• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological Characterization of Book Graph and Stacked Book Graph

    2019-07-18 01:58:50RaghisaKhalidNazeranIdreesandMuhammadJawwadSaif
    Computers Materials&Continua 2019年7期

    Raghisa Khalid, Nazeran Idrees, and Muhammad Jawwad Saif

    Abstract: Degree based topological indices are being widely used in computer-aided modeling, structural activity relations, and drug designing to predict the underlying topological properties of networks and graphs.In this work, we compute the certain important degree based topological indices like Randic index, sum connectivity index, ABC index, ABC4 index, GA index and GA5 index of Book graph Bn and Stacked book graph Bm ,n.The results are analyzed by using edge partition, and the general formulas are derived for the above-mentioned families of graphs.

    Keywords: Topological indices, Book graph Bn , Stacked book graph Bm ,n, network.

    1 Introduction

    Graph theory is used as a tool for designing and modeling chemical structures, complex network, and modeling of daily-life problems.In recent years, chemical structures and pharmaceutical techniques have been rapidly developed.In this period of rapid technological development, a huge number of new crystalline materials, nanomaterial, and drugs are designed using computer-aided modeling techniques.Researchers have found the topological index to be an influential and valuable tool in the narrative of molecular or network structure.A non-empirical scientific amount which quantitates the molecular structure and its branching pattern is described as a topological index of the associated graph.The chemical graph theory put on the tools from graph theory to mathematical models of molecular singularities, which is helpful for the study of molecular modeling and molecular structure.This theory plays a vigorous role in the field of theoretical chemical sciences.

    In this paper all molecular graphs are considered to be connected, finite, loopless and deprived of parallel edges.Let F be a graph with n vertices and m edges.The degree of a vertex is the number of vertices adjacent to q and is signified as d(q) .By these terminologies, certain topological indices are well-defined in the following way.

    The Randic index is the oldest degree based topological index and is signified as χ(F) and presented by Randic [Randic (1975)].He proposed this index for calculating the degree of branching of the carbon-atom skeleton of saturated hydrocarbons.Li et al.[Li and Shi (2008)] gave a comprehensive survey of the Randic index.

    Definition 1.1For any molecular graph F, the Randic index is defined as

    A variation of Randic connectivity index is the sum connectivity index [Zhou and Trinajstic (2009)].

    Definition 1.2.For a molecular graph F, the sum connectivity index is defined as

    Estrada et al.[Estrada, Torres and Rodriguez (1998)] proposed a degree based topological index of graphs, which is said to be the atom-bond connectivity index.Further, he proposed the atom-bond connectivity index of branched alkanes [Estrada (2008)].For the atom-bond connectivity index several upper bounds for graphs are established and also studied in the context of the connected graph, and bicyclic chemical graphs [Chen, Liu and Guo (2012); Chen and Guo (2012); Xing, Zhou and Dong (2011)].

    Definition 1.3.Let F be a molecular graph; then ABC index is defined as

    The geometric-arithmetic index is associated with a variation of physiochemical properties.It can be used as a possible tool for QSPR/QSAR research.Vukicevic et al.[Vukicevic and Furtula (2009)] introduced the geometric-arithmetic( GA) index.

    Definition 1.4.Let F be a molecular graph, then geometric-arithmetic index is defined as

    Ghorbani et al.[Ghorbani and Hosseinzadeh (2010)] presented the fourth ABC index.

    Definition 1.5.Let F be a molecular graph; then ABC4index is defined as

    where Sqis the summation of degrees of all the neighbors of a vertex q in F.

    Recently Graovac et al.[Graovac, Ghorbani and Hosseinzadeh (2011)] proposed the fifth GA index, which is defined below.

    Definition 6.Let F be a molecular graph; then5GA index is defined as

    Degree based topological indices are rigorously studied for nanotubes, computer networks and many other chemical graphs, for recent development in literature [Idrees, Said, Rauf et al.(2017); Gao, Wu, Siddiqui et al.(2018); Idrees, Hussain and Sadiq (2018); Imran, Baig Rehman et al.(2018); Joan (2019)].Some other interesting results about network analysis using topological indices can be found in Hayat et al.[Hayat and Imran (2014); Javaid and Cao (2018)].

