• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and simulation of the hardware in the loop simulation platform for vehicle ACC system

    2015-11-03 07:02:00DaoningFENGZhaoduLIUGuochengMABaofengWANG
    機床與液壓 2015年3期
    關(guān)鍵詞:節(jié)氣門工程學院開度

    Dao-ning FENG, Zhao-du LIU, Guo-cheng MA, Bao-feng WANG

    (1School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)(2Guangxi Technological College of Machinery and Electricity, Nanning 530007, China)

    ?

    Design and simulation of the hardware in the loop simulation platform for vehicle ACC system

    Dao-ning FENG1,2*, Zhao-du LIU1, Guo-cheng MA1, Bao-feng WANG1

    (1School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)(2Guangxi Technological College of Machinery and Electricity, Nanning 530007, China)

    To improve the simulation accuracy for adaptive cruise control (ACC) system, the hardware in the loop simulation (HILS) platform with real actuators of ACC is developed in this paper. The HILS platform consists of simulation model parts running in the simulation instrument and hardware parts including the electronic throttle and active braking system. In the simulation model, radar simulator, controller of ACC and vehicle mode are developedin order to generate the traffic information, the control command of ACC system and calculate the motion of vehicle. By using the desired control values transmitted from the ACC’s controller, the hardware parts could realize throttle openness and braking pressure tracking control. The simulation experiments of ACC are carried out based on this HILS platform, and the simulation results confirm that the HILS platform could work in a proper way and could be used as a simulation platform to develop the controller of ACC.

    Hardware in the loop simulation, Adaptive cruise control, Vehicle model, Throttle openness control, Braking pressure control

    1 Introduction

    Feature with speed tracking ability to the preceding vehicle, adaptive cruise control (ACC) system has become a prevailing part of comfort and safety control for modern vehicles toreduce the work load of driver and decrease the possibility of rear-head accident [1-2]. With the relative speed and distance information from the car radar, ACC vehicle could cruise at a preset speed when there is no preceding vehicle or to tracking the preceding vehicle’s speed with a safety distance when the preceding vehicle travels slower than the host vehicle’s preset speed [3-4].

    Simulation experiments,which are often applied in the first steps to develop the ACC’s controller as simulator, could mimic the traffic environment and host vehicle with low cost meanwhile avoiding the risk of vehicle collision in real traffic. Generally, researchers use only mathematical models which are calculated by a computer to evaluate the performance of the ACC’s controller [5-7]. Although this method is simple and practical, the validity of experiment depends highly on the accuracy of mathematical models. In addition, simulation would get lower reliability when the key ACC actuators are difficulty to get their accurate models due to some non-linear or hysteresis characteristics. In order to solve the issue of model accuracy, some researchers use the whole vehicle on a dynamometer with audio-visual system to simulate the road environment [8-10], unfortunately it is not economic way to develop the ACC’s controller. Therefore, the hardware in the loop simulation (HILS) platform, which merely uses the hardware actuators and its sensors to improve the simulation accuracy, is a better solution for the simulation of the ACC’s controller.

    In this paper, a HILS platform is designed which consists of simulation model parts and hardware parts. After elaborate the function and configuration of each module, we conduct simulation experiments of the ACC’s control. The simulation results indicate that the HILS platform could operate properly and is capable to be used in the evaluation for further improved ACC’s controllers.

    2 Configuration of HILS platform

    The configuration of the HILS platform is illustrated in Fig.1.

    Fig.1 Block diagram of the HILS platform

    The simulation model parts, which run in the dSAPE simulation instrument with the adjustable parameters, consist of radar simulator, ACC’s controller and vehicle model. Hardware uses spare parts of the controlled vehicle, including the electronic throttle system, active braking system together with their sensors and embedded controllers. Through this way, the accuracy of the simulation could be ensured. Meanwhile, driver’s action could be introduced into the simulation process to take account the driver’s reaction in the simulation experiments.

    Serial communication is used to deliver the information such as desired throttle openness αdand desired braking pressure pdfrom the simulation model parts to the hardware part. Conversely, A/D convectors and I/O ports in the dSAPE instrument are used to get the signal of the actual throttle opennessαa, actual braking pressure pa, angle of steer wheel δ and other information from the hardware parts to the simulation model parts [11-12].

    3 Design of simulation models

    Two aspects need to be considered when the simulation modelis established, one is the model should be accurate enough to simulate the real vehicle,the other is these models should not be too complicated in terms of computation efficiencyof real time simulation.

    3.1 Radar simulator

    Radar simulator aims to generate the relative distance dr, relative velocity vrand the azimuth θ of the road vehicles and obstacles in the radar detectable area as the real radar works. Thus, traffic vehicle information we set in the simulation model needs to be transformed to the radar signal by using Eqs.(1)-(3).

