龍仙萍,鄭小宇,王冬梅,許官學(xué),趙然尊,石蓓
降鈣素基因相關(guān)肽調(diào)節(jié)核轉(zhuǎn)錄因子-κB信號轉(zhuǎn)導(dǎo)對缺氧c-kit+心臟干細(xì)胞凋亡的影響
龍仙萍,鄭小宇,王冬梅,許官學(xué),趙然尊,石蓓
目的探討降鈣素基因相關(guān)肽(CGRP)對缺氧環(huán)境下c-kit+心臟干細(xì)胞凋亡的影響。方法體外建立c-kit+心臟干細(xì)胞缺血缺氧模型,實驗分為缺氧+CGRP組,缺氧+CGRP8-37(CGRP拮抗劑)組,細(xì)胞缺氧對照組,常氧細(xì)胞組,缺氧+BAY11-7082[核轉(zhuǎn)錄因子-κB(NF-κB)抑制劑]組。采用免疫熒光檢測細(xì)胞缺氧后NF-κB轉(zhuǎn)位情況;采用Western blotting檢測NF-κB通道蛋白的表達(dá),同樣方法檢測CGRP干預(yù)后NF-κB轉(zhuǎn)位及通道蛋白表達(dá)。同時用流式細(xì)胞儀檢測CGRP干預(yù)后細(xì)胞凋亡率。結(jié)果在缺氧狀態(tài)下,NF-κB信號通路被激活,NF-κBP65發(fā)生核轉(zhuǎn)位(呈現(xiàn)紅色熒光)。與細(xì)胞缺氧對照組比較,缺氧+CGRP組NF-κB相關(guān)信號蛋白P-I-κB、NF-κBP65及NF-κBP50表達(dá)減少(P<0.05);與缺氧+CGRP組比較,CGRP+CGRP8-37組上述NF-κB相關(guān)信號蛋白表達(dá)增加(P<0.05)。在細(xì)胞凋亡方面,與缺氧對照組比較,缺氧+CGRP組早、晚期細(xì)胞凋亡率均降低(P<0.05);與缺氧+CGRP組比較,缺氧+CGRP8-37組細(xì)胞早期凋亡增加(P<0.05)。結(jié)論CGRP在調(diào)節(jié)NF-κB信號的同時抑制了缺氧環(huán)境下c-kit+心臟干細(xì)胞的凋亡。
降鈣素基因相關(guān)肽;NF-κB;缺氧;c-kit+心臟干細(xì)胞;細(xì)胞凋亡
細(xì)胞療法是目前治療缺血性心肌病的重要手段之一[1],以往研究主要集中在骨髓間充質(zhì)干細(xì)胞(BMSCs)作為細(xì)胞移植的種子細(xì)胞[2-3]。本課題組以往研究顯示,BMSCs移植在一定程度上能改善心肌梗死后心臟功能,并可減少血管成形術(shù)后再狹窄的發(fā)生[4]。心臟干細(xì)胞(CSCs)具有組織特異性和專一性,可分化為心肌細(xì)胞、平滑肌細(xì)胞和內(nèi)皮細(xì)胞。目前多項研究已證實,與BMSCs相比,CSCs具有更強的心肌修復(fù)作用[5]。然而無論何種細(xì)胞作為細(xì)胞療法的種子細(xì)胞,皆受困于心肌梗死后局部惡劣的微環(huán)境使移植細(xì)胞存活數(shù)量極少[6-8]。目前,人們正尋求各種方法來增加移植細(xì)胞的存活力。本課題組前期研究顯示,降鈣素基因相關(guān)肽(calcitonin gene related peptide,CGRP)干預(yù)BMSCs后,在體外觀察到CGRP抑制核轉(zhuǎn)錄因子-κB(NF-κB)轉(zhuǎn)錄,增強缺氧狀態(tài)下BMSCs的存活,并且BMSCs的增殖分化不受影響[9]。針對是否CGRP對缺氧狀態(tài)下CSCs也具有同樣的保護作用,本實驗建立體外細(xì)胞缺血缺氧模型,觀察CGRP對缺氧狀態(tài)下c-kit+CSCs凋亡的影響,并觀察抑制NF-κB信號轉(zhuǎn)導(dǎo)對上述CGRP 在c-kit+CSCs凋亡中的作用,以期能為心臟干細(xì)胞有效治療心肌梗死提供實驗依據(jù)。
1.1 材料 隨機選擇清潔級4~6周齡小鼠,雌雄不限,購自第三軍醫(yī)大學(xué)實驗動物中心。大鼠/小鼠CGRP多肽(Phoenix Pha Rmaceuticals,美國),大鼠/小鼠CGRP8-37多肽(Phoenix Pharmaceuti Cals,美國),兔抗小鼠NF-κBP50抗體(博士德公司),兔抗小鼠NF-κBP65抗體(Santa Cruz公司),兔抗小鼠IκB-a(Phospho-Ser32/Ser36),兔抗小鼠IκB-a抗體、NF-κB激活-核轉(zhuǎn)運檢測試劑盒、BAY11-7082(NF-κB抑制劑)(碧云天公司)。
1.2 方法
