,Zhou Y.Symmetries and conserved quantities for fractional action-like Pfaffian variational problems[J].Nonlinear Dynamics,2013,73(1-2):783-793.

    [33]Long Z X,Zhang Y.Eractional Noether theorem based on extended exponentially fractional integral[J].International Journal of Theoretical Physics,2014,53(3):841-855.

    [34]Long Z X,Zhang Y.Noether's theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in phase space[J].Acta Mechanica,2014,225(1):77-90.

    [35]Goldstein H,Poole C,Safko J.Classical Mechanics[M].Third Edition.Beijing:Higher Education Press,2005.

    [36]Mei E X ,Wu H B.Dynamics of constrained mechanical systems[M].Beijing:Beijing Institute of Technology Press,2009.

    (Executive editor:Zhang Tong)

    O316 Document code:A Article ID:1005-1120(2015)04-0380-10

    *Corresponding author:Zhang Yi,Professor,E-mail:zhy@mail.usts.edu.cn.

    How to cite this article:Zhang Yi,Long Zixuan.Eractional action-like variational problem and its Noether symmetries for a nonholonomic system[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):380-389.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.380

    (Received 14 August 2014;revised 5 December 2014;accepted 14 December 2014)

    the fractional action-like variational problem is established,and the fractional action-like Lagrange equations of holonomic system and the fractional action-like differential equations of motion with multiplier for nonholonomic system are given;secondly,according to the invariance of fractional action-like Hamilton action under infinitesimal transformations of group,the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations are put forward;finally,the fractional action-like Noether theorems for both holonomic system and nonholonomic system are established,and the relationship between the fractional action-like Noether symmetry and the conserved quantity is given.

