• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單壁碳納米管-石墨烯雜化材料的自組裝及其電學(xué)性能

    2015-06-05 14:36:37PrashantaDhojAdhikariYonghunKoDaesungJungChungYunPark
    新型炭材料 2015年4期
    關(guān)鍵詞:單壁酸處理電學(xué)

    Prashanta Dhoj Adhikari, Yong-hun Ko, Daesung Jung, Chung-Yun Park,

    單壁碳納米管-石墨烯雜化材料的自組裝及其電學(xué)性能

    Prashanta Dhoj Adhikari1, Yong-hun Ko1, Daesung Jung2, Chung-Yun Park1,2

    (1.InstituteofBasicScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea; 2.DepartmentofEnergyScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea)

    以Si為基底,采用氣相沉積法制備出石墨烯(G/Si)薄膜。將含1%APTES的苯溶液與G/Si密封,在115℃下加熱2 h,G薄膜上自組裝單層APTES膜(SAM-G/Si)。將SAM-G/Si浸漬于酸處理后的單壁碳納米管氯仿液中,45℃干燥即得到單壁碳納米管-石墨烯雜化材料(SWCNT-G/Si)。結(jié)果表明,具有p-型電學(xué)性能的G/Si經(jīng)表面改性后呈現(xiàn)出n-型性能,電容性能得到提高。

    1 Introduction

    One-dimensional single-walled carbon nanotubes (SWCNTs)and two-dimensional graphene are nanocarbon materials.Both materials have attracted tremendous attentions for fundamental research and applications in field-emission devices,field-effect transistors,supercapacitors,batteries[1-11],solar cells[12,13]and transparent electrodes[14-16],owing to their extraordinary electrical,mechanical,physical, and structural properties.SWCNTs and graphene have many analogous properties,but there are differences between the two due to structuraldifferences.Several attempts have recently been made to integrate these two novel materials together in order to utilize the merits of both[17-22].

    Chemical vapor deposition(CVD)is an important mean to synthesis carbon nanomaterials[13,23,24]. To realize the merits of a combined 2D graphene and 1D CNT material,there have been many recent attempts to prepare graphene sheet-CNT hybrid materials.Recently,the fabrication of G/CNT hybrids through CVD is more attractive because it is possible to form covalent C-C bonding between graphene and CNTs,and to prepare G-CNT hybrids with various structures[25-28].However,the as-grown CNTs are usually multi-walled CNTs(MWCNTs).This results in low specific surface areas(SSA)of as-fabricated G-CNT hybrids,and hinders their performance in the area where a high SSA is required,such as energystorage devices.The direct growth of CNTs on graphene oxide(GO)and reduced GO is simple and effective way to obtain G-CNT hybrids with strong graphene-CNT bonding and anticipated nanostructures. But,as-grown CNTs were still MWCNTs with a poor graphitization due to the high solubility of catalyst nanoparticles in GO or reduced GO[29].Besides,the high defect density of GO or reduced GO also limits the quality of graphene in as-fabricated G-CNT hybrids,and thus hinders their performance.Compared with MWCNTs,the SWCNTs have much large surface area and low defectdensity.Recently,Ning and co-workers demonstrated a one-step synthesis of GSWCNT hybrids by CVD with a mixed catalyst of MgO and Fe/MgO,in which MgO served as the template for the deposition of graphene and Fe/MgO served as the catalyst for the growth of SWCNTs,as well as the graphene layers[30].Nevertheless,to prepare purely SWCNT-graphene hybrid in this technique is difficult due to the poor stability of the catalyst nanoparticles on metal surface.

    In order to improve the quality of SWCNT-graphene hybrid that is well interconnected and has superior durability/applicability features for use in device fabrication,we report a simple approach first time to prepare the SWCNT-G hybrid,in which functionalized SWCNTs were chemisorbed onto the supported graphene film that was immobilized with a monolayer self-assembled from 3-aminopropyltriethoxysilane (APTES).This method could be useful as a new route to the fabrication of graphene hybrid materials for various potential applications.

    2 Experimental

    2.1Reagents and materials

    Isopropyl alcohol(IPA),3-aminopropyltriethoxysilane(APTES),toluene,SWCNTs,chloroform,nitric acid and membrane filter paper were purchased as received.Deionized water was used throughoutthe whole experiment.

    2.2Graphene synthesis

    Graphene was synthesized on copper foil by CVD method.Briefly,Cu foil was pre-annealing up-to 1 050℃in a reactor for 30 min under Ar. Then,methane was introduced into the reactor for 30 min,followed by a cooling down under Ar flow. The graphene grown via CVD was transferred onto a silicon substrate(SiO2/Si)by copper etching technique(G/Si)[31].