    2 Main results for Book graph

    Book graph Bnis obtained by taking cartesian product of star graph Sn+1with a path of length two P2, i.e.,Bn:= Sn+1□P2, as shown in Fig.1.The degree based topological indices like Randic index, sum connectivity index, atom-bond connectivity index, geometric-arithmetic index, fourth atom-bond connectivity index, GA5index for Book graph Bnare computed in this section.

    Figure 1: A representation of Book graph nB

    Table 1: Partition of edge created by the sum of adjacent vertices of every line

    Theorem 2.1

    Let Bnbe the book graph.Then

    i) The Randic index of Book graph is

    ii) The Sum-connectivity index of Book graph (Bn)is

    iii) The Atom bond connectivity index of Book graph is

    iv) The geometric-arithmetic index (GA) of Book graph is

    Proof.For the Book graph Bn, we divider the edges of Bninto edges of the form Edq,dr, where qr is an edge.We develop the edges of the form E(2,2), E(2,n+1)andIn Fig.1, E(2,2), E(2,n+1)andare colored in red, lavender and green, respectively.The number of edges of these forms are given in the Tab.1.

    Using Tab.1, we get

    Theorem 2.2

    i) The fourth atom bond connectivity index (ABC4) Book graph is

    ii) The Fifth geometric arithmetic index (5GA)of Book graph is

    Proof.Consider the Book graph Bn.The edges of Bncan be divided into edges of formwhere qr is an edge.We develop the edges of the formandthat are shown in Tab.2 given below, by evaluating sum of degrees of neighboring vertices.

    Table 2: Partition of edges created by the sum of degrees of neighbors of the head-to-head vertices of every edge

    From Tab.2, we get

    Substituting the values from Tab.2,

    and we get the desired result.

    3 Main results for Stacked book graph

    The Stacked book graph of order (m,n), denoted by Bm,nis the Cartesian productof graphs, where Smis a star graph and Pnis the path graph on n points.It is therefore the graph resultant to the edges of n copies of an m-page book stacked one on top of another and is a generalization of the book graph.The degree based topological indices like Randic, sum, atom-bond, geometric-arithmetic, fourth atom-bond, fifth geometric-arithmetic connectivity index for Stacked book graph,mnB are computed in this section.These graph invariants are computed by edge partition based on degrees of end vertices of edges as given in Tab.3 below.

    Figure 2: A representation of Stacked book graph B5,7

    Table 3: Edge partition created by sum of adjacent vertices of every line

    Theorem 3.1

    i) The Randic connectivity index of Stacked book graph is

    χ(Bm,n)=where 6n ≥ .

    ii) The sum connectivity index of Stacked book graph iswhere n ≥ 6.

    iii) The Atom bond connectivity index (ABC)of Stacked book graph is

    iv) The Geometric-Arithmetic index (GA)o stacked book graph is GA( Bm,n)=Proof.Consider the Stacked book graph Bm,n.The edges of Bm,ncan be partitioned into edges of the form Edq,dr, where qr is an edge.In Bm,n, We develop the edges of the formandIn Fig.2,andare colored by red, bright green, lavender, pink, navy blue, and silver.The sum of edges of these forms is given in the Tab.3.

    Substituting the values from Tab.3, we get,

    Substituting the values from Tab.3, we get

    From Tab.3, we get,

    Using edge partition given in Tab.3, we have

    After simplification, we have

    Theorem 3.2

    The Fourth atom bond connectivity index (ABC4) and fifth geometric-arithmetic index (GA5) of Stacked book graph Bm,nare given as

    Proof.Consider the Stacked book graph,mnB .The edges of,mnB can be partitioned into edges of the formwhere qr is an edge.In Bm,n.We develop the edges of the formandthat are shown in Tab.4.

    Table 4: Edge partition created by the sum of degrees of neighbors of the head-to-head vertices of every edge

    Using the edge partition given in Tab.4, we have

    After further simplification, we get

    which yields the required result.