    猜你喜歡
    張毅
    二月二—龍?zhí)ь^
    當代作家(2023年3期)2023-04-23 21:26:58
    張士卿基于敏濕熱瘀辨治過敏性紫癜經(jīng)驗
    《秋水共長天一色》
    青年生活(2019年6期)2019-09-10 17:55:38
    Isolation and callus formation of Gracilariopsis bailiniae(Gracilariales, Rhodophyta) protoplasts*
    Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem?
    隨便走走(短篇小說)
    當代小說(2017年11期)2018-01-08 09:31:32
    “執(zhí)著”的代價
    檢察風云(2017年10期)2017-06-12 13:50:02
    宮“?!彪u丁
    性格變更
    Perturbation to Noether Symmetries and Adiabatic Invariants for Generalized Birkhoff Systems Based on El-Nabulsi Dynamical Model
    久久精品国产自在天天线| 久久久精品94久久精品| 黄色视频,在线免费观看| 听说在线观看完整版免费高清| 寂寞人妻少妇视频99o| 成人特级黄色片久久久久久久| 我的老师免费观看完整版| 久久热精品热| 日韩人妻高清精品专区| 亚洲精品日韩av片在线观看| 久久久精品94久久精品| 午夜精品在线福利| 久久草成人影院| 又黄又爽又刺激的免费视频.| 男女那种视频在线观看| 精品久久久久久久人妻蜜臀av| 成年版毛片免费区| 国产精品一区二区性色av| 男人舔奶头视频| 国产 一区精品| a级毛片免费高清观看在线播放| 我的老师免费观看完整版| 男女做爰动态图高潮gif福利片| 26uuu在线亚洲综合色| 欧美性感艳星| 99在线视频只有这里精品首页| 国产成人影院久久av| 国产真实乱freesex| 国产真实乱freesex| 亚洲不卡免费看| 波多野结衣巨乳人妻| 白带黄色成豆腐渣| av免费观看日本| 少妇的逼好多水| 女人十人毛片免费观看3o分钟| 一级毛片我不卡| 欧洲精品卡2卡3卡4卡5卡区| 尾随美女入室| 日本黄大片高清| 国产精品,欧美在线| 日本免费a在线| 好男人在线观看高清免费视频| 国产精品美女特级片免费视频播放器| 日本黄色片子视频| 日韩成人伦理影院| 大型黄色视频在线免费观看| 3wmmmm亚洲av在线观看| 久久久精品欧美日韩精品| 国产精品嫩草影院av在线观看| 免费在线观看成人毛片| 久久久久久久亚洲中文字幕| 三级男女做爰猛烈吃奶摸视频| 日韩精品青青久久久久久| 国产伦精品一区二区三区视频9| 久久这里只有精品中国| 国产精品人妻久久久影院| 国产成年人精品一区二区| av免费观看日本| 国产乱人偷精品视频| 午夜激情福利司机影院| 国产片特级美女逼逼视频| 毛片一级片免费看久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产蜜桃级精品一区二区三区| 村上凉子中文字幕在线| 中文亚洲av片在线观看爽| 免费看光身美女| 久久鲁丝午夜福利片| 在线观看66精品国产| 岛国毛片在线播放| 国产精品乱码一区二三区的特点| 国产69精品久久久久777片| 精品无人区乱码1区二区| 好男人在线观看高清免费视频| 女人十人毛片免费观看3o分钟| 一夜夜www| 亚洲av男天堂| 在线免费观看的www视频| 国产成人91sexporn| 久久久久久久午夜电影| 久久久久九九精品影院| av黄色大香蕉| 久久久久久久久久成人| 看非洲黑人一级黄片| 狂野欧美激情性xxxx在线观看| 嫩草影院精品99| 禁无遮挡网站| 精品久久久噜噜| 中文字幕av在线有码专区| 天堂av国产一区二区熟女人妻| 看黄色毛片网站| 日韩国内少妇激情av| 国产亚洲精品av在线| 黑人高潮一二区| 色哟哟·www| 免费人成视频x8x8入口观看| 欧美一区二区国产精品久久精品| 青春草亚洲视频在线观看| 亚洲国产欧洲综合997久久,| 激情 狠狠 欧美| 偷拍熟女少妇极品色| or卡值多少钱| 亚洲精品色激情综合| 精品久久国产蜜桃| a级毛片a级免费在线| 我的老师免费观看完整版| 在线天堂最新版资源| 亚洲欧美精品自产自拍| 亚洲最大成人中文| 国产毛片a区久久久久| 寂寞人妻少妇视频99o| 亚洲最大成人中文| 欧美潮喷喷水| 亚洲,欧美,日韩| 成人毛片60女人毛片免费| 国产乱人视频| 欧美日韩在线观看h| 哪里可以看免费的av片| 国内精品宾馆在线| 久久久国产成人精品二区| 精品少妇黑人巨大在线播放 | 午夜免费男女啪啪视频观看| 麻豆久久精品国产亚洲av| 