來少平 吳曉涵 朱立剛
(1.同濟大學結構工程與防災研究所,上海200092;2.奧雅納工程咨詢(上海)有限公司,上海200031)
隨著高層建筑高度的不斷增加,結構體型和結構體系的不斷變化,結構工程師對整個結構的分析需要更加的精細與全面。因此精細化分析已經(jīng)成為了今后結構數(shù)值分析發(fā)展的一個趨勢,但目前的計算機處理能力卻使得這一趨勢的發(fā)展遇到了瓶頸,而多尺度正是在精細化分析要求與計算機處理能力兩者權衡下的一種新型簡化計算方法。
建筑結構的多尺度分析需要解決兩大主要問題,第一個問題也是影響工程應用效率的關鍵問題,即建模速度與計算速度;第二個問題是多尺度計算的核心問題,即如何保證不同尺度模型之間界面連接的科學合理。下面將針對這兩個問題來闡述本文所采取的方法。
本文提出的多尺度計算流程見圖1。
圖1 多尺度計算流程Fig.1 Multi-scale calculation process
隨著建筑功能與美觀等方面要求的不斷提高,建筑結構形態(tài)日趨復雜,結構設計難度的增大導致傳統(tǒng)的一些簡化分析手段已難以滿足復雜結構的設計要求。因此需要通過非線性動力時程分析來了解結構在地震作用下的響應,從而驗證結構設計和構件設計的合理性。計算機技術的發(fā)展也使得這種分析成為可能,但是傳統(tǒng)的結構分析設計軟件無法進行高效準確的非線性動力時程分析,因此不同軟件之間的模型轉換技術也就應運4
下面通過一個實際工程[5]對上述多尺度計算流程與計算方法進行應用。
該工程項目由于建筑需要,底部4層以下為圓形鋼管混凝土柱,截面為φ2 800 mm×70 mm,其上為方鋼管混凝土柱2 400 mm×2 400 mm×66 mm。該區(qū)域鋼管選用鋼材Q345GJC,內部混凝土等級為C80。原方案想把方鋼管插入圓鋼管柱,但這樣勢必會使圓鋼管柱截面做得很大,直徑由2 800 mm增大為3 400 mm,既不經(jīng)濟,傳力也不直接,因此采用了圓形到方形自然過渡。為確保傳力可靠安全,需進行節(jié)點有限元分析。而生。本文采用 NosaCAD[1]進行整體結構宏觀模型的轉換,轉換完成后可在NosaCAD中進行彈塑性屬性賦值,并進行整體宏觀模型的非線性動力時程分析。
根據(jù)整體宏觀模型的分析結果,選擇需要進行多尺度分析的節(jié)點或構件,將該節(jié)點或構件進行精細化建模。由于需要分析的精細模型往往較為復雜,在傳統(tǒng)通用有限元軟件中建模困難,因此本文采用在AutoCAD中建立幾何模型,再導入HyperMesh進行網(wǎng)格劃分與屬性賦值的方法。該種精細模型建立方法發(fā)揮了AutoCAD強大的三維建模能力和HyperMesh強大的網(wǎng)格劃分能力,因此能夠有效地提高建模的效率。
本文采用的多尺度計算軟件為ABAQUS,精細模型與整體宏觀模型的拼裝過程是在ABAQUS中完成的,也可選擇在NosaCAD里完成。
本文采用的多尺度計算是基于尺度分離思想的方法[2],即根據(jù)結構或構件的復雜程度和破壞過程中的非線性程度,選擇適當尺度的分析模型,通過界面耦合方程將不同尺度的模型進行連接,從而使得不同尺度的模型能夠協(xié)同計算,這不僅能夠較好地反映結構的整體性能,而且還能對局部構件和節(jié)點的受力特性與破壞過程有更加直觀的反映。清華大學石永久等已經(jīng)對ABAQUS中的多尺度界面連接方法進行了理論分析與國內外試驗數(shù)據(jù)的對比,驗證了該種連接方式的合理性與科學性[3-4]。
ABAQUS中的多尺度界面連接方法是利用Interaction中的Coupling功能將梁單元與實體單元進行連接,該功能的物理意義是保證節(jié)點與連接界面之間轉動以及橫向剪切位移協(xié)調,界面間轉動自由度的傳遞按照平截面假定。
圖2 有限元模型Fig.2 Finite element model of joint connections
傳統(tǒng)的節(jié)點有限元分析不能很好地反映節(jié)點在地震作用下的響應與內部損傷情況,而多尺度動力分析正好彌補了該點不足。因此本節(jié)將針對該圓變方節(jié)點(天方地圓節(jié)點)進行多尺度動力時程分析,以反映節(jié)點在動力作用下的響應與內部損傷,為設計提供判斷依據(jù)。