    Again substituting the values from Tab.4, we get

    4 Conclusion

    In this work, we analyzed the graph-theoretic invariants of certain networks dependent upon connectivity of the nodes like ABC index, ABC4index, Randic connectivity index, sum connectivity index, GA index and5GA index of Book graphnB and Stacked book graph Bm,n.The results can be applied to investigate the topological properties of the computer network and structure-activity relation where the graph correspond to book graph and stacked book graph.We derived the general formulas of various degree based topological indices and computed the results analytically for the above-mentioned families of the graph.These graph-theoretic invariants depend upon connectivity of the nodes of the graph.These results can be employed to further understand the topological properties of graphs with graph-theoretic properties.

    References

    Chen, J.; Li, S.(2011): On the sum-connectivity index of unicyclic graphs with k pendent vertices.Mathematical Communications, vol.16, no.2, pp.359-368.

    Chen, J.; Liu, J.; Guo, X.(2012): Some upper bounds for the atom-bond connectivity index of graphs.Applied Mathematics Letters, vol.25.no.7, pp.1077-1081.

    Chen, J.S.; Guo, X.F.(2012): The atom-bond connectivity index of chemical bicyclic graphs.Applied Mathematics-A Journal of Chinese Universities, vol.27, no.2, pp.243-252.

    Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I.(1998): An atom-bond connectivity index: modelling the enthalpy of formation of alkanes.Indian Journal of Chemistry, vol.37, no.10, pp.849-855.

    Estrada, E.(2008): Atom-bond connectivity and the energetic of branched alkanes.Chemical Physics Letters, vol.463, no.4, pp.422-425.

    Farahani, M.R.(2013): On the fourth atom-bond connectivity index of Armchair Polyhex Nanotubes.Proceedings of Romanian Academy Series B, vol.15, no.1, pp.3-6.

    Ghorbani, M.; Hosseinzadeh, M.A.(2010): Computing ABC4index of nanostar dendrimers.Optoelectronics and Advanced Materials Rapid Communications, vol.4, no.9, pp.1419-1422.

    Graovac, A.; Ghorbani, M.; Hosseinzadeh, M.A.(2011): Computing fifth geometricarithmetic index for nanostar dendrimers.Journal of Mathematical Nanoscience, vol.1, no.1, pp.33-42.

    Hayat, S.; Imran, M.(2014): Computation of topological indices of certain networks.Applied Mathematics and Computation, vol.240, pp.213-228.

    Idrees, N.; Saif, M.; Rauf, A.; Mustafa, S.(2017): First and second Zagreb eccentricity indices of thorny graphs.Symmetry, vol.9, no.1, pp.7-16.

    Idrees, N.; Hussain, F.; Sadiq, A.(2018): Topological properties of benzenoid graphs.University Politehnica of Bucharest Scientific Bulletin Series B-Chemistry and Materials Science, vol.80, no.1, pp.145-156.

    Javaid, M.; Cao, J.(2018): Computing topological indices of probabilistic neural network.Neural Computing and Applications, vol.30, no.12, pp.3869-3876.

    Joan, K.(2019): Some topological indices computing results of archimedean lattices l (4, 6, 12).Computers, Materials & Continua, vol.58, no.1, pp.121-133.

    Li, X.; Shi, Y.(2008): A survey on the Randic index.MATCH Communications in Mathematical and Computational Chemistry, vol.59, no.1, pp.127-56.

    Randic, M.(1975): Characterization of molecular branching.Journal of the American Chemical Society, vol.97, no.23, pp.6609-6615.

    Xing, R.; Zhou, B.; Dong F.(2011): On atom-bond connectivity index of connected graphs.Discrete Applied Mathematics, vol.159, no.15, pp.1617-1630.