1.2.1 小鼠c-kit+CSCs的獲取 無菌下處死4~6周齡小鼠,分離小鼠雙側(cè)心耳,剪碎成大小為1mm3的組織塊后置于15ml離心管中,加入0.1% Ⅱ型膠原酶,于37℃恒溫水浴鍋中邊搖晃邊消化約1h;1200r/min離心5min,棄上清。Ham's/F-12完全培養(yǎng)基重懸并分裝于細(xì)胞培養(yǎng)瓶內(nèi),37℃、5%CO2孵箱中孵育。待細(xì)胞鋪滿瓶底至80%~90%時,棄培養(yǎng)基,加入0.05%胰蛋白酶消化分離貼壁細(xì)胞,1200r/min離心5min,棄上清。1%BSA封閉,含1%FBS的Ham's/F-12培養(yǎng)基5ml(不含雙抗)重懸細(xì)胞,加入兔抗小鼠c-kit抗體(1:250),垂直混合儀上4℃旋轉(zhuǎn)孵育1h;1200r/min離心5min,棄上清,Ham's/F-12培養(yǎng)基3ml重懸細(xì)胞,加入羊抗兔二抗包被磁珠(1:150),再次置于垂直混合儀上,4℃孵育0.5h。孵育完后置于DYNAL磁力架上,移液槍輕輕吸除管中液體(不可觸碰管壁一側(cè)附著的棕褐色磁珠),培養(yǎng)基重懸細(xì)胞,于37℃、5%CO2孵箱中孵育,每隔2d全量換液一次。待c-kit+CSCs鋪滿瓶底至80%~90%時,流式細(xì)胞儀檢測細(xì)胞表面抗原c-kit、CD34、CD45的表達(dá)。
1.2.2 體外CSCs缺血缺氧模型的建立 取c-kit+CSCs,并將培養(yǎng)基更換為無血清Ham's/F-12培養(yǎng)基后繼續(xù)孵育24h,使細(xì)胞達(dá)到同步化狀態(tài)。移至37℃三氣孵箱中進(jìn)行缺氧處理,孵箱內(nèi)3種氣體比例分別為N2 94%、CO25%、O21%,缺氧12h進(jìn)行后繼實驗。
1.2.3 免疫熒光檢測NF-κB信號通路核轉(zhuǎn)位情況 實驗分為5個組,分別是缺氧+CGRP組、缺氧+CGRP8-37(CGRP拮抗劑)組、缺氧+BAY11-7082(NF-κB抑制劑)組、細(xì)胞缺氧對照組、常氧細(xì)胞組。參考前期課題組方法[4],收集不同干預(yù)組細(xì)胞標(biāo)本后,固定洗滌細(xì)胞,然后加入封閉液,室溫封閉1h。吸除封閉液后加NF-κBP65抗體,4℃孵育過夜。洗滌后加抗兔Cy3,室溫孵育1h,洗滌后加細(xì)胞核染色液(DAPI),室溫染色5min左右。吸除核染色液,洗滌后滴加抗熒光淬滅封片液,封片后熒光顯微鏡下觀察。
1.2.4 Western blotting檢測NF-κB及相關(guān)信號蛋白表達(dá) 實驗分為5個組,分別是缺氧+CGRP組、缺氧+CGRP8-37(CGRP拮抗劑)組、缺氧+BAY11-7082(NF-κB抑制劑)組、細(xì)胞缺氧對照組、常氧細(xì)胞組。參考前期課題組方法[4],分別收集各組蛋白樣品進(jìn)行SDS-PAGE凝膠電泳、轉(zhuǎn)膜及封閉后,分別加入兔抗小鼠IκB-a抗體(1:200)、兔抗小鼠IκB-a(Phospho-Ser32/Ser36)抗體(1:500)、兔抗小鼠NF-κBP50抗體(1:200)、兔抗小鼠NF-κBP65抗體(1:200)、兔抗小鼠β-actin抗體(1:400)、兔抗小鼠GAPDH抗體(1:200)4℃孵育過夜,加入HRP標(biāo)記山羊抗兔IgG二抗,室溫孵育1h后顯影。采用Biorad GelDoc XR成像系統(tǒng)對目的蛋白進(jìn)行定性及定量分析。
1.2.5 流式細(xì)胞儀檢測細(xì)胞凋亡 實驗分為4個組,分別是缺氧+CGRP組、缺氧+CGRP8-37(CGRP拮抗劑)組、細(xì)胞缺氧對照組、常氧細(xì)胞組。收集各干預(yù)組細(xì)胞,加入Ham's/F-12完全培養(yǎng)基重懸細(xì)胞,取1×105個重懸細(xì)胞,1200r/min離心5min,棄上清,加入195μl Annexin V-FITC結(jié)合液+5μl Annexin V-FITC混勻并重懸細(xì)胞。室溫(20~25℃)避光孵育10min,1200r/min離心5min,棄上清,加入190μl Annexin V-FITC結(jié)合液+10μ碘化丙啶(PI)染色液混勻并重懸細(xì)胞,冰浴避光放置。另設(shè)3管對照,分別為空白細(xì)胞管、僅加5μl Annexin V-FITC管及僅加10μl PI管。上機前向各管中再加入300μl Annexin V-FITC結(jié)合液,槍頭輕輕吹打混勻,進(jìn)行流式細(xì)胞儀檢測。