久久久成人免费电影| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 国产成人freesex在线| 插逼视频在线观看| 国产一区亚洲一区在线观看| 色视频www国产| 男人狂女人下面高潮的视频| 久久久a久久爽久久v久久| 国产午夜精品一二区理论片| 亚洲在久久综合| 午夜福利在线在线| 久久久久久大精品| 熟女人妻精品中文字幕| 久久这里有精品视频免费| 国产三级在线视频| 给我免费播放毛片高清在线观看| 亚洲美女搞黄在线观看| 成人毛片60女人毛片免费| 成人漫画全彩无遮挡| 中文字幕免费在线视频6| 中文亚洲av片在线观看爽| 国产成人福利小说| 麻豆精品久久久久久蜜桃| 麻豆一二三区av精品| 国产精品久久久久久亚洲av鲁大| 麻豆国产97在线/欧美| 熟女人妻精品中文字幕| 国产黄片美女视频| 精品午夜福利在线看| 国产麻豆成人av免费视频| 熟妇人妻久久中文字幕3abv| 国产精品无大码| 久久久精品欧美日韩精品| 国产91av在线免费观看| 在线观看66精品国产| 99在线人妻在线中文字幕| 久久精品国产亚洲网站| 亚洲国产高清在线一区二区三| 婷婷六月久久综合丁香| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 变态另类丝袜制服| 热99re8久久精品国产| 日韩,欧美,国产一区二区三区 | 久久久精品94久久精品| 在线播放国产精品三级| 国产三级中文精品| 欧美zozozo另类| 中文字幕人妻熟人妻熟丝袜美| 久久鲁丝午夜福利片| 日韩欧美三级三区| 51国产日韩欧美| 亚洲在久久综合| 丰满人妻一区二区三区视频av| 国产精品久久电影中文字幕| 久久人人爽人人爽人人片va| 人妻少妇偷人精品九色| 免费看光身美女| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品影视一区二区三区av| 乱系列少妇在线播放| 日韩一区二区视频免费看| 99国产极品粉嫩在线观看| 69av精品久久久久久| 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 两个人视频免费观看高清| 国产又黄又爽又无遮挡在线| 97人妻精品一区二区三区麻豆| 国产精品日韩av在线免费观看| 亚洲av免费高清在线观看| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 午夜老司机福利剧场| 女人被狂操c到高潮| 内射极品少妇av片p| 国产蜜桃级精品一区二区三区| 最后的刺客免费高清国语| 少妇裸体淫交视频免费看高清| 男人和女人高潮做爰伦理| 欧美人与善性xxx| 婷婷色综合大香蕉| 成人av在线播放网站| 一级毛片aaaaaa免费看小| 亚洲欧美精品专区久久| 国产精品久久久久久av不卡| 国产精品久久电影中文字幕| 少妇熟女aⅴ在线视频| 联通29元200g的流量卡| 联通29元200g的流量卡| 国产精品一区二区性色av| 少妇裸体淫交视频免费看高清| 国产老妇伦熟女老妇高清| 联通29元200g的流量卡| 久久这里只有精品中国| 一区二区三区四区激情视频 | av福利片在线观看| 一级毛片电影观看 | 热99re8久久精品国产| 国产午夜精品论理片| 黄片wwwwww| 精品欧美国产一区二区三| 国产成人精品一,二区 | 卡戴珊不雅视频在线播放| 国产精品嫩草影院av在线观看| 晚上一个人看的免费电影| 天天一区二区日本电影三级| 3wmmmm亚洲av在线观看| 午夜爱爱视频在线播放| 搞女人的毛片| 深夜精品福利| 亚洲一区高清亚洲精品| 伊人久久精品亚洲午夜| 国产成人91sexporn| 一本久久精品| 亚洲精华国产精华液的使用体验 | 日韩欧美三级三区| 亚洲人与动物交配视频| 国产综合懂色| 成年版毛片免费区| 日韩欧美三级三区| 91久久精品国产一区二区成人| 亚洲高清免费不卡视频| 熟女人妻精品中文字幕| 噜噜噜噜噜久久久久久91| 亚洲av男天堂| 国产精品精品国产色婷婷| 成人av在线播放网站| 欧美+日韩+精品| 一进一出抽搐gif免费好疼| www.色视频.com| 亚洲va在线va天堂va国产| 精品国内亚洲2022精品成人| 成年女人看的毛片在线观看| 精品人妻视频免费看| 国产精品人妻久久久影院| av女优亚洲男人天堂| 精品久久久久久久久久免费视频| 内地一区二区视频在线| 亚洲久久久久久中文字幕| 国产午夜精品论理片| 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩一区二区三区影片| 中文字幕免费在线视频6| 国产在线男女| 岛国毛片在线播放| 亚洲欧美成人综合另类久久久 | 97人妻精品一区二区三区麻豆| 日韩欧美一区二区三区在线观看| 美女国产视频在线观看| 乱人视频在线观看| 最近2019中文字幕mv第一页| 日韩一区二区视频免费看| 中文字幕av成人在线电影| 