    Zhou, B.; Trinajsti?, N.(2009): On a novel connectivity index.Journal of Mathematical Chemistry, vol.46, no.4, pp.1252-1270.

    aaaaa片日本免费| 一夜夜www| 久久精品91无色码中文字幕| 国产v大片淫在线免费观看| 中文字幕最新亚洲高清| 国产99久久九九免费精品| 久久久久精品国产欧美久久久| 国产精品亚洲美女久久久| 免费在线观看影片大全网站| 在线天堂中文资源库| 又大又爽又粗| 国产人伦9x9x在线观看| 国产精品98久久久久久宅男小说| 国产精品久久久久久精品电影 | 国产精品亚洲美女久久久| 亚洲av成人不卡在线观看播放网| 亚洲成人国产一区在线观看| 国产亚洲av嫩草精品影院| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 好男人电影高清在线观看| 亚洲国产欧洲综合997久久, | 国内少妇人妻偷人精品xxx网站 | 国产av一区二区精品久久| 亚洲狠狠婷婷综合久久图片| 国产97色在线日韩免费| 国产亚洲精品一区二区www| 亚洲 国产 在线| 亚洲精品美女久久久久99蜜臀| 这个男人来自地球电影免费观看| 久久国产精品人妻蜜桃| 黄色 视频免费看| 深夜精品福利| 亚洲人成电影免费在线| 在线国产一区二区在线| 最好的美女福利视频网| 欧美激情高清一区二区三区| 特大巨黑吊av在线直播 | 午夜免费激情av| 久久伊人香网站| 欧美激情久久久久久爽电影| 少妇被粗大的猛进出69影院| 黄片大片在线免费观看| 国产片内射在线| 欧美精品亚洲一区二区| 欧美激情 高清一区二区三区| 精品久久久久久久末码| 国产在线精品亚洲第一网站| 国产爱豆传媒在线观看 | 亚洲成人久久爱视频| 亚洲精品av麻豆狂野| 亚洲国产欧美日韩在线播放| 长腿黑丝高跟| 午夜激情福利司机影院| 欧美 亚洲 国产 日韩一| 村上凉子中文字幕在线| 久久中文字幕一级| 成人亚洲精品av一区二区| 亚洲最大成人中文| 免费av毛片视频| 午夜福利在线观看吧| 国产精品永久免费网站| 亚洲欧美精品综合一区二区三区| 99热只有精品国产| 黄片大片在线免费观看| 精品久久久久久久人妻蜜臀av| av在线天堂中文字幕| 满18在线观看网站| 欧美国产日韩亚洲一区| 欧美日韩黄片免| 男女床上黄色一级片免费看| 两性夫妻黄色片| 精品久久久久久久久久免费视频| 国内少妇人妻偷人精品xxx网站 | 黄色视频不卡| 国产视频内射| 老司机深夜福利视频在线观看| 亚洲国产毛片av蜜桃av| 亚洲黑人精品在线| 亚洲人成网站高清观看| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 91在线观看av| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 好男人电影高清在线观看| 国产精品爽爽va在线观看网站 | 成人av一区二区三区在线看| 琪琪午夜伦伦电影理论片6080| 无人区码免费观看不卡| 国产精品乱码一区二三区的特点| 婷婷六月久久综合丁香| 国产欧美日韩一区二区精品| 国产亚洲精品av在线| 日本五十路高清| 香蕉丝袜av| 亚洲欧美精品综合久久99| 欧美激情久久久久久爽电影| 亚洲久久久国产精品| 国产欧美日韩一区二区精品| 热re99久久国产66热| 亚洲美女黄片视频| 国产精品 国内视频| 国产av一区在线观看免费| 少妇 在线观看| 91麻豆精品激情在线观看国产| 一本久久中文字幕| 窝窝影院91人妻| 97碰自拍视频| 99国产精品一区二区蜜桃av| 国产精品一区二区免费欧美| 18禁观看日本| 欧美成人性av电影在线观看| 