    2.3Fabrication of self-assembled monolayer onto graphene surface

    The graphene on the silicon substrate was irradiated by UV light for 30 min.Then,a glass beaker containing 1%APTES in toluene and UV-treated G/Si were placed in an air-tight steel box.The box was loaded into a processing chamber and heated up to 115℃for 2 h.An APTES was self-assembled to form a monolayer on graphene.Finally,as-fabricated self-assembled monolayer(SAMs)on graphene was rinsed with toluene and ethanol,and then dried by under a N2stream to obtain SAM-G/Si[32].

    2.4Functionalization of SWCNTs

    25 mg of SWCNTs and 50 mL of HNO3were mixed and refluxed overnight and later the mixtures were vacuum distilled,washed several times with water and dried in vacuum oven at 60℃for 1 h.

    2.5Loading of SWCNTs onto graphene surface

    The surface functionalized SWCNTs were dispersed in chloroform by ultrasonication for 3 h and then,SAM-G/Si substrate was dipped into solution overnight at 45℃.The SWCNT-loaded graphene on substrate was washed by ethanol and dried by blowing N2gas to obtain SWCNT-G/Si.

    2.6Characterization

    The surface modified substrates were characterized by Raman spectroscopy.Raman spectra were obtained using a Renishaw,1 000 micro-Raman spectrometer at an excitation wavelength of 514 nm, where at leastthree different sites were sampled.The substrates were further evaluated by X-ray photo electron spectroscopy(XPS).XPS spectra were obtained using a theta probe(VGMICROTEC,ESCA 2000) with a monochromatic Al Kαsource at a pressure of 2×10-9mbar.The surface morphology of samples was characterized using a field emission scanning electron microscope(FE-SEM,JEOL,JSM-7500F) at an accelerating voltage of 15 kV.The electrical properties of the SWCNT-G hybrid were examined using a 4200-scs Keithley semiconductor analyzer. Electrochemical characterizations of G/Si and SWCNT-G/Si were performed by cyclic voltammetry analysis in a three-electrode half shell system in 1 mol/L H2SO4solution.

    3 Results and discussion

    The acid-treated SWCNTs were evaluated by Raman spectroscopy.The radial breathing mode peak (RBM),G and 2 D peaks are seen at182,1 587 and 2 679 cm-1respectively for pristine SWCNTs as shown in Fig.1 a.However,after the acid treatment those peaks were not changed substantially,but a D peak clearly appears at 1 350 cm-1,indicating that surface defects are generated in SWCNTs by an acid oxidation(Fig.1b).The surface-functionalizedSWCNTs were further evaluated by XPS.Pristine SWCNTs sample is shown to have an overall oxygen content of 4%as shown in Fig.1c,but after the acid oxidation,the oxygen content is increased to 17% (Fig.1d),indicating that the surface treatment leads to a formation of sufficient surface functionalized groups(—OH,—COOH)in SWCNTs as expected, which might be helpful for their binding onto functionalized CVD-grown graphene film.The non-aqueous dispersion of SWCNTs into solvent is found more effective for acid treated ones rather than pristine SWCNTs,which could be also due to the introduction of hydrophilic groups into SWCNTs surface as shown in Fig.2(Inset).In addition,fabrication of SAMs onto graphene surface was evaluated by XPS and itis found that there is no evidence of formation of N peak for pristine graphene(Fig.3a)but for the SAMs fabricated sample a well-constructed N peak appears, confirming that abundant amine-terminated group is liberated onto graphene surface as shown in Fig.3. Compared with the graphene without the UV treatment(Fig.3b),the UV-treated one has a high N content of(Fig.3c),which is four times as that of the un-treated one,indicating that amine group is sufficiently loaded onto graphene surface as shown in Fig.3c[33].This indicates that the UV-treated sample liberates sufficient oxidize molecules onto graphene surface that is favorable for fabricating SAMs.

    Fig.1 Schematic illustration of SWCNTs covalently linked onto graphene surface.

    Fig.2 Raman and XPS spectra of SWCNTs before and after acid treatment: (a,b)Raman spectra of(a)pristine SWCNTs and(b)SWCNTs treated by oxidized acid;(c,d)XPS spectra of(c)SWCNTs and (d)SWCNTs treated by oxidized acid(Inset:the photographs of the dispersions of acid-treated SWCNTs and pristine SWCNTs).

    In order to further examine whether the SWCNTs are electronically coupled with graphene surface or merely physically attached,Raman bands of pristine and the acid-treated SWCNTs onto SAM-G samples are compared.The acid-treated SWCNTs are chemisorbed onto SAM-G,causing a change of the G and 2 D bands and also RBM peak position.However, there is no change of bands in SAM-G surface for thepristine SWCNTs onto SAM-G,indicating that there is no chemical interaction between SWCNTs and graphene surface.

