劉燕 張素英
(山西大學理論物理研究所,太原 030006)
求解自治非線性薛定諤方程的分離變量法*
劉燕 張素英?
(山西大學理論物理研究所,太原 030006)
薛定諤方程是量子力學的基本方程,與經(jīng)典物理中的牛頓運動方程地位相當.本文針對哈密頓量與時間無關(guān)的量子系統(tǒng),應(yīng)用分離變量法研究其量子力學定態(tài)解.分別給出了包含克爾型、飽和型以及五次非線性效應(yīng)的薛定諤方程的定態(tài)解,并將所得解析解與數(shù)值解進行比較.兩者完全吻合.
非線性薛定諤方程, 定態(tài)解, 解析解
在量子力學中,力場中微觀粒子的狀態(tài)用波函數(shù)來描述,決定微觀粒子狀態(tài)變化的方程是薛定諤方程:
其中,-?2+U(r)為哈密頓算符,一般情況下勢能U(r)也可以是時間的函數(shù).如果U(r)不含時間,我們可用定態(tài)微擾理論求薛定諤方程的近似解,當U(r)是時間的顯函數(shù)時,我們用與時間有關(guān)的微擾理論求方程的近似解.如果U(r)與時間無關(guān),我們也可以通過分離變量法求出方程的精確解.與頻率振幅公式[1-4]、變分迭代法[5-9]、同倫分析法[10-14,21-23]、指數(shù)展開法[15-17]等求解非線性問題的方法相比,分離變量法是一種簡單有效的方法.如果哈密頓量與時間無關(guān),運用分離變量法可以快速地求出薛定諤方程的精確解.
我們考慮系統(tǒng)的總能量除包含動能和勢能之外,還包含相互作用能,即
當哈密頓量與時間無關(guān)時,同樣可運用分離變量法對其進行求解.本文運用分離變量法分別對包含克爾型、飽和型以及五次型非線性薛定諤方程進行求解,并將得到的結(jié)果同數(shù)值結(jié)果做比較.
如果U(r)+F()與時間無關(guān),我們可考慮方程(2)的特解:
將方程(3)代入方程(2)中,并用u(r)v(t)去除方程兩邊,得到
因為等式(4)的左邊只是t的函數(shù),右邊只是r的函數(shù),而t和r是相互獨立的變量,所以只有當兩邊都等于同一常量時,等式才能被滿足.以E表示這個常量,則有
顯然方程(5)的解為:
C為任意常數(shù).從而其中,C由φ(r,0)=u(r)得到.常量E可以通過將已知的初始波函數(shù)u(r)代入方程(6)求得.根據(jù)德布羅意關(guān)系,E就是系統(tǒng)處于波函數(shù)φ(r,t)描述狀態(tài)的能量,具有確定值,系統(tǒng)處于(8)式所描述的狀態(tài)時,稱為定態(tài),對應(yīng)的波函數(shù)φ(r,t)為定態(tài)波函數(shù).
我們首先考慮兩維克爾型非線性薛定諤方程[18,19]:
初始條件
其哈密頓量與時間無關(guān),則方程(9)存在定態(tài)解,且滿足:
考慮方程的特解:
將方程(13)代入方程(9)并重新整理得
因為等式左邊只是時間t的函數(shù),右邊只是x,y的函數(shù),而t和x,y是相互獨立的變量,所以只有當兩邊都等于同一個常量時,等式才能成立.以E表示這個常量,則有:
根據(jù)方程(15)得
將方程(10)代入方程(16)得E=k,角頻率是個定值,系統(tǒng)處于定態(tài).所以,方程(9)的定態(tài)解可表示為:
由 φ(x,y,0)=u(x,y)得C=1 .所以方程(9)的定態(tài)解為
偏振探測光束的傳播可以用飽和型非線性薛定諤方程來描述,模型如下[19]:
初始條件為
其中,φ是緩慢變化的探測光束的振幅,E0是一個常數(shù),Vd是如下點陣密度函數(shù):
同上一小節(jié),其定態(tài)解滿足,取方程(20)的特解 φ(x,y,t)=u(x,y)v(t),并將其代入方程(20),重新整理得:
取上述等式兩邊等于同一個常量E得:
由方程(24)得v(t)=Ce-iEt.將方程(21)代入方程(25)得E=2k.所以方程(20)的定態(tài)解可表示為:
根據(jù) φ(x,y,0)=u(x,y),可得C=1 .
五次型非線性薛定諤方程的數(shù)學模型可表示為[19]
初始條件為:
其定態(tài)解滿足.取其特解 φ(x,y,t)=u(x,y)v(t),并將其代入方程(27),整理得:
取等式兩邊等于同一個常量E得:
直接解方程(31)得v(t)=Ce-iEt,將(28)代入方程(32)得E=k,因此
因為 φ(x,y,0)=u(x,y),所以C=1 .
圖1 非線性薛定諤方程的解析解與數(shù)值解的比較:(a)克爾非線性;(b)飽和非線性;(c)五次非線性Fig.1 Omparison between the analytical solution and the numerical solution of nonlinear Schr?dinger equation(a):Kerr nonlinearity;(b)Saturable nonlinearity;(c)Quintic nonlinearity
用分離變量法分別獲得了包含克爾型、飽和型以及五次非線性效應(yīng)的非線性薛定諤方程的定態(tài)解,且這三個定態(tài)解析解同數(shù)值解吻合得很好.對于哈密頓量與時間無關(guān)的薛定諤方程,分離變量法是一種特別簡單而有效的方法.