九色国产91popny在线| 欧美一区二区精品小视频在线| 久久久久久久午夜电影| 国产激情久久老熟女| 一级a爱视频在线免费观看| 俄罗斯特黄特色一大片| 国产色视频综合| 国产1区2区3区精品| 国产精品影院久久| 满18在线观看网站| 国产99久久九九免费精品| 国产精品影院久久| 1024视频免费在线观看| 久久青草综合色| 欧美+亚洲+日韩+国产| 欧美激情高清一区二区三区| svipshipincom国产片| 国产一级毛片七仙女欲春2 | 国产精品亚洲一级av第二区| 国产三级黄色录像| 亚洲精品国产一区二区精华液| 久久香蕉精品热| 长腿黑丝高跟| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 久久久久久国产a免费观看| 国产视频内射| 精品一区二区三区视频在线观看免费| 黄色视频,在线免费观看| 99久久综合精品五月天人人| 999久久久精品免费观看国产| 欧美激情极品国产一区二区三区| 美女扒开内裤让男人捅视频| 999精品在线视频| 国产精品爽爽va在线观看网站 | 午夜免费成人在线视频| 精品久久久久久久末码| 久久精品国产综合久久久| 亚洲真实伦在线观看| 亚洲一码二码三码区别大吗| 高潮久久久久久久久久久不卡| 久久精品人妻少妇| 久久精品成人免费网站| 午夜日韩欧美国产| 丰满的人妻完整版| 免费在线观看成人毛片| 亚洲精品一卡2卡三卡4卡5卡| 十八禁网站免费在线| 老司机午夜十八禁免费视频| 久久久久国产精品人妻aⅴ院| 丰满的人妻完整版| 最新在线观看一区二区三区| 亚洲三区欧美一区| 成人免费观看视频高清| 国产精品永久免费网站| 国产亚洲精品第一综合不卡| 色精品久久人妻99蜜桃| 国产亚洲精品av在线| 国产高清激情床上av| 午夜精品在线福利| www日本在线高清视频| 国产蜜桃级精品一区二区三区| 国产av又大| 免费在线观看视频国产中文字幕亚洲| 中文字幕人妻丝袜一区二区| 亚洲精品国产一区二区精华液| 国产99白浆流出| 亚洲狠狠婷婷综合久久图片| 淫妇啪啪啪对白视频| 婷婷精品国产亚洲av在线| 69av精品久久久久久| 两个人看的免费小视频| 久久欧美精品欧美久久欧美| 人成视频在线观看免费观看| 日日爽夜夜爽网站| 色综合亚洲欧美另类图片| 操出白浆在线播放| 侵犯人妻中文字幕一二三四区| 19禁男女啪啪无遮挡网站| 精品午夜福利视频在线观看一区| 一进一出抽搐gif免费好疼| 制服丝袜大香蕉在线| 久久午夜综合久久蜜桃| 成人三级黄色视频| 操出白浆在线播放| 日本成人三级电影网站| 精品国产乱码久久久久久男人| 最新美女视频免费是黄的| 韩国精品一区二区三区| 麻豆av在线久日| 99国产精品99久久久久| 国产精品免费一区二区三区在线| 亚洲av电影不卡..在线观看| 最好的美女福利视频网| 后天国语完整版免费观看| 搞女人的毛片| www.www免费av| 国产1区2区3区精品| 日本 av在线| 午夜精品久久久久久毛片777| 国产亚洲精品一区二区www| 黄片小视频在线播放| 日韩一卡2卡3卡4卡2021年| 国产精品99久久99久久久不卡| 免费高清视频大片| 国内久久婷婷六月综合欲色啪| www.自偷自拍.com| 男人操女人黄网站| 国产熟女xx| 一进一出好大好爽视频| 人妻久久中文字幕网| 亚洲国产高清在线一区二区三 | 国产成人精品久久二区二区免费| 亚洲第一青青草原| 国产v大片淫在线免费观看| 一区二区三区高清视频在线| 久久久久国内视频| 少妇熟女aⅴ在线视频| 哪里可以看免费的av片| 级片在线观看| 亚洲精品久久成人aⅴ小说| 热99re8久久精品国产| 白带黄色成豆腐渣| 久久久水蜜桃国产精品网| 成人三级做爰电影| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 