    Where, t is the simulation time, s; dxand dyare the initial relative distance inxand y direction to the host vehicle, m; vxistheinitialvelocityoftargetvehicleinxdirection,m/s;vyisthevelocityoftargetvehicleinydirection,m/s;vxhandvyhisthexandydirectionvelocityofhostvehicle,m/s;axisthexdirectionaccelerationoftargetvehicle,m·s-2;subscriptiindicatestheroadvehicle/obstaclenumber.Theroadvehicles’positionandvelocitycouldbecontrolledthroughdisplayinginterface(section2.4)atanytimeofthesimulationprocess.Besides,bandwidthnoiseisaddedtotheoutputsignalofradarsimulatortosimulatethenoisecausedbyvehiclevibrationduringtheperiodoftheuseforrealradar.

    3.2 ACC’s controller

    TheACC’scontrollerisdesignedwithahierarchicalstructurewhichconsistsoftargetselector,safetydistancemodel,adesiredaccelerationsolverandanactuatorswitcherasshowninFig.1.

    Targetselectoraimsattrackingtheprecedingvehicle’smotionfromtheradarsignal.First,thevalidareawillbecalculatedtodecidethesearchingareaforprecedingvehicleby

    (4)

    Where,dminanddmaxaretheboundaries,m.Thus,onlythevehiclesinthehostvehicle’slanewouldbesearchedfor.Next,byusingthepredictedrelativedistanceandspeedcalculatedbyradarinformationofpreviouscontrolperiod,thevalidityofthetargetvehicleswouldbechecked.Thevalidityincreasesiftheradarinformationofcurrentcontrolperiodisinaccordancewiththepredictedones,orthevaliditydecreases.Inordertokeepthetargetvehicle’sinformationcontinuouslyandavoidtheaccidentalfailurefordetection,onlythetargetwhosevalidityishigherthanthecriterionwillbeacceptedasavalidatetarget.Afterthat,thevalidatetargetwhichhastheshortestlongitudinaldistancetohostvehiclewouldbeselectedastheprecedingvehicle.

    Constanttimeheadisusedinsafetydistancemodelasitcouldeffectivelyrepresentthedriver’sdesiredsafetydistanceincarfollowingmaneuverinrealtraffic.Desiredsafetydistancecouldbeevaluatedasfollows:

    (5)

    Where,ddisthedesiredsafetydistance,m;τisthetimeconstant,s;visprecedingvehiclespeedinacarfollowingscenarioorhostvehiclespeedwhentheprecedingvehicledoesnotexist,m·s-1;d0istheminimumclearance,m.

    Thedesiredaccelerationsolverusesthedistanceerrorandvelocityerrortocalculatethedesiredacceleration

    (6)

    (7)

    Where,Δdisthedistanceerror,m;Δvisvelocityerror,km·h-1.Consideringthehumandriver’sbehaviorinusingthetwoerrorsasinputtodeterminehostvehicle’sactioninacarfollowingmaneuver,wedesignedafuzzycontrollerfordesiredaccelerationadsolving.Inputandoutputmembershipfunctions,fuzzyrulesandtheoutputsurfaceareshowninFig.2,Tabel1andFig.3,respectively.

    Fig.2 Membership functions of the input and output values

    Sinceair drag could change dramatically with the host vehicle velocity vh, actuator switcher uses both adand vhto decide whether to use electronic throttle or active braking as actuator. To avoid frequent switch from two actuators around the switch boundary, a transition zone is designedwhere no actuator will be selected to work. The switching logic is illustrated in Fig.4, with actuator mode 0 stands for throttle, 1 for transition and 2 for braking. After that, actuator switcher would output αdor pdto the hardware actuators.

    Table 1 Fuzzy rules of the desired acceleration solver

    ΔvΔdNBNMNSZOPSPMPBNBNVBNVBNVBNBNMNSNSNMNVBNBNMNSNSZOZONSNBNMNSZOZOZOZOZONMNSZOZOZOPSPSPSNSZOZOZOPSPMPBPMNSZOZOPSPMPBPBPBNSZOZOPSPBPBPB

    Fig.3 Output surface of the fuzzy controller

    Fig.4 Switching logic for actuators

    3.3 Vehicle model

    Consider the requirements for ACC’s simulationscenarios, a 7 DOF vehicle model is built with the independent variables are longitudinal vehicle speed Vx, lateral vehicle speed Vy, yaw rate ψ, and the rolling speed of the four wheels ωfl,ωfr, ωrl, ωrr.Assumethevehicledriversonaflatroadandignoretherollingresistance,wecouldobtainthefollowingvehicledynamicequationsaccordingtoFig.5.

    (8)

    (9)

    Where, m is the mass of vehicle, kg; δ is the steering angle of front wheels, rad; Fwis the air drag, N; Izis the vehicle rotational inertia ofzaxis, kg·m2; Iwis the rotational inertia of the wheel and its accessories, kg·m2; a and b are the horizontal distance from the mass center to the front and rear wheel axis respectively, m; c is the wheel base, m; reis the effective rolling radius, m. F is the road force in corresponding direction of the wheels [13], N; Tais driving torque obtained from throttle openness and engine speed, N·m; Tbis the braking torque obtained from braking pressure of each wheel. Subscription fl, fr, rl, rr denote front left, front right, rear left, rear right wheel, and x, y denote x, y direction.