1.3 統(tǒng)計學(xué)處理 采用SPSS 19.0軟件進(jìn)行統(tǒng)計分析。計量資料以表示,組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用SNK-q檢驗。P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 c-kit+CSCs的分離、培養(yǎng)及鑒定 原代CSCs貼壁生長12d后,倒置顯微鏡下可見細(xì)胞形態(tài)一致,呈長梭狀或多角形,分布不均勻(圖1A)。待原代細(xì)胞基本鋪滿細(xì)胞瓶底時,行免疫磁珠分選法分選出c-kit+CSCs繼續(xù)培養(yǎng),細(xì)胞生長約6d時,高倍顯微鏡下可見細(xì)胞體積與未分選前相比稍有增大,周圍附有數(shù)個半透明折光度強的圓形小磁珠(圖1B)。行FACS鑒定示c-kit+CSCs表面抗原的表達(dá)為c-kit陽性,而CD34、CD45為陰性。
2.2 Western blotting檢測c-kit+CSCs上CGRP受體表達(dá)情況 CGRP受體由受體活性修飾蛋白-1(receptor activity modifying protein-1,RAMP1)、降鈣素受體樣受體(calcitonin receptor-like receptor,CRLR)和受體組成蛋白(receptor component protein,RCP)組成。CGRP通過與細(xì)胞表面CGRP受體即RAMP1/CRLR復(fù)合物結(jié)合發(fā)揮作用。Western blotting結(jié)果顯示,c-kit+CSCs上有RAMP1、CRLR及RCP受體的表達(dá)(圖2)。
圖1 大鼠c-kit+CSCs細(xì)胞培養(yǎng)(×200)Fig.1 Cultivation of rat c-kit+CSCs (×200) A. Primary generation of CSCs cultivated for 12d; B. c-kit+CSCs after magnetic beads separation
圖2 Western blotting檢測c-kit+CSCs上CGRP受體的表達(dá)Fig.2 Expression of CGRP receptor in c-kit+CSCs (Western blotting)RAMP1. Receptor activity modifying protein-1; RCP. Receptor component protein; CRLR. Calcitonin receptor-like receptor
圖3 免疫熒光檢測CGRP對NF-κB信號通路核轉(zhuǎn)位的影響(×200)Fig.3 Effect of CGRP on the nuclear translocation of NF-κB signal pathway (Immunofluorescence ×200)
2.3 CGRP調(diào)節(jié)缺氧c-kit+CSCs中NF-κB信號通路
2.3.1 CGRP對NF-κB信號通路核轉(zhuǎn)位的影響 未被激活的NF-κB和IκB-α形成一個復(fù)合物,分布在細(xì)胞質(zhì)內(nèi),當(dāng)其被外界因素激活,IκB-α發(fā)生磷酸化后與NF-κB解離,NF-κB的亞基p65及p50進(jìn)入至細(xì)胞核內(nèi)。應(yīng)用免疫熒光法檢測細(xì)胞缺氧后NF-κB轉(zhuǎn)錄,轉(zhuǎn)錄后NF-κBP65呈紅色熒光,細(xì)胞核呈藍(lán)色熒光。免疫熒光法檢測結(jié)果顯示,常氧細(xì)胞組和缺氧+BAY11-7082組的細(xì)胞核內(nèi)幾乎無紅色熒光,而細(xì)胞缺氧對照組與缺氧+CGRP8-37組見大量紅色熒光表達(dá),缺氧+CGRP組細(xì)胞內(nèi)紅色熒光較少(圖3),表明缺氧下誘導(dǎo)NF-κB信號轉(zhuǎn)錄,CGRP對NF-κB信號通路有調(diào)控作用。