欧美国产精品va在线观看不卡| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 久久久久亚洲av毛片大全| 午夜福利视频1000在线观看| 亚洲专区国产一区二区| 51午夜福利影视在线观看| 国产成人av激情在线播放| 亚洲第一av免费看| aaaaa片日本免费| 国产精品亚洲一级av第二区| 免费搜索国产男女视频| 国产精品亚洲美女久久久| 久久精品影院6| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看| 久久九九热精品免费| 老司机深夜福利视频在线观看| 99热只有精品国产| 午夜成年电影在线免费观看| 欧美在线黄色| 成年免费大片在线观看| 麻豆久久精品国产亚洲av| 人成视频在线观看免费观看| 天天一区二区日本电影三级| 精品国产乱码久久久久久男人| 久久青草综合色| 国产免费av片在线观看野外av| 非洲黑人性xxxx精品又粗又长| 熟女电影av网| 亚洲精华国产精华精| 国产伦一二天堂av在线观看| 久久久精品欧美日韩精品| 国产又黄又爽又无遮挡在线| 日本 av在线| 十分钟在线观看高清视频www| 亚洲精品国产区一区二| 丝袜人妻中文字幕| 亚洲一区中文字幕在线| 国产精品精品国产色婷婷| 精品一区二区三区av网在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品永久免费网站| avwww免费| 欧美丝袜亚洲另类 | 亚洲五月色婷婷综合| 欧美日韩乱码在线| 国产亚洲精品av在线| 变态另类丝袜制服| 黄色a级毛片大全视频| 久久精品国产亚洲av香蕉五月| 成年免费大片在线观看| 亚洲精品一区av在线观看| 别揉我奶头~嗯~啊~动态视频| av免费在线观看网站| 久久人妻福利社区极品人妻图片| 人人妻人人看人人澡| 精品一区二区三区视频在线观看免费| 最近最新中文字幕大全免费视频| 色播在线永久视频| 久久香蕉国产精品| 久久 成人 亚洲| 国产精品免费一区二区三区在线| 欧美大码av| 国产真人三级小视频在线观看| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 日韩大码丰满熟妇| 少妇 在线观看| 满18在线观看网站| 亚洲一区中文字幕在线| av视频在线观看入口| 欧美日本视频| 国产精品av久久久久免费| 精品久久久久久久人妻蜜臀av| 国产精品一区二区三区四区久久 | 天天躁狠狠躁夜夜躁狠狠躁| 国产国语露脸激情在线看| 老汉色∧v一级毛片| 国产成人影院久久av| 国产精品一区二区精品视频观看| 午夜亚洲福利在线播放| 欧美乱色亚洲激情| 国内毛片毛片毛片毛片毛片| 亚洲国产日韩欧美精品在线观看 | 欧美国产精品va在线观看不卡| 俄罗斯特黄特色一大片| 成人永久免费在线观看视频| av在线天堂中文字幕| 亚洲中文日韩欧美视频| 欧美日韩中文字幕国产精品一区二区三区| 男男h啪啪无遮挡| 亚洲精品美女久久久久99蜜臀| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 淫妇啪啪啪对白视频| 亚洲,欧美精品.| 色尼玛亚洲综合影院| 美女午夜性视频免费| 国产97色在线日韩免费| 男女午夜视频在线观看| 国产单亲对白刺激| 精品国产一区二区三区四区第35| 欧美成人免费av一区二区三区| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 成人三级黄色视频| 午夜福利成人在线免费观看| 美女免费视频网站| 十分钟在线观看高清视频www| 国产男靠女视频免费网站| 亚洲人成伊人成综合网2020| 国产精品影院久久| 国产精品亚洲av一区麻豆| 国产三级在线视频| 亚洲第一欧美日韩一区二区三区| av在线播放免费不卡| 老司机午夜福利在线观看视频| 亚洲成人精品中文字幕电影| 亚洲成国产人片在线观看| 亚洲真实伦在线观看| 国产日本99.