    Fig.5 Vehicle dynamics model

    Since Magic tire combined slip model would both consider longitudinal and lateral slip to generate tire fore, it would get better accuracyfor ACC’s simulation on a curvature road. Magic tire model could be represent by

    (13)

    (14)

    Where, fx, fyare non-lineal functions; vx, vyare the velocity of wheel in itsxandydirection, m·s-1; Fzis the vertical load of the wheel, N; μ is the friction coefficient of the road. Furthermore, according to Fig.5, vxx, vy, Fzcould beevaluated as follows:

    (15)

    (16)

    (17)

    (18)

    (19)

    (20)

    Where,l is the wheel base, m; hgis the height of the mass center, m.By using Eqs.(8)-(20), the vehicle’s motion could be determined by the numerical calculation in simulation model.

    3.4 Displaying interfaces

    Displaying interfaces could directly monitoring the control signals and change the simulation parameters, thus 3 displaying interfaces are designed to achieve different displaying functions as illustrated in Fig.6.

    Road traffic displaying interface displays the entire road vehicles’ relative position to host vehicle, meanwhile these vehicles’ motion could be controlled by using the input box of the displaying interface. Information typically could be obtained from the dashboard of real vehicle including the vehicle speed, engine speed and the control status are shown in the host vehicle displaying interface. All other key variables like dd, dr, Δd, vh, vr, Δv are displayed and saved in the experimental displaying interface.

    4 Control of hardware actuators

    As illustrated in Fig.1, we use embedded controller togenerate the control signals to manage actual throttle openness and active braking pressure to track with their desired values. For electronic throttle control, as a torque motor is used for throttle’s action, a feed forward and PID feedback controller is designed for the trackingof throttle openness. For active braking pressure’s control, we used a modified PID controller to improve control results in our previous work[14-16]. The control results of throttle openness and braking pressure are shown in Fig.7 and Fig.8 with desired values are step, ramp and sine signal, respectively.

    Fig.6 Displaying interfaces

    5 Simulations results

    Based on the HILS platform, simulation experiments of 3 typical ACC maneuver are conducted to check the functionality of simulator. The simulation results are shown in Fig.9, where these diagrams are the actual distance between the two vehicles and the safety distance, host vehicle velocity and target vehicle velocity, actual and desired throttle openness, actual and desired braking pressure from top to bottom respectively in each figure.

    Fig.7 Control results of different desired throttle openness

    Fig.8 Control results of different desired braking pressure

    Fig.9 Simulation results of the HILS

    In the first scenario, the cruise speed of host vehicle is set to 70 km/h while the preceding vehicle travels at a constant velocity of 60 km/h in the same lane of the host vehicle with an initial distance of 50 m between them. Initially, as the actual distance is greaterthan the safety distance, host vehicle will cruise at the speed of 70 km/h. At about 30 s, preceding vehicle is identified due to the smaller relative distance, and the motion of host vehicle is controlled through throttle action to track the safety distance and the velocity of preceding vehicle. At 100 s, the target vehicle begins to accelerate and drive away, thus the host vehicle come back to the state of cruising at 70 km/h.

    The speed of preceding vehicle is changed in a sine form from 50 km/h to 80 km/h in host vehicle’s lane in the second scenario. In this case, the rapid and accurate response of the hardware actuators becomes crucial for the host vehicle to tack the dynamic safety distance and the speed of preceding vehicle. From Fig.9 (b), one could conclude the host vehicle tracks preceding vehicle’s motion in a good way and the control errors do not diverge.

    The sudden cut-in maneuver of adjacent lane vehicle is simulated in scenario 3. The target vehicle cutinto host vehicle’s lane at the speed of 70 km/h with a relative distance of 10 m while the host vehicle cruises at 80 km/h. Since the actual distance is far less than the safety distance, active braking is applied to exert greatdeceleration. After obtainingthe safety distance, the host vehicle switch to the cruise mode and eventually tracks with the safety distance and the speed of preceding vehicle.

    6 Conclusions

    Based on the above results, one could conclude that the HILS platform could function properly with an effective communication between the model parts and the hardware parts. High accuracy could be achieved in the throttle openness and braking pressure tracking control. Meanwhile, the controller designed in section 2.2 could realize satisfied control results in different traffic scenarios for ACC system. Furthermore, performance evaluation could be obtained for other improved or original ACC controller by using this HILS platform. Through the change of corresponding controller andthe vehicle model in the software, this platform could also be used in the HILS simulation for other active safety control algorithm.

    Acknowledgements

    This paper is supported by General equipment department “Five-Year” advanced research projects of China(40401040302)

    [1]Xiao Lingyun, Gao Feng. A comprehensive review of the development of adaptive cruise control systems[J]. Vehicle system dynamics, 2010, 48(10):1167-1192.

    [2]Zhou J, Peng H. Range policy of adaptive cruise control vehicle for improved flow stability and string stability[J]. IEEE transactions on intelligent transportation systems, 2005, 6(2):229-237.

    [3]Seungwuk M, Wanki C, Kyongsu Y. Intelligent vehicle safety control strategy in various driving situations[J]. Vehicle system dynamics, 2010, 48(1):537-554.