2.3.2 CGRP調(diào)節(jié)NF-κB信號通路蛋白的表達(dá)Western blotting檢測結(jié)果(圖4)顯示,細(xì)胞缺氧后12h,與常氧細(xì)胞組比較,細(xì)胞缺氧對照組P-I-κB、NF-κBP65及NF-κBP50表達(dá)增加(P<0.05),進(jìn)一步證實缺氧誘導(dǎo)NF-κB轉(zhuǎn)錄。與細(xì)胞缺氧對照組及缺氧+CGRP8-37組比較,缺氧+CGRP組P-I-κB、NF-κBP65及NF-κBP50表達(dá)降低(P<0.05),與細(xì)胞缺氧對照組比較,缺氧+CGRP8-37組上述NF-κB通道蛋白表達(dá)差異無統(tǒng)計學(xué)意義(P>0.05),然而,與缺氧+BAY11-7082組比較,缺氧+CGRP組中P-I-κB、NF-κBP65及NF-κBP50蛋白表達(dá)明顯增加(P<0.05)。
圖4 Western blotting法檢測CGRP對NF-κB信號通道蛋白的影響Fig.4 Effect of CGRP on NF-κB signal channel protein (Western blotting)(1)P<0.05 compared with normal oxygen group; (2)P<0.05 compared with hypoxia control group; (3)P<0.05 compared with hypoxia+CGRP group; (4)P<0.05 compared with hypoxia+CGRP8-37group
圖5 流式細(xì)胞儀檢測CGRP調(diào)節(jié)NF-κB信號通路后c-kit+CSCs存活的影響Fig.5 Influence of CGRP regulating NF-κB signal channel on c-kit+CSCs survival (Flow cytometry)Q1. Dead cells; Q2. Late apoptotic cells; Q3. Survived cell ; Q4. Early apoptotic cells. (1)P<0.05 compared with normal oxygen group; (2)P<0.05 compared with hypoxia control group; (3)P<0.05 compared with hypoxia+CGRP group
2.4 CGRP對c-kit+CSCs細(xì)胞凋亡的影響 流式細(xì)胞儀檢測細(xì)胞凋亡結(jié)果(圖5)顯示,與常氧細(xì)胞組比較,細(xì)胞缺氧對照組心臟干細(xì)胞早、晚期凋亡率均明顯增高(P<0.05),與細(xì)胞缺氧對照組比較,缺氧+CGRP組CSCs細(xì)胞早、晚期凋亡率明顯降低(P<0.05),且細(xì)胞存活率升高;然而CSCs缺氧并加入CGRP受體拮抗劑(CGRP8-37)后,與缺氧+ CGRP組比較,缺氧+CGRP8-37組早期細(xì)胞凋亡增加(P<0.05),晚期細(xì)胞凋亡率差異無統(tǒng)計學(xué)意義(P>0.05)。
在心臟干細(xì)胞移植治療心肌梗死的過程中,最棘手的難題則是如何提高移植細(xì)胞的存活率及分化率,以減輕心肌梗死后微環(huán)境對移植細(xì)胞的損傷,并且最大限度的發(fā)揮細(xì)胞效應(yīng)。Hong等[8]發(fā)現(xiàn)經(jīng)冠脈內(nèi)輸注CSCs至心肌梗死小鼠心臟后的5min,不足40%的CSCs存在于心臟中,而接下來的24h內(nèi),心臟中大于85%的移植CSCs丟失,細(xì)胞移植后第7天,僅有3.56%±2.03%的細(xì)胞存活,而在移植后的35d,細(xì)胞存活率下降至2.46%±0.46%。以上結(jié)果表明心肌梗死后局部缺氧、炎癥等微環(huán)境的改變對移植細(xì)胞的存活起了關(guān)鍵性作用。