免费观看| av天堂在线播放| 黄色片一级片一级黄色片| 少妇粗大呻吟视频| 久久这里只有精品19| 久久欧美精品欧美久久欧美| 十分钟在线观看高清视频www| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| 国产真人三级小视频在线观看| 国产v大片淫在线免费观看| 18禁黄网站禁片免费观看直播| 久久久久久亚洲精品国产蜜桃av| 亚洲第一av免费看| 日本三级黄在线观看| 黄色女人牲交| 国产aⅴ精品一区二区三区波| 国产免费av片在线观看野外av| 国产片内射在线| 国产91精品成人一区二区三区| www.熟女人妻精品国产| 精品久久久久久久久久免费视频| 变态另类丝袜制服| 99久久99久久久精品蜜桃| 黑丝袜美女国产一区| 国产亚洲精品综合一区在线观看 | 美女 人体艺术 gogo| 国产高清视频在线播放一区| 国产麻豆成人av免费视频| 波多野结衣高清无吗| 在线看三级毛片| 午夜影院日韩av| 欧美中文日本在线观看视频| 中文字幕人成人乱码亚洲影| 国产久久久一区二区三区| 免费av毛片视频| 久久国产精品人妻蜜桃| 黄色视频不卡| 亚洲黑人精品在线| 午夜两性在线视频| 在线观看日韩欧美| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看成人毛片| 美女免费视频网站| 亚洲欧洲精品一区二区精品久久久| 国产私拍福利视频在线观看| 精品第一国产精品| 国产亚洲精品久久久久久毛片| 黄片大片在线免费观看| 国产精品综合久久久久久久免费| 亚洲成a人片在线一区二区| 午夜影院日韩av| 91麻豆av在线| 男女做爰动态图高潮gif福利片| 中文字幕最新亚洲高清| 黄色视频不卡| 国产伦在线观看视频一区| 天天添夜夜摸| 国产免费男女视频| 国产精品久久视频播放| 国产成人欧美| 夜夜夜夜夜久久久久| 国产真人三级小视频在线观看| √禁漫天堂资源中文www| 久久婷婷人人爽人人干人人爱| www.熟女人妻精品国产| АⅤ资源中文在线天堂| 91九色精品人成在线观看| 两个人视频免费观看高清| 亚洲午夜精品一区,二区,三区| 视频在线观看一区二区三区| 黄片播放在线免费| 午夜免费观看网址| 欧美一级a爱片免费观看看 | 99久久国产精品久久久| 一级a爱片免费观看的视频| 可以免费在线观看a视频的电影网站| 99re在线观看精品视频| 国产又黄又爽又无遮挡在线| 琪琪午夜伦伦电影理论片6080| 美国免费a级毛片| 国内毛片毛片毛片毛片毛片| 亚洲专区国产一区二区| 在线观看日韩欧美| 欧美av亚洲av综合av国产av| 精品久久久久久久久久久久久 | 正在播放国产对白刺激| 亚洲av成人av| 国产伦一二天堂av在线观看| 午夜福利在线观看吧| 色哟哟哟哟哟哟| 一级作爱视频免费观看| 日韩成人在线观看一区二区三区| 性欧美人与动物交配| 久久精品国产亚洲av香蕉五月| 91老司机精品| 淫秽高清视频在线观看| 手机成人av网站| 这个男人来自地球电影免费观看| 999久久久国产精品视频| 女人被狂操c到高潮| 两个人免费观看高清视频| 中文字幕最新亚洲高清| 久久久久久大精品| 手机成人av网站| 久久九九热精品免费| 久久欧美精品欧美久久欧美| 亚洲精品国产一区二区精华液| 免费在线观看完整版高清| 丁香六月欧美| 国产成人精品久久二区二区91| 亚洲国产高清在线一区二区三 | 亚洲精品中文字幕在线视频| 非洲黑人性xxxx精品又粗又长| 精华霜和精华液先用哪个| www.