国产av不卡久久| av福利片在线观看| 我要搜黄色片| 国产麻豆成人av免费视频| 一级毛片aaaaaa免费看小| 91aial.com中文字幕在线观看| 亚洲av男天堂| 国产精品久久久久久久久免| 男的添女的下面高潮视频| 精品久久久久久久末码| 小蜜桃在线观看免费完整版高清| 又粗又爽又猛毛片免费看| 观看美女的网站| 亚洲不卡免费看| av天堂在线播放| 日日干狠狠操夜夜爽| 国产av一区在线观看免费| 99国产极品粉嫩在线观看| 六月丁香七月| 内射极品少妇av片p| 久久久久久久久久黄片| 成人性生交大片免费视频hd| 美女脱内裤让男人舔精品视频 | 欧美xxxx黑人xx丫x性爽| 欧美高清成人免费视频www| 久久99热这里只有精品18| 日韩欧美精品免费久久| 久久久久久久久久久免费av| 亚洲国产欧洲综合997久久,| 国产精品久久久久久久久免| 亚洲成人中文字幕在线播放| 99在线视频只有这里精品首页| 国产精品人妻久久久久久| 久久婷婷人人爽人人干人人爱| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久电影中文字幕| 午夜福利在线在线| 免费在线观看成人毛片| 国产高潮美女av| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添av毛片| 国产精品人妻久久久影院| 国产乱人偷精品视频| 国产乱人视频| 欧美zozozo另类| 欧美人与善性xxx| 五月玫瑰六月丁香| 十八禁国产超污无遮挡网站| 欧美一区二区精品小视频在线| 青春草亚洲视频在线观看| 老女人水多毛片| 欧美+亚洲+日韩+国产| 亚洲欧美日韩卡通动漫| 国产在线男女| 亚洲欧美日韩无卡精品| 日韩欧美精品免费久久| www.av在线官网国产| 99热网站在线观看| 国产精品伦人一区二区| 国产精品综合久久久久久久免费| 国产精品一区二区三区四区久久| 午夜激情福利司机影院| 日韩精品青青久久久久久| 99久久精品国产国产毛片| av福利片在线观看| 最近视频中文字幕2019在线8| 免费黄网站久久成人精品| 成年女人看的毛片在线观看| 国产精品久久久久久av不卡| 欧美最新免费一区二区三区| 观看美女的网站| 尤物成人国产欧美一区二区三区| 久久精品人妻少妇| 国产老妇伦熟女老妇高清| 小说图片视频综合网站| 日韩成人av中文字幕在线观看| 久久草成人影院| 欧美日本亚洲视频在线播放| 亚洲国产色片| 亚洲一区二区三区色噜噜| 国产高清有码在线观看视频| 国产日韩欧美在线精品| 一边亲一边摸免费视频| 日韩欧美国产在线观看| 99热网站在线观看| 99热这里只有精品一区| 婷婷色综合大香蕉| 日韩一区二区三区影片| av在线观看视频网站免费| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 免费人成视频x8x8入口观看| 色5月婷婷丁香| 99九九线精品视频在线观看视频| 亚洲一区高清亚洲精品| 国内精品美女久久久久久| 乱人视频在线观看| 99精品在免费线老司机午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一夜夜www| 欧美日本视频| 黑人高潮一二区| 亚洲天堂国产精品一区在线| 草草在线视频免费看| 秋霞在线观看毛片| 1000部很黄的大片| 成人av在线播放网站| 国产亚洲精品久久久久久毛片| 国产精品综合久久久久久久免费| 久久久久久久久久黄片| 亚洲成a人片在线一区二区| 插逼视频在线观看| 男人的好看免费观看在线视频| 极品教师在线视频| 老熟妇乱子伦视频在线观看| 性插视频无遮挡在线免费观看| 嘟嘟电影网在线观看| 黄色日韩在线| 听说在线观看完整版免费高清| 国产精品一二三区在线看| 国产一级毛片七仙女欲春2| 国产精品久久视频播放| 少妇高潮的动态图| 色播亚洲综合网| 成人午夜精彩视频在线观看| 亚洲av.av天堂| 99久久人妻综合| 精华霜和精华液先用哪个| 成人二区视频| av在线观看视频网站免费| 亚洲欧美日韩高清专用| 欧美不卡视频在线免费观看| 国产av不卡久久| 嫩草影院入口| 亚洲,欧美,日韩| 午夜福利在线在线| 欧美丝袜亚洲另类| 少妇熟女aⅴ在线视频| 亚洲精品粉嫩美女一区| 欧美日本视频| 国产精品三级大全| 伦精品一区二区三区| 免费观看a级毛片全部| 国产精品一区www在线观看| 变态另类成人亚洲欧美熟女| 久久九九热精品免费| 国语自产精品视频在线第100页| 精品久久国产蜜桃| 国产成人精品一,二区 | 亚洲五月天丁香| 国产欧美日韩精品一区二区| 亚洲自偷自拍三级| 赤兔流量卡办理| 噜噜噜噜噜久久久久久91| 内射极品少妇av片p| 亚洲内射少妇av| 精品久久久久久久人妻蜜臀av| 亚州av有码| 午夜福利高清视频| 亚洲国产精品成人久久小说 | 亚洲精品久久国产高清桃花| 伦理电影大哥的女人| 免费看美女性在线毛片视频| 