1 Zhang Y N,Xu F,Deng L L.Exact solution for nonlinear Schr?dinger equation by he's frequency formulation.Computers&Mathematics with Applications,2009,58(11-12):2449~2451
2 He J H.An improved amplitude-frequency formulation for nonlinear oscillators.International Journal of Nonlinear Sciences and Numerical Simulation,2008,9(2):211~212
3 He J H.Comment on he's frequency formulation for nonlinear oscillators.European Journal of Physics,2008,29(3):L1~L4
4 Cai X C,Wu W Y.He's frequency formulation for the relativistic harmonic oscillator.Computers&Mathematics with Applications,2009,58(11-12):2358 ~2359
5 Wazwaz A M.A study on linear and nonlinear Schr?dinger equations by the variational iteration method.Chaos Solitons&Fractals,2008,37(4):1136~1142
6 Zomorrodian M E,Marjaneh A M.Higher order solutions for nonlinear Schr?dinger equation by hamiltonian approach.Advanced Studies in Theoretical Physics,2012,6(4):177~186
7 He J H.Variational iteration method-a kind of nonlinear analytical technique:some examples.International Journal of Non-Linear Mechanics,1999,34(4):699~708
8 He J H.Variational iteration method-some recent results and new interpretations.Journal of Computational and Applied Mathematics,2007,207(1):3~17
9 Odibat Z M,Momani S.Application of variational iteration method to nonlinear differential equations of fractional order.International Journal of Nonlinear Sciences and Numerical Simulation,2006,7(1):27~34
10 Abbasbandy S.The application of homotopy analysis method to nonlinear equations arising in heat transfer.Physics Letters A,2006,360(1):109~13
11 Liao S J.On the homotopy analysis method for nonlinear problems.Applied Mathematics and Computation,2004,147(2):499~513
12 Liao S J.Numerically solving nonlinear problems by homotopyanalysismethod.ComputationalMechanics,1997,20(6):530~40
13 He J H.Comparison of homotopy perturbation method and homotopy analysis method.Applied.Applied Mathematics and Computation,2004,156(2):527~539
14 Liang S,Jeffrey D J.Comparison of homotopy analysis method and homotopy perturbation method through an evaluation equation.Communications in Nonlinear Science&Numerical Simulation,2009,14(12):4057~4064
15 Shou D H,He J H.Application of parameter-expanding method to strongly nonlinear oscillators.International Journal of Nonlinear Sciences and Numerical Simulation,2007,8(1):113 ~116
16 Wang S Q,He J H.Nonlinear oscillator with discontinuity by parameter-expansion method.Chaos,Solitons&Fractals,2008,35(4):688~691
17 Xu L.Application of He's parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire.Physics Letters A,2007,368(3-4):259 ~262
18 Wang Y,Hao R Y.Exact spatial soliton solution for nonlinear Schr?dinger equation with a type of transverse nonperiodic modulation.Optics Communications,2009,282(19):3995~3998
19 Antar N,Pamuk N.Exact solutions of two-dimensional nonlinear Schr?dinger equations with external potentials.Applied and Computational Mathematics,2013,2(6):152~158
20 Antoine X,Bao W Z,Besse C.Computational methods for the dynamics of the nonlinear Schr?dinger/Gross-Pitaevskiiequations.ComputerPhysicsCommunications,2013,184(12):2621~2633
21 He J H.Homotopy perturbation technique.Computer Methods in Applied Mechanics and Engineering,1999,178(3-4):257 ~ 262
22 He J H.Homotopy perturbation method.a(chǎn) new nonlinear analytical technique.Applied Mathematics and Computation,2003,135(1):73~79
23 Pamuk S,Pamuk N.He’s homotopy perturbation method for continuous population models for single and interacting species.Computers&Mathematics with Applications,2010,59(2):612~621
*The project supported by the National Natural Science Foundation of China(91430109),the Specialized Research Fund for the Doctoral Program of Higher Education of China(20111401110004),the Natural Science Foundation of Shanxi Province(2014011005-3)
?Corresponding author E-mail:zhangsy@sxu.edu.cn
A VARIABLE SEPARATION METHOD FOR SOLVING AUTONOMOUS NONLINEAR SCHR?DINGER EQUATIONS*
Liu Yan Zhang Suying?
(Institute of Theoretical Physics,Shanxi University,Taiyuan030006,China)
The Schr?dinger equations is a basic equation of quantum mechanics.It’s just as important as Newton’s equation of motion of classical physics in quantum mechanics.In this paper,we use variable separation method to obtain the stationary solution of the quantum mechanical system with time independent Hamiltonian.We separately give solutions of Schr?dinger equations with Kerr type,saturation type and quintic nonlinearity.And the obtained analytical solutions are compared with the numerical solutions.They agree well with each other.
nonlinear Schr?dinger equation, stationary solution, analytical solution
13 December 2014,
15 January 2015.
10.6052/1672-6553-2015-006
2014-12-13 收到第 1 稿,2015-01-15 收到修改稿.
*國家自然科學基金資助項目(91430109),高等學校博士學科點專項科研基金資助項目(20111401110004)及山西省自然科學基金資助項目(201401100-3)
E-mail:zhangsy@sxu.edu.cn