    Fig.3 N1s XPS spectra for(a)G/Si,(b)SAM-G/Si without out UV treatment and(c)with UV treatment.

    Fig.4 Raman spectra for(a)SAM-G,(b)acid treated SWCNTs and(c)SWCNT-G/Si.

    Morphologies of SWCNTs,G/Si and SWCNTG/Si were evaluated by SEM as shown in Fig.5. After the acid-treated SWCNTs are chemisorbed onto graphene surface,they are commonly communicated with graphene as shown in Fig.5 c,consistent with the Raman results.

    To further confirm the chemical bonding,the acid-treated SWCNTs sorbed onto garphene surface was evaluated by XPS as shown in Fig.6.The N1s peak of SAM-G/Si is observed in the range of B.E. 399-402 eV.But,after the acid-treated SWCNTs are sorbed onto graphene surface the N1s peak is clearly divided and splitting peak is seen at higher B.E.~405 eV,which should be originated by amide bond. This result confirms the sorption of SWCNTs onto graphene surface is of chemicalnature[31,34].To evaluate their electrical characteristics induced by chemisorption between the SWCNTs and functionalized graphene,field-effect transistors measurements(FET) were carried out as shown in Fig.7.Pristine,functionalized and hybrid graphene FET were fabricated on SiO2/Si substrates using platinum for the source and drain electrodes and 1-butyl-3-methylimidazolium (BmimPF6)as an ionic liquid.The schematic procedure of FET measurements is shown in Fig.7 (Inset).The charge neutrality point for G/Si without surface treatment is near to positive site of zero volt (Fig.7a)but for the UV-treated G/Si,it is further shifted to the same positive site,indicating a p-type doping,which could be resulted from the-COOH, OH group via UV-treatment(Fig.7b).However, after SAMs fabrication on the UV-treated G/Si the charge neutrality point is shifted to negative site of zero volt,meaning a n-doping into graphene surface due to amine terminated SAMs deposition onto graphene surface(Fig.7c).But,after the acid-treated SWCNTs are chemisorbed onto SAM-G/Si,the n-type characteristic is reduced,indicating that doping of p-type material,which could be contributed from the SWCNTs(Fig.7d).Based on these results,itis expected that lone pair of electron from amine in SAMs may donate electron onto graphene,thereby, increasing the charge carrier concentration and therefore increasing the conductivity of SAM-G/Si sample.However,the chemisorption of SWCNTs onto its surface leads to a reduction in the resistance and reaches conductivity beyond position(Figure was not shown).This observation strongly suggests that the exceedingly conductive SWCNTs bonded with graphene[35].Therefore,stable binding of SWCNTs onto graphene surface in present work could be very applicable in storage devices.

    Fig.5 SEM images of pristine(a)SWCNTs,(b)G/Si and(c)SWCNT-G/Si.

    Fig.6 XPS N1s spectra of(a)SAM-G and(b)SWCNT-G/Si.

    Moreover,the electrochemical properties of pristine and the hybrid materials were studied using them as working electrodes and 1 mol/L H2SO4for electrolyte solution at a scan rate 20 mV/s.Fig.8c and 8 d show the typical charge/discharge curves of the G/Si and SWCNT-G/Sisamples.The linear and symmetrical curves are indicative of the excellent electrochemical stability and charge/discharge properties as shown in Fig.8.The capacitance from the discharge curves is calculated using the following equation C=i×Δt/ ΔV[36].Where,i is the discharge current density (0.1 mA·cm-2),Δt is the duration of the discharge from+0.8 to-0.8 V(ΔV).

    Fig.7 I-V measurement for(a)G/Si, (b)UV-treated G/Si,(c)SAMs/Si and(d)SWCNT-G/Si(Inset:schematic representation of FET device).

    The discharge time for the SWCNT-G/Si is slightly greater than the G/Si sample and specific capacitance for the hybrid and pristine samples are calculated to be 6.01 and 5.03 mF/cm2respectively,indicating that the SWCNT-G/Si offers the larger charge capacity than the G/Si.Based upon the peak positions of Fig.8,the possible reason of the present result is that the SWCNT fibrils promote the electron transfer between SWCNTs and graphene electrode.In addition,the immobilization of SWCNTs creates the larger surface area onto the hybrid graphene electrode.Therefore,the surface functionalization of SWCNTs and graphene is found more effective to integrate them into the SWCNT-G hybrid,which could be implemented to fabricate supercapacitor.The present simple technique might be utilized to prepare other nanomaterials too.

    