白带黄色成豆腐渣| or卡值多少钱| 成人高潮视频无遮挡免费网站| 大香蕉久久网| 免费观看人在逋| 久久久久久久久久久免费av| 搡老妇女老女人老熟妇| 亚洲欧美成人精品一区二区| 又粗又硬又长又爽又黄的视频 | 国语自产精品视频在线第100页| 在线观看一区二区三区| 久久人妻av系列| 国产一区亚洲一区在线观看| 午夜精品一区二区三区免费看| 精华霜和精华液先用哪个| 欧美另类亚洲清纯唯美| 日韩欧美 国产精品| 午夜老司机福利剧场| 亚洲一区二区三区色噜噜| 国产黄色视频一区二区在线观看 | 男的添女的下面高潮视频| 国产成人影院久久av| av专区在线播放| 偷拍熟女少妇极品色| 两性午夜刺激爽爽歪歪视频在线观看| 97超视频在线观看视频| 一进一出抽搐动态| 免费av不卡在线播放| 嫩草影院新地址| 亚洲人成网站高清观看| 少妇被粗大猛烈的视频| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| 爱豆传媒免费全集在线观看| 亚洲在线观看片| 我要看日韩黄色一级片| 国产精品不卡视频一区二区| 女人十人毛片免费观看3o分钟| 国产av麻豆久久久久久久| 国产不卡一卡二| 中文字幕人妻熟人妻熟丝袜美| 97人妻精品一区二区三区麻豆| 免费在线观看成人毛片| 国产精品福利在线免费观看| 韩国av在线不卡| 午夜a级毛片| 内地一区二区视频在线| 久久人人爽人人爽人人片va| 99久久精品一区二区三区| av在线天堂中文字幕| 日韩成人伦理影院| 欧美性感艳星| 欧美激情国产日韩精品一区| 精品免费久久久久久久清纯| 久久久久久久久久成人| 一区二区三区四区激情视频 | av在线天堂中文字幕| 亚洲人成网站在线观看播放| 女人十人毛片免费观看3o分钟| 日韩欧美在线乱码| 69人妻影院| 国产白丝娇喘喷水9色精品| 18禁在线播放成人免费| 女同久久另类99精品国产91| 午夜老司机福利剧场| 此物有八面人人有两片| 人妻系列 视频| 男女下面进入的视频免费午夜| 精品人妻熟女av久视频| 亚洲成人中文字幕在线播放| 亚洲av不卡在线观看| 日韩欧美三级三区| 大又大粗又爽又黄少妇毛片口| 亚洲精品成人久久久久久| 91精品国产九色| 久久99精品国语久久久| 国产亚洲av片在线观看秒播厂 | or卡值多少钱| 久久99蜜桃精品久久| a级毛色黄片| 99热网站在线观看| 午夜精品一区二区三区免费看| 2021天堂中文幕一二区在线观| 日韩亚洲欧美综合| 亚洲精品乱码久久久久久按摩| 在线免费观看不下载黄p国产| 美女脱内裤让男人舔精品视频 | 亚洲av不卡在线观看| 99热只有精品国产| 中文字幕久久专区| 18禁在线播放成人免费| 三级经典国产精品| 精品人妻熟女av久视频| eeuss影院久久| 亚洲久久久久久中文字幕| 九色成人免费人妻av| 国产精品人妻久久久久久| 99久久无色码亚洲精品果冻| 国产亚洲精品久久久久久毛片| 六月丁香七月| 永久网站在线| 亚洲国产色片| 日韩精品有码人妻一区| 国产在视频线在精品| 中国国产av一级| 欧美激情国产日韩精品一区| 国产精品嫩草影院av在线观看| 国内精品一区二区在线观看| 给我免费播放毛片高清在线观看| 亚洲成人av在线免费| 免费人成视频x8x8入口观看| 一级黄色大片毛片| 99riav亚洲国产免费| 久久久午夜欧美精品| 成年免费大片在线观看| 99久久中文字幕三级久久日本| 久久久久性生活片| 久久久成人免费电影| 成人美女网站在线观看视频| 岛国在线免费视频观看| 小说图片视频综合网站| 欧美丝袜亚洲另类| av免费观看日本| 精品国内亚洲2022精品成人| 淫秽高清视频在线观看| 少妇高潮的动态图| 国产亚洲精品久久久com| 免费观看a级毛片全部| 亚洲国产精品国产精品| 黄色视频,在线免费观看| 欧美激情国产日韩精品一区| 老司机影院成人| 亚洲精品乱码久久久久久按摩| 亚洲人与动物交配视频| 国产真实伦视频高清在线观看| 亚洲国产色片| 亚洲欧洲国产日韩| 亚洲三级黄色毛片| 嫩草影院入口| av在线蜜桃| 日本三级黄在线观看| 亚州av有码| 亚洲国产精品合色在线| 一区二区三区免费毛片| 亚洲中文字幕一区二区三区有码在线看| 一区二区三区四区激情视频 | 免费观看人在逋| 欧美不卡视频在线免费观看| 国产中年淑女户外野战色| 亚洲国产精品sss在线观看| 大又大粗又爽又黄少妇毛片口| 亚州av有码| 日本熟妇午夜| 亚洲精品国产av成人精品| 中文欧美无线码| 午夜久久久久精精品| 超碰av人人做人人爽久久| 免费无遮挡裸体视频| 热99re8久久精品国产| 国产一区二区在线观看日韩| 赤兔流量卡办理| 校园人妻丝袜中文字幕| 亚洲第一区二区三区不卡| 99热全是精品| av又黄又爽大尺度在线免费看 | 麻豆av噜噜一区二区三区| 国产亚洲5aaaaa淫片| 内地一区二区视频在线| 久久精品影院6| 伦理电影大哥的女人| 精品欧美国产一区二区三|