NF-κB是炎癥信號激活通路,各種促炎因子和細(xì)菌產(chǎn)物均可激活NF-κB信號通路,導(dǎo)致促炎基因的轉(zhuǎn)錄調(diào)控,從而促進(jìn)炎癥進(jìn)程[10]。靜息狀態(tài)下NF-κB亞基p65通常與I-κB結(jié)合,覆蓋p50蛋白的核定位信號,以無活性的三聚體形式存在于細(xì)胞質(zhì)中。當(dāng)細(xì)胞受到炎癥、應(yīng)激及氧化劑等刺激時,I-κB磷酸化并水解,與NF-κB解離,活化的NF-κBp65和p50亞基轉(zhuǎn)位至細(xì)胞核內(nèi),啟動炎性因子及凋亡基因的轉(zhuǎn)錄[11]。其中,p65亞基主要發(fā)揮促炎、促纖維化及凋亡作用的。Gordon等[12]證實NF-κB的激活也可引起炎性因子(TNF-α、IL-6 及ICAM-1)表達(dá)增加、促凋亡基因(Fas-L、Fas、C-mys)表達(dá)上升和抑凋亡基因(Bcl-2、Bcl-XL)表達(dá)下降。Yang等[13]發(fā)現(xiàn)抑制NF-κB/I-κBα/IKK信號通路后,細(xì)胞黏附分子和組織因子的表達(dá)均減少,炎癥反應(yīng)亦減輕。由此本實驗設(shè)想,如果抑制了NF-κB信號通路,可否明顯改善移植細(xì)胞不利的炎癥微環(huán)境,從而增加移植細(xì)胞的存活率。Guan等[14]亦發(fā)現(xiàn)CGRP連接至RAMP1/CLR受體二聚體上可增加細(xì)胞cAMP水平,激活PKA,活化的PKA通過干擾I-κBα磷酸化降解來抑制NF-κB的活性,進(jìn)而促進(jìn)DNA連接抑制劑p50/p50二聚體形成。因此,CGRP 對NF-κB炎癥通路應(yīng)該是發(fā)揮抑制作用的。為了驗證CGRP能否通過直接抑制NF-κB炎癥通路發(fā)揮抑制細(xì)胞凋亡的作用。
本實驗用細(xì)胞免疫熒光法觀察NF-κBp65亞基的核轉(zhuǎn)位情況,結(jié)果顯示細(xì)胞缺氧后12h,激活NF-κB轉(zhuǎn)錄入核,當(dāng)抑制缺氧細(xì)胞中的CGRP受體后,缺氧+CGRP8-37組見大量紅色熒光表達(dá),NF-κBP65轉(zhuǎn)錄表達(dá)增加,缺氧+CGRP組細(xì)胞核紅色熒光少,NF-κBP65表達(dá)減少。用Western blotting法檢測各組中NF-κB通道蛋白P-I-κB、I-κB、NF-κBP65及NF-κBP50的表達(dá)水平,得到類似結(jié)果,即,缺氧組中,P-I-κB、NF-κBP65及NF-κBP50的表達(dá)明顯增加(P<0.05),提示缺氧狀態(tài)下,c-kit+CSCs中的NF-κB信號通路被激活。使用CGRP處理細(xì)胞后,上述蛋白的表達(dá)明顯下降,但與NF-κB抑制劑(BAY11-7082)作用的缺氧細(xì)胞比較,CGRP處理細(xì)胞后其NF-κB相關(guān)信號蛋白表達(dá)仍增加,為了進(jìn)一步證實CGRP 對NF-κB信號通路的作用,在缺氧細(xì)胞中加入CGRP受體拮抗劑后,觀察到NF-κB相關(guān)信號蛋白的表達(dá)接近于細(xì)胞缺氧對照組,以上結(jié)果表明,雖然CGRP對NF-κB通道的抑制作用較NF-κB抑制劑低,但CGRP能明顯抑制NF-κB信號轉(zhuǎn)錄。
結(jié)合以上實驗結(jié)果,可以初步認(rèn)為,在c-kit+CSCs中,CGRP能夠抑制P-I-κB、NF-κBP65和NF-κBP50的表達(dá),干擾NF-κB亞基發(fā)生核轉(zhuǎn)位,對炎癥通路NF-κB信號通路有著明確的抑制作用。那么,CGRP是否通過抑制NF-κB信號通路增加c-kit+CSCs的抗凋亡能力呢?流式細(xì)胞儀結(jié)果顯示,與常氧CSCs比較,細(xì)胞缺氧對照組細(xì)胞早、晚期凋亡率均增高。在缺氧細(xì)胞中加入CGRP干預(yù)后,與細(xì)胞缺氧對照組比較,其細(xì)胞早期和晚期凋亡率均降低,但拮抗CGRP作用后,細(xì)胞凋亡率明顯增高。本實驗初步觀察到了CGRP對細(xì)胞凋亡的作用,結(jié)合上述研究結(jié)果,CGRP能明顯抑制NF-κB信號轉(zhuǎn)錄,由此推斷CGRP可能通過調(diào)節(jié)NF-κB信號通路來調(diào)節(jié)c-kit+CSCs細(xì)胞凋亡。本課題組下一步將研究干擾NF-κB信號通道后CGRP對c-kit+CSCs細(xì)胞凋亡的影響,以期為CGRP通過調(diào)節(jié)NF-κB信號通路抑制細(xì)胞凋亡提供更有力的證據(jù)。