    [4]Seungwuk M,Hyoungjin K, Kyongsu Y. Multi vehicle target selection for adaptive cruise control[J]. Vehicle system dynamics, 2010, 48(11):1325-1343.

    [5]Liu Hong, Gong Lilong. Study on adaptive cruise control spacing policy and stability analysis[C]// 2011 international conference on electric information and control engineering, April 15th-17th, 2011, Wuhan, 2011:5364-5367.

    [6]Asadi B, Vahidi A. Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[J]. IEEE transactions on control systems technology, 2011,19(3):707-714.

    [7]Zhai Yao, Li Lingxi, Widmann G R, et al. Design of switching strategy for adaptive cruise control under string stability constraints[C]// American Control Conference, June 29th-July 1st, 2011, San Francisco, CA, 2011:3344-3349.

    [8]Verburg D J, Vanderknaap A C M, Ploeg J. VEHIL developing and testing intelligent vehicles[C]// IEEE intelligent vehicles symposium, 2002, Versailles, 2002:537-544.

    [9]Jihua Huang, Tan H S. A low-order DGPS-based vehicle positioning system under urbanenvironment[J]. IEEE/ASME transactions on mechatronics, 2006, 11(5): 567-575.

    [10]Kyongsu Y, Donghoon H. A vehicle stop and go control strategy based on human drivers driving characteristics[J]. Journal of mechanical science and technology, 2005, 19(4): 993-1000.

    [11]Feng Daoning, Liu Zhaodu, Pei Xiaofei, et al. Precise electric throttle openness control for vehicle ACC system[J]. Journal of Beijing Institute of Technology, 2011, 31(5):528-532.

    [12]Obradovic D, Lenz H, Schupfner M. Fusion of map and sensor data in a modern car navigation system[J]. Journal of VLSI signal processing systems for signal image and video technology, 2006, 45(1-2): 111-122.

    [13]Feng Daoning, Ye Yang, Zhang Biao,et al. Research and application of body deceleration in ABS road condition identification technique[J]. Journal of Kunming University ofScience and Technology, 2010, (6):56-60.

    [14]Pei Xiaofei, Liu Zhaodu, Qi Zhiguo, et al.Development of in-vehicle expterimental platform for ABS/ASR/ACC integrated system[J].Journal of Wuhan University of Technology,2011, 35(6):500-504.

    [15]Ma Guocheng, Liu Zhaodu, Pei Xiaofei, et al. Design of the pressure regulation algorithm for active braking in vehicle ACC system[J]. Journal of Beijing Institute of Technology, 2011, 20(4):20-27.

    [16]Zhang Dezhao, WANG Jianqiang, et al.Switching strategy for adaptive cruise control Modes for continuous acceleration[J]. Journal of Tsinghua University(Science and Technology),2010,50(8):1277-1281.

    汽車自適應(yīng)巡航控制系統(tǒng)硬件在環(huán)仿真平臺的設(shè)計與仿真試驗

    馮道寧1,2*,劉昭度1,馬國成1,王寶峰1

    1.北京理工大學 機械與車輛工程學院,北京100081 2.廣西機電職業(yè)技術(shù)學院 電氣工程學院,南寧530007

    為了提高自適應(yīng)巡航控制(ACC)系統(tǒng)的仿真精度,利用實車ACC系統(tǒng)的執(zhí)行機構(gòu)建立了硬件在環(huán)仿真(HILS)平臺。HILS平臺由仿真模型和硬件部分組成。仿真模型將運行在dSPACE仿真系統(tǒng)中,包括為了產(chǎn)生雷達模擬信號、ACC控制指令及計算車輛運行狀態(tài)的雷達模擬器、ACC控制器和車輛模型。硬件部分主要包括電子節(jié)氣門系統(tǒng)、主動制動系統(tǒng)及其附屬的傳感器及控制器等。通過串口通信接收來自ACC控制器的指令,HILS平臺的硬件可以完成節(jié)氣門開度和制動壓力跟隨控制。利用HILS平臺進行了不同工況下的ACC仿真試驗,仿真結(jié)果表明:HILS平臺工作狀況良好,并可以用于ACC控制器的開發(fā)。