在ABAQUS中,鋼管與加勁肋采用S4單元,材料選用二折線模型,屈服后彈模取為初始彈模的1%;混凝土采用C3D8I單元,材料選用ABAQUS自帶的塑性損傷混凝土模型;桿單元采用B31單元,纖維模型[6];剪力墻與樓板采用S4R單元。鋼材與混凝土之間的連接方式采用共節(jié)點的形式,實體模型的網(wǎng)格劃分見圖2。地震波輸入采用震泰人工波。主方向X向加速度最大峰值取2 200 mm/s2。計算采用顯式動力分析,多尺度模型計算時間僅比宏觀模型稍有增加,增幅不到5%。
桿件編號示意圖見圖3,天方地圓節(jié)點混凝土損傷和鋼管、加勁肋Von Mises應力見圖4—圖7。C80混凝土單軸損傷因子與應變的關系見圖8。
圖3 桿件編號示意Fig.3 Members label
圖4 混凝土受壓損傷Fig.4 Compression damage of concrete
圖5 混凝土受拉損傷Fig.5 Tension damage of concrete
從圖中可以看出在地震作用下,混凝土和鋼材均受到不同程度的損傷,與外部鋼管相接的混凝土受壓損傷因子已經(jīng)超過0.6,但內部核心區(qū)混凝土受壓損傷較小,處于0.5以下;混凝土受拉損傷相對較大,與外鋼管和縱向加勁肋相連的部分受拉損傷因子達到0.8~0.9,但其他部分均處于0.6以下;實體節(jié)點與桿單元連接處受拉損傷局部達到了1.4,這與實際受力狀態(tài)不符,其產(chǎn)生的主要原因是本文所采取的界面連接方式在界面連接處強制各節(jié)點滿足平截面假定與橫向剪切位移協(xié)調,且界面上各點受到的剪力相同。
圖6 鋼管Von Mises應力Fig.6 Von mises diagram of steel tube
圖7 加勁肋Von Mises應力Fig.7 Von mises diagram of steel stiffener
圖8 C80混凝土單軸損傷因子與應變的關系Fig.8 Relationship between uniaxial damage factor and strain for C80 concrete
鋼管混凝土外部鋼管最大Von Mises應力發(fā)生在水平加強環(huán)連接處和矩形鋼管截面的四個角部,少部分鋼管已經(jīng)入塑性;內部加勁肋中水平加勁肋的應力較大,幾乎所有內環(huán)鋼材都已屈服。
從圖中還可以看出水平加強環(huán)對混凝土起到了很好的約束作用,在水平加強環(huán)周圍的混凝土受壓與受拉損傷因子均比周邊混凝土要小,但水平加強環(huán)自身受力較大,內部鋼材出現(xiàn)屈服;圓變方鋼管混凝土節(jié)點的方形部分混凝土損傷較圓形部分嚴重,其主要原因是圓變方節(jié)點由較大的圓形截面過渡到方形截面,方形截面處的軸壓比圓形截面處大,且方鋼管對混凝土的橫向約束作用也沒有圓鋼管好。
由圖9可以看出,多尺度模型柱1頂X向位移響應在幅值較小時與宏觀模型基本吻合,在幅值較大時出現(xiàn)一定程度的偏差,引起該偏差的主要原因是多尺度模型中對桿件1采用實體單元模擬與宏觀模型中采用桿單元模擬在剛度、質量與彈塑性等表現(xiàn)上存在一定的差異,以及本文所采用的界面連接方法的影響。
圖9 柱1頂X向位移響應Fig.9 Displacement X at the top of column 1
根據(jù)圖10和圖11可以發(fā)現(xiàn),多尺度計算時,與精細化節(jié)點直接相連的桿件其內力與宏觀模型對應位置處的桿件內力存在一定的偏差,但整體幅值偏差不大;而與精細化節(jié)點相鄰的桿件其內力與宏觀模型對應位置處的桿件內力相對較為吻合,這說明與精細化節(jié)點相距一定距離后,由精細化與界面連接所導致的模型間的差異對整體計算影響較小。
圖6和圖7中應力云圖有不均勻斑狀分布,產(chǎn)生該斑狀分布的主要原因是本文采用顯示分析,為了提高計算速度,使用了Mass Scaling的方式,這使得程序會在剛度較大的地方略微放大質量,但這種質量放大會使得該處動力響應增大,形成不均勻斑狀分布。這是該種多尺度計算方法的不足之處,有待進一步完善。
圖10 柱1頂彎矩響應Fig.10 Moment response at the top of column 1
圖11 柱7頂彎矩響應Fig.11 Moment response at the top of column 7