[1]Li ZQ, Zhang WW. Development and application of new stem cells[J]. Chin J Pract Intern Med, 2011, 31(10): 750-752. [李占全, 張薇薇. 新型干細(xì)胞的研發(fā)及應(yīng)用進(jìn)展[J]. 中國實用內(nèi)科雜志, 2011, 31(10): 750-752.]
[2]Zhao Y, Li T, Wei X,et al. Mesenchymal stem cell transplantation improves regional cardiac remodeling following ovine infarction[J]. Stem Cells Transl Med, 2012, 1(9): 685-695.
[3]Go AS, Mozaffarian D, Roger VL,et al. Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association[J]. Circulation, 2014, 129(3): 399-410.
[4]Shi B, Liu ZJ, Zhao RZ,et al. Effect of mesenchymal stem cells on heart function and restenosis of injured artery after myocardial infarction[J]. Natl Med J China, 2011, 91(32): 2269-2273. [石蓓, 劉志江, 趙然尊, 等. 骨髓間充質(zhì)干細(xì)胞移植對心肌梗死后心臟功能及損傷血管再狹窄的影響[J]. 中華醫(yī)學(xué)雜志, 2011, 91(32): 2269-2273.]
[5]Wang G, Liu YQ, Zhang XC,et al. Study on the preparation and multipotent differentiation of c-kit-positive cardiac stem cells[J]. J Logist Univ PAPF (Med Sci), 2013, 22(11): 972-975, 1054.[王剛, 劉燕青, 張新昌, 等. 大鼠c-kit陽性心臟干細(xì)胞制備及多能分化研究[J]. 武警后勤學(xué)院學(xué)報(醫(yī)學(xué)版), 2013, 22(11): 972-975, 1054.]
[6]Li QH, Guo Y,Ou QH,et al. Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models[J]. Basic Res Cardiol, 2011, 106(5): 849-864.
[7]Shintani Y, Fukushima S, Varela-Carver A,et al. Donor celltype specific paracrine effects of cell transplantation for postinfarction heart failure[J]. J Mol Cell Cardiol, 2009, 47(2): 288-295.
[8]Hong KU, Guo Y, Li QH,et al. c-kit+cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engrafment and negligible retention in the recipient heart[J]. PLoS One, 2014, 9(5): e96725.
[9]Long XP, Wang S, Zhao RZ,et al. Lentivirus-mediated calcitonin gene-related peptide transfection enhances endothelial differentiation of rat bone marrow mesenchymal stem cell[J]. Chin J Pathophysiol, 2013, 29(8): 1515-1519. [龍仙萍, 汪松,趙然尊, 等. 慢病毒介導(dǎo)的降鈣素基因相關(guān)肽轉(zhuǎn)染對大鼠骨髓間充質(zhì)干細(xì)胞內(nèi)皮分化的影響[J]. 中國病理生理雜志, 2013, 29(8): 1515-1519.]