    硬件在環(huán)仿真;自適應(yīng)巡航控制;車輛模型;節(jié)氣門開度控制;制動壓力控制

    1 September 2014; Revised 22 December 2014;accepted 6 March 2015

    Dao-ning FENG, Associate professor,

    Ph.D., Candidate, E-mail: fdn1978@126.com

    10.3969/j.issn.1001-3881.2015.18.001 Document code: A

    U467.1

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    猜你喜歡
    節(jié)氣門工程學院開度
    福建工程學院
    福建工程學院
    掘進機用截止閥開度對管路流動性能的影響
    增大某車型車門開度的設(shè)計方法
    北京汽車(2021年2期)2021-05-07 03:56:26
    燃燒器二次風擋板開度對爐內(nèi)燃燒特性的影響
    電站輔機(2021年4期)2021-03-29 01:16:52
    福建工程學院
    2008款東風標致206車發(fā)動機加速不良
    2017款福特福瑞斯車節(jié)氣門匹配方法
    福建工程學院
    我們?yōu)槭裁床桓仪逑垂?jié)氣門?
    午夜激情欧美在线| 国产爱豆传媒在线观看| 在线观看一区二区三区| 国产免费av片在线观看野外av| 热99在线观看视频| 五月伊人婷婷丁香| 亚洲国产欧洲综合997久久,| 一本久久中文字幕| 午夜久久久久精精品| 少妇高潮的动态图| 亚洲成人中文字幕在线播放| 嫩草影院精品99| 精品人妻熟女av久视频| 亚洲av成人精品一区久久| 伦理电影大哥的女人| 日韩欧美精品v在线| 中文字幕熟女人妻在线| 国产中年淑女户外野战色| 国产精品一区二区免费欧美| 国产精品亚洲一级av第二区| 免费av毛片视频| 亚洲国产精品成人综合色| 国产单亲对白刺激| 一个人看视频在线观看www免费| 国产精品99久久久久久久久| 中文字幕av成人在线电影| 国产欧美日韩精品亚洲av| 久久国内精品自在自线图片| 老女人水多毛片| 一个人看的www免费观看视频| 亚洲精品成人久久久久久| 免费大片18禁| 又爽又黄无遮挡网站| 在线播放无遮挡| 又粗又爽又猛毛片免费看| 少妇的逼好多水| 午夜精品在线福利| 精品久久久噜噜| 日本黄色视频三级网站网址| 国产91精品成人一区二区三区| 最近最新免费中文字幕在线| 国产精品永久免费网站| 麻豆成人av在线观看| 久久亚洲精品不卡| 亚洲精品影视一区二区三区av| 校园春色视频在线观看| 婷婷亚洲欧美| 日本 av在线| 搡老妇女老女人老熟妇| 欧美中文日本在线观看视频| 一个人看视频在线观看www免费| 精品久久久久久,| 18禁在线播放成人免费| 性欧美人与动物交配| 搡老熟女国产l中国老女人| 精品人妻1区二区| 我要看日韩黄色一级片| 两人在一起打扑克的视频| 亚洲精华国产精华液的使用体验 | 精品久久久久久久久久免费视频| 久久精品91蜜桃| 99热只有精品国产| 国内精品宾馆在线| 精品国内亚洲2022精品成人| ponron亚洲| 国产一区二区亚洲精品在线观看| 国产麻豆成人av免费视频| 看片在线看免费视频| 国产爱豆传媒在线观看| 成人特级av手机在线观看| 亚洲人与动物交配视频| 免费av观看视频| 日日啪夜夜撸| 一夜夜www| 国产精品久久久久久久久免| 老熟妇乱子伦视频在线观看| 久久久成人免费电影| 日韩欧美精品免费久久| 又黄又爽又刺激的免费视频.| 亚洲第一区二区三区不卡| 亚洲精品色激情综合| 午夜精品在线福利| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看| 美女xxoo啪啪120秒动态图| 性欧美人与动物交配| 欧美精品啪啪一区二区三区| 九九久久精品国产亚洲av麻豆| 97热精品久久久久久| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲精品久久久久久毛片| 美女黄网站色视频| 亚洲国产色片| 午夜日韩欧美国产| 91av网一区二区| 色播亚洲综合网| 日本三级黄在线观看| 99视频精品全部免费 在线| 五月玫瑰六月丁香| 热99re8久久精品国产| 欧美日本视频| 欧美日韩精品成人综合77777| 毛片一级片免费看久久久久 | 97人妻精品一区二区三区麻豆| 欧美成人性av电影在线观看| 精品久久久久久久久久久久久| 全区人妻精品视频| 麻豆国产97在线/欧美| 无人区码免费观看不卡| 日本熟妇午夜| 国产精品久久久久久精品电影| 春色校园在线视频观看| 国产伦精品一区二区三区四那| 久久久午夜欧美精品| 欧美性感艳星| 亚洲美女搞黄在线观看 | 亚洲av免费在线观看| 别揉我奶头~嗯~啊~动态视频| 午夜日韩欧美国产| 久久精品国产自在天天线| 久久午夜福利片| 男女那种视频在线观看| 一进一出抽搐gif免费好疼| 琪琪午夜伦伦电影理论片6080| aaaaa片日本免费| 亚洲va日本ⅴa欧美va伊人久久| 国产主播在线观看一区二区| 美女cb高潮喷水在线观看| 成人一区二区视频在线观看| 人人妻人人澡欧美一区二区| 久久亚洲真实| 亚洲av成人精品一区久久| 22中文网久久字幕| 嫩草影院新地址| 亚洲国产精品久久男人天堂| 国产视频一区二区在线看| 草草在线视频免费看| 国产成人福利小说| 日韩av在线大香蕉| 在线播放国产精品三级| 国产高潮美女av| 国内毛片毛片毛片毛片毛片| 国内久久婷婷六月综合欲色啪| 国产午夜福利久久久久久| 91久久精品国产一区二区三区| 男人狂女人下面高潮的视频| av福利片在线观看| 国产亚洲91精品色在线| 男人的好看免费观看在线视频| 亚洲成人久久性| 女同久久另类99精品国产91| 此物有八面人人有两片| 精华霜和精华液先用哪个| 精品久久久久久,| 丝袜美腿在线中文| 大又大粗又爽又黄少妇毛片口| 小说图片视频综合网站| 日本黄色视频三级网站网址| 欧美日韩乱码在线| 国产人妻一区二区三区在| 精品一区二区三区av网在线观看| 免费看光身美女| 男女啪啪激烈高潮av片| 亚洲自偷自拍三级| 97热精品久久久久久| 亚洲第一电影网av| 国产毛片a区久久久久| 国产真实伦视频高清在线观看 | 久久6这里有精品| 直男gayav资源| 国产视频一区二区在线看| 免费av毛片视频| 两个人视频免费观看高清| 99热6这里只有精品| 亚洲欧美日韩高清在线视频| 成年女人看的毛片在线观看| 久久这里只有精品中国| 岛国在线免费视频观看| 老司机午夜福利在线观看视频| 麻豆一二三区av精品| 人人妻,人人澡人人爽秒播| 偷拍熟女少妇极品色| 老司机福利观看| 在线天堂最新版资源| 国产不卡一卡二| 国产高清激情床上av| 嫩草影院精品99| 国产真实乱freesex| 日本在线视频免费播放| 日韩,欧美,国产一区二区三区 | 亚洲av第一区精品v没综合| 成熟少妇高潮喷水视频| 在线播放无遮挡| 日日啪夜夜撸| 男女边吃奶边做爰视频| 国产人妻一区二区三区在| 欧美潮喷喷水| 亚洲av中文av极速乱 | 免费黄网站久久成人精品| 赤兔流量卡办理| 国产高清视频在线播放一区| 亚洲美女视频黄频| 最后的刺客免费高清国语| 国产成人a区在线观看| 小说图片视频综合网站| 亚洲av.av天堂| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品 | 嫁个100分男人电影在线观看| 久久精品国产鲁丝片午夜精品 | 男人和女人高潮做爰伦理| 亚洲第一电影网av| 黄色配什么色好看| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| 高清在线国产一区| 精品一区二区三区视频在线观看免费| 久久精品国产亚洲av香蕉五月| 18禁裸乳无遮挡免费网站照片| 1024手机看黄色片| 成人综合一区亚洲| 日韩一本色道免费dvd| 观看美女的网站| 国产美女午夜福利| 日本在线视频免费播放| 欧美精品啪啪一区二区三区| 欧美日韩精品成人综合77777| 99riav亚洲国产免费| 国产成人a区在线观看| 我的老师免费观看完整版| 国产成人福利小说| 狂野欧美白嫩少妇大欣赏| netflix在线观看网站| 国产三级中文精品| 免费大片18禁| 精品久久久久久久久久久久久| 国产毛片a区久久久久| 日本与韩国留学比较| 成人特级av手机在线观看| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜添小说| 国产一区二区三区av在线 | 色在线成人网| 欧美激情在线99| 又爽又黄a免费视频| ponron亚洲| 免费大片18禁| 婷婷丁香在线五月| 亚洲va日本ⅴa欧美va伊人久久| 此物有八面人人有两片| or卡值多少钱| 婷婷丁香在线五月| 亚洲va日本ⅴa欧美va伊人久久| 又粗又爽又猛毛片免费看| АⅤ资源中文在线天堂| 成人性生交大片免费视频hd| 国产色婷婷99| 三级男女做爰猛烈吃奶摸视频| 波多野结衣高清作品| 男人和女人高潮做爰伦理| 欧美最黄视频在线播放免费| 日本免费一区二区三区高清不卡| 噜噜噜噜噜久久久久久91| 亚洲人成伊人成综合网2020| 国产欧美日韩精品一区二区| 欧美日韩精品成人综合77777| 久久久久久久精品吃奶| 亚洲男人的天堂狠狠| 在线观看免费视频日本深夜| 男女啪啪激烈高潮av片| 十八禁网站免费在线| 亚洲aⅴ乱码一区二区在线播放| 精品人妻熟女av久视频| 日韩国内少妇激情av| 欧美日韩精品成人综合77777| videossex国产| 欧美日韩亚洲国产一区二区在线观看| 在线观看免费视频日本深夜| 欧美精品国产亚洲| 