熟女人妻精品国产| 女性生殖器流出的白浆| 成人国产综合亚洲| 国产色视频综合| 婷婷精品国产亚洲av在线| 美女扒开内裤让男人捅视频| 久久精品影院6| 一本大道久久a久久精品| 国产精品 国内视频| 悠悠久久av| 久久久国产成人精品二区| 国产又色又爽无遮挡免费看| 一级毛片女人18水好多| 黄色视频,在线免费观看| 国产精品一区二区精品视频观看| 在线观看免费午夜福利视频| 亚洲国产看品久久| 精品一区二区三区av网在线观看| 国产精品av久久久久免费| 亚洲专区国产一区二区| 国产成人av教育| 日韩精品免费视频一区二区三区| 国产在线精品亚洲第一网站| 精品国产乱码久久久久久男人| 精品不卡国产一区二区三区| 非洲黑人性xxxx精品又粗又长| 一区福利在线观看| 免费在线观看日本一区| 国产高清有码在线观看视频 | 欧美+亚洲+日韩+国产| 校园春色视频在线观看| 国产av不卡久久| 不卡av一区二区三区| 18禁裸乳无遮挡免费网站照片 | 亚洲成av人片免费观看| 国产男靠女视频免费网站| 亚洲第一电影网av| 一个人免费在线观看的高清视频| 国产精品免费视频内射| 99久久国产精品久久久| 国产免费av片在线观看野外av| 国产激情偷乱视频一区二区| av视频在线观看入口| 色哟哟哟哟哟哟| 精品久久蜜臀av无| 亚洲熟妇中文字幕五十中出| 天天一区二区日本电影三级| 欧美乱妇无乱码| 欧美av亚洲av综合av国产av| 国产成人av激情在线播放| 免费女性裸体啪啪无遮挡网站| 一边摸一边做爽爽视频免费| 桃色一区二区三区在线观看| 欧美黄色片欧美黄色片| 美国免费a级毛片| 午夜福利视频1000在线观看| 人人妻人人澡欧美一区二区| 观看免费一级毛片| 制服丝袜大香蕉在线| 久久久久久免费高清国产稀缺| 国产视频内射| 91麻豆精品激情在线观看国产| 久久精品国产综合久久久| 18禁裸乳无遮挡免费网站照片 | 免费在线观看黄色视频的| 午夜福利18| 观看免费一级毛片| 国产伦人伦偷精品视频| 国产午夜福利久久久久久| 国产单亲对白刺激| 天堂√8在线中文| 亚洲最大成人中文| 欧美日韩一级在线毛片| 日韩欧美一区视频在线观看| 亚洲av中文字字幕乱码综合 | 大型黄色视频在线免费观看| 国产激情久久老熟女| 久久久久久久午夜电影| 少妇 在线观看| 97超级碰碰碰精品色视频在线观看| 色综合亚洲欧美另类图片| 91九色精品人成在线观看| 青草久久国产| 成人三级黄色视频| 窝窝影院91人妻| 最近最新免费中文字幕在线| 精品人妻1区二区| 男女那种视频在线观看| 免费女性裸体啪啪无遮挡网站| 国产成人欧美| www.精华液| 久久精品影院6| 国产乱人伦免费视频| 国产麻豆成人av免费视频| 国产精品久久久久久精品电影 | 午夜福利在线观看吧| 人人妻人人澡欧美一区二区| 黄色a级毛片大全视频| 亚洲aⅴ乱码一区二区在线播放 | 黄色视频,在线免费观看| 精品国产亚洲在线| 亚洲av电影不卡..在线观看| 91成年电影在线观看| 精品少妇一区二区三区视频日本电影| 日韩一卡2卡3卡4卡2021年| 亚洲av美国av| 欧美性长视频在线观看| 久久香蕉激情| 久久亚洲精品不卡| 亚洲av成人一区二区三| 亚洲成av人片免费观看| 欧美在线黄色| 人人澡人人妻人| 日韩av在线大香蕉| 婷婷精品国产亚洲av在线| 亚洲在线自拍视频| av视频在线观看入口| 日韩精品青青久久久久久| 日韩欧美国产在线观看| 香蕉丝袜av| 久久久久久人人人人人| 中文字幕最新亚洲高清| 亚洲七黄色美女视频| 国产精品综合久久久久久久免费| 在线播放国产精品三级| 一夜夜www| 自线自在国产av| 制服人妻中文乱码| 搡老妇女老女人老熟妇| 久久精品人妻少妇| 久久久久久久久免费视频了| 夜夜爽天天搞| 亚洲精品一区av在线观看| 脱女人内裤的视频| 日本 欧美在线| 欧美av亚洲av综合av国产av| 精品久久久久久久人妻蜜臀av|