[10] Yan ST, Li CL, Lu JM,et al. Expressions of NF-κB and downstream inflammatory factors in the kidney of insulin resistance rat[J]. Med J Chin PLA, 2014, 39(10): 782-786. [閆雙通, 李春霖, 陸菊明, 等. NF-κB及下游炎癥因子在胰島素抵抗大鼠腎臟中的表達(dá)[J]. 解放軍醫(yī)學(xué)雜志, 2014, 39(10): 782-786.]
[11] Hayden MS, Ghosh S. Shared principles in NF-κB signaling[J]. Cell, 2008, 132(3): 344-362.
[12] Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-kappaB in the heart: to be or not to NF-kappa B[J]. Circ Res, 2011, 108(9): 1122-1132.
[13] Yang RC, Chang CC, Sheen JM,et al. Davallia bilabiata inhibits TNF-ɑ-induced adhesion endothelial cells[J]. Am J Chin Med, 2014, 42(6): 1411-1429.
[14] Guan H, Hou S, Ricciardi R P,et al. DNA binding of repressor nuclear factor-kappa B p50/p50 depends on phosphorylation of Ser337 by the protein kinase catalytic subunit[J]. J Biol Chem, 2005, 280(11): 9957-9962.
Effect of calcitonin gene related peptide regulated nuclear factor kappa B signal transduction on c-kit+cardiac stem cells in hypoxia state
LONG Xian-ping, ZHENG Xiao-yu, WANG Dong-mei, XU Guan-xue, ZHAO Ran-zun, SHI Bei*
Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, China
*< class="emphasis_italic">Corresponding author, E-mail: shibei2147@163.com
, E-mail: shibei2147@163.com
This work was supported by the National Natural Science Foundation of China (NSFC81360021), and the International Cooperative Project of Guizhou Province [Qiankehewai G (2013)7037]
ObjectiveTo investigate the effects of calcitonin gene-related peptide (CGRP) on the apoptosis of c-kit+cardiac stem cells in hypoxia.MethodsIschemia and hypoxia models of c-kit+cardiac stem cells were reproducedin vitro. The models were divided into hypoxia+CGRP group, hypoxia+CGRP8-37(antagonist of CGRP) group, hypoxia control group, normal oxygen group, and hypoxia+BAY11-7082[antagonist of nuclear factor kappa B (NF-κB)] group. NF-κB translocation after hypoxia was detected by immunofluorescence, and NF-κB channel proteins were determined with Western blotting. The NF-κB translocation and the expression of NF-κB channel proteins after CGRP intervention were detected, and the cell apoptosis rate after intervention was determined with flow cytometry in each group.ResultsUnder hypoxia the NF-κB signal pathway was activated, and nuclear translocation occurred in NF-κBP65(red fluorescence). Compared with hypoxia control group, the expressions of NF-κB related proteins such as P-I-κB, NF-κBP65and NF-κBP50decreased obviously (P<0.05). Compared with the hypoxia+CGRP group, the expressions of NF-κB related proteins increased significantly (P<0.05) as mentioned above in hypoxia+CGRP8-37group. Both the early and late apoptotic rates declined in hypoxia+CGRP group compared with that of hypoxia control group (P<0.05), however, the early apoptotic rate increased markedly in hypoxia+CGRP8-37group as compared with that of hypoxia+CGRP group (P<0.05).ConclusionUnder hypoxia, CGRP may regulate the NF-κB signal pathway, and at the same time suppress the apoptosis of c-kit+cardiac stem cells.
calcitonin gene-related peptide; nuclear factor kappa B; anoxia; c-kit+cardiac stem cells; apoptosis
R363
A
0577-7402(2015)10-0782-06
10.11855/j.issn.0577-7402.2015.10.03
2015-05-22;
2015-08-05)
(責(zé)任編輯:張小利)
國家自然科學(xué)基金(81360021);貴州省國際合作項目[黔科合外G字(2013)7037號]
龍仙萍,醫(yī)學(xué)碩士,副主任醫(yī)師。主要從事心肌梗死后心肌細(xì)胞再生修復(fù)的基礎(chǔ)及臨床研究
563003 貴州遵義 遵義醫(yī)學(xué)院附屬醫(yī)院心內(nèi)科(龍仙萍、鄭小宇、王冬梅、許官學(xué)、趙然尊、石蓓)
石蓓,E-mail:shibei2147@163.com