国模一区二区三区四区视频| 91麻豆av在线| 韩国av一区二区三区四区| 极品教师在线视频| 网址你懂的国产日韩在线| 久久婷婷人人爽人人干人人爱| 18禁黄网站禁片午夜丰满| 亚洲av五月六月丁香网| 99在线人妻在线中文字幕| 人妻少妇偷人精品九色| 国产成人一区二区在线| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| 日本一本二区三区精品| 成人国产一区最新在线观看| 国国产精品蜜臀av免费| 亚洲av免费高清在线观看| 直男gayav资源| 人妻夜夜爽99麻豆av| 丰满乱子伦码专区| 亚洲avbb在线观看| 永久网站在线| 亚洲性夜色夜夜综合| 亚洲avbb在线观看| 一级黄色大片毛片| 亚洲自偷自拍三级| 久久久国产成人精品二区| 1000部很黄的大片| 天天躁日日操中文字幕| 欧美高清成人免费视频www| 亚洲美女视频黄频| 毛片一级片免费看久久久久 | 国产免费男女视频| 一进一出好大好爽视频| 国产成人aa在线观看| 不卡视频在线观看欧美| 久久中文看片网| 精品人妻熟女av久视频| 亚洲国产精品合色在线| 五月玫瑰六月丁香| 欧美丝袜亚洲另类 | 岛国在线免费视频观看| 男女那种视频在线观看| 午夜福利在线在线| 两个人视频免费观看高清| 久久久久久久久久久丰满 | 亚洲va在线va天堂va国产| 国语自产精品视频在线第100页| 精品免费久久久久久久清纯| 伊人久久精品亚洲午夜| 综合色av麻豆| 国产精品永久免费网站| 国产精品人妻久久久久久| 97热精品久久久久久| 日韩欧美在线二视频| .国产精品久久| 精品人妻偷拍中文字幕| 欧美一区二区国产精品久久精品| 夜夜夜夜夜久久久久| 亚洲最大成人中文| 亚洲精品色激情综合| 美女高潮的动态| 成人特级黄色片久久久久久久| 淫秽高清视频在线观看| av黄色大香蕉| 日韩欧美国产一区二区入口| 91久久精品国产一区二区成人| 成人综合一区亚洲| 男人舔女人下体高潮全视频| 久久久国产成人免费| 国产精品99久久久久久久久| 亚州av有码| 女的被弄到高潮叫床怎么办 | 嫩草影院新地址| 国产aⅴ精品一区二区三区波| 午夜免费成人在线视频| 国产69精品久久久久777片| av在线观看视频网站免费| 亚洲欧美激情综合另类| 国产精品无大码| 女人被狂操c到高潮| 亚洲精品亚洲一区二区| 久99久视频精品免费| 国产高潮美女av| 99精品久久久久人妻精品| 人妻夜夜爽99麻豆av| 99在线视频只有这里精品首页| 动漫黄色视频在线观看| av女优亚洲男人天堂| 成人av一区二区三区在线看| 国产精品美女特级片免费视频播放器| 男人舔奶头视频| 中文字幕精品亚洲无线码一区| 22中文网久久字幕| 日本撒尿小便嘘嘘汇集6| 神马国产精品三级电影在线观看| 精品无人区乱码1区二区| 国产精品久久久久久亚洲av鲁大| 国产视频内射| 3wmmmm亚洲av在线观看| 久久久久久久久久久丰满 | 欧美成人免费av一区二区三区| 婷婷色综合大香蕉| 九九爱精品视频在线观看| 久久婷婷人人爽人人干人人爱| 99久久成人亚洲精品观看| 91麻豆精品激情在线观看国产| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av香蕉五月| 黄色丝袜av网址大全| 久久久久久久久大av| 最近最新中文字幕大全电影3| 久久精品夜夜夜夜夜久久蜜豆| 亚洲图色成人| 99热网站在线观看| 国内精品久久久久精免费| 亚洲内射少妇av| 看片在线看免费视频| 国产一区二区三区在线臀色熟女| 欧美+日韩+精品| а√天堂www在线а√下载| 欧美不卡视频在线免费观看| a在线观看视频网站| 欧美三级亚洲精品| 18禁黄网站禁片午夜丰满| av天堂在线播放| 欧美丝袜亚洲另类 | 欧美国产日韩亚洲一区| 国产精品国产三级国产av玫瑰| 精品久久久噜噜| 国产一区二区激情短视频| 国产av麻豆久久久久久久| 99在线人妻在线中文字幕| a级一级毛片免费在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品av在线| 男女之事视频高清在线观看| 国产高清不卡午夜福利| 亚洲四区av| 精品一区二区三区人妻视频| 午夜激情福利司机影院| 深夜a级毛片| 亚洲男人的天堂狠狠| 日日撸夜夜添| 啦啦啦观看免费观看视频高清| 色综合站精品国产| 在线观看舔阴道视频| a级毛片a级免费在线| netflix在线观看网站| 日本爱情动作片www.