(1)在ABAQUS中應用多尺度計算并不顯著增加計算資源與時間,多尺度模型計算時間僅比宏觀模型稍有增加,增幅不到5%。
(2)多尺度節(jié)點計算結果表明該圓變方節(jié)點在罕遇地震作用下混凝土與外鋼管僅局部損傷相對較重,但整體完好;內部水平加強環(huán)能夠對混凝土起到很好的約束作用,但所受內力較大,部分鋼材已屈服。
(3)與宏觀整體模型計算結果相比,多尺度計算對精細化節(jié)點相鄰結點的位移時程和相鄰桿件的內力最大值影響較小,但對相鄰桿件的內力時程存在一定影響。
(4)多尺度計算不僅可以反映結構的整體性能,同時還能詳細地揭示節(jié)點在地震作用下的性能與破壞機理,為工程設計人員提供更多設計依據(jù)。
(5)地震作用下,特殊的構件或節(jié)點區(qū)域受力變形過程復雜,而將復雜受力區(qū)域分離出來進行試驗,因其動態(tài)邊界條件復雜,導致試驗加載與實際情況存在差異。多尺度模型可將構件邊界的動態(tài)變化過程直接反映在模型中,從而更有效地揭示復雜構件的工作機理。
[1] 吳曉涵.NosaCAD與 ABAQUS和PERFORM-3D彈塑性模型轉換及分析應用[J].建筑結構,2012,42(增刊):207-212.Wu Xiaohan.The model transformation from NosaCAD to ABAQUS and PERFORM-3D and nonlinear structure analysis by these softwares[J].Building Structure,2012,42(s):207-212(in Chinese)
[2] 陸新征,林旭川,葉烈平,等.多尺度有限元建模方法及其應用[J].華中科技大學學報(城市科學版),2008,25(4):76-80 Lu Xinzheng,Lin Xuchuan,Ye Lieping,et al.Multiscale finite element modeling and its application in structural analysis[J].Huazhang University of Science and Technology(Urban Science Edition),2008,25(4):76-80.(in Chinese)
[3] 石永久,王萌,王元清,等.基于多尺度模型的鋼框架抗震性能分析[J].工程力學,2011,28(12):20-26.Shi Yongjiu,Wang Meng,Wang Yuanqing,et al.Seismic behavior analysis of steel frame by multi-scale calculation method[J].Engineering Mechanics,2011,28(12):20-26.(in Chinese)
[4] 來少平,吳曉涵.基于多尺度模型的鋼節(jié)點抗震性能分析[J].結構工程師,2014,30(2):62-67.Lai Shaoping,Wu Xiaohan.Seismic behavior analysis of steel joint connection by multi-scale calculation method[J].Structural Engineers,2014,30(2):62-67(in Chinese)
[5] 朱立剛,盧玲.重慶“嘉陵帆影”二期超高層塔樓結構設計挑戰(zhàn)[J].建筑結構,2012,42(10):33-40.Zhu Ligang,Lu Ling.Structural design challenge of super high-rise tower building CQ TP2[J].Building Structure,2012,42(10):33-40.(in Chinese)
[6] 呂西林,金國芳,吳曉涵,等.鋼筋混凝土結構非線性有限元理論與應用[M].上海:同濟大學出版社,2002.Lu Xilin,Jin Guofang,Wu Xiaohan,et al.Theory and application of nonlinear finite element of reinforced concrete structure[M].Shanghai:Tongji University Press,2002.(in Chinese)