在线观看 | 三级男女做爰猛烈吃奶摸视频| 久久国内精品自在自线图片| 日韩精品青青久久久久久| 99热6这里只有精品| 97人妻精品一区二区三区麻豆| 内地一区二区视频在线| 深夜精品福利| 天堂av国产一区二区熟女人妻| 亚洲最大成人av| 亚洲性久久影院| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 狂野欧美白嫩少妇大欣赏| 亚洲av中文av极速乱 | 久久中文看片网| 成人一区二区视频在线观看| 日韩欧美免费精品| 麻豆成人av在线观看| 成年人黄色毛片网站| 国产爱豆传媒在线观看| 成人二区视频| 97人妻精品一区二区三区麻豆| 国产精品永久免费网站| 午夜免费激情av| 亚洲欧美日韩东京热| 久久午夜福利片| 免费在线观看影片大全网站| 日本撒尿小便嘘嘘汇集6| 久久久午夜欧美精品| 午夜激情欧美在线| 男女啪啪激烈高潮av片| 麻豆国产av国片精品| 午夜视频国产福利| 日韩人妻高清精品专区| 精品欧美国产一区二区三| 亚洲一区二区三区色噜噜| 国产精品一及| 国产又黄又爽又无遮挡在线| 日韩人妻高清精品专区| 国产亚洲精品久久久com| 黄色日韩在线| 毛片一级片免费看久久久久 | 伊人久久精品亚洲午夜| 日韩欧美免费精品| 欧美人与善性xxx| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 欧美性猛交黑人性爽| 99热精品在线国产| 亚洲av.av天堂| 又黄又爽又刺激的免费视频.| 99热只有精品国产| 九九爱精品视频在线观看| 午夜福利在线在线| 国内精品久久久久久久电影| 国内少妇人妻偷人精品xxx网站| 毛片女人毛片| 99久久久亚洲精品蜜臀av| 成人鲁丝片一二三区免费| 少妇丰满av| 国产综合懂色| 亚洲无线在线观看| 99久久九九国产精品国产免费| 亚洲av免费高清在线观看| 日本与韩国留学比较| 尤物成人国产欧美一区二区三区| 久久精品综合一区二区三区| 欧美日韩瑟瑟在线播放| 一本一本综合久久| 成人三级黄色视频| 亚洲人成网站高清观看| 在线观看美女被高潮喷水网站| 国产精品亚洲一级av第二区| 国内精品久久久久久久电影| 国产蜜桃级精品一区二区三区| 国产伦精品一区二区三区四那| 狠狠狠狠99中文字幕| 国产午夜福利久久久久久| 国产亚洲欧美98| www.色视频.com| 真人做人爱边吃奶动态| 欧美zozozo另类| 日本黄色视频三级网站网址| 欧美丝袜亚洲另类 | 99久久精品一区二区三区| 一区二区三区四区激情视频 | 精品不卡国产一区二区三区| 美女 人体艺术 gogo| 午夜福利欧美成人| 久久国产精品人妻蜜桃| 亚洲av一区综合| 亚洲电影在线观看av| 日本撒尿小便嘘嘘汇集6| 色噜噜av男人的天堂激情| 久久久精品大字幕| 偷拍熟女少妇极品色| 全区人妻精品视频| 女人被狂操c到高潮| 色吧在线观看| 国产精品亚洲美女久久久| 亚洲欧美清纯卡通| 午夜影院日韩av| 国产色爽女视频免费观看| 欧美一区二区亚洲| 永久网站在线| 婷婷丁香在线五月| 九色成人免费人妻av| 亚洲国产精品合色在线| 能在线免费观看的黄片| 亚洲美女视频黄频| 91在线观看av| 18禁裸乳无遮挡免费网站照片| 午夜福利在线在线| 真实男女啪啪啪动态图| 搡老妇女老女人老熟妇| 亚洲成人久久性| 亚洲人成网站在线播| 久久精品综合一区二区三区| av天堂中文字幕网| 日本撒尿小便嘘嘘汇集6| 国产精品免费一区二区三区在线| 亚洲无线观看免费| 久久午夜亚洲精品久久| 亚洲精品成人久久久久久| 啦啦啦韩国在线观看视频| 欧美激情在线99| 中文字幕av成人在线电影| 久久久久久久久久久丰满 | 国产精品野战在线观看| 中亚洲国语对白在线视频| 午夜免费成人在线视频| 国产精品一区二区免费欧美| 日日干狠狠操夜夜爽| ponron亚洲| 亚洲第一电影网av| 免费看美女性在线毛片视频| 欧美日韩黄片免| 一卡2卡三卡四卡精品乱码亚洲| 女生性感内裤真人,穿戴方法视频| 国产精品国产高清国产av| 国产成人av教育| 免费av毛片视频| 欧美+日韩+精品| av女优亚洲男人天堂| 热99在线观看视频| 中文资源天堂在线| 亚洲欧美日韩高清专用| 一a级毛片在线观看| 中文字幕av在线有码专区| 俺也久久电影网| 搡老岳熟女国产| 国产激情偷乱视频一区二区| 午夜老司机福利剧场| 午夜福利18| 成人一区二区视频在线观看| 久久午夜福利片| 亚洲成人精品中文字幕电影| 免费人成在线观看视频色| 国产精品久久久久久av不卡| 国产男靠女视频免费网站| 精品一区二区三区av网在线观看| 91久久精品国产一区二区成人| 欧美又色又爽又黄视频| 亚洲在线观看片| 欧美黑人巨大hd| 午夜影院日韩av| 成人一区二区视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品福利在线免费观看| 亚洲三级黄色毛片| 国模一区二区三区四区视频| 国产 一区精品| 天堂av国产一区二区熟女人妻| a在线观看视频网站| www日本黄色视频网| 欧美高清成人免费视频www| 一本一本综合久久| 搡女人真爽免费视频火全软件 | 日本黄色视频三级网站网址| 人妻久久中文字幕网| or卡值多少钱| 麻豆久久精品国产亚洲av| 别揉我奶头 嗯啊视频| 午夜亚洲福利在线播放| 91午夜精品亚洲一区二区三区 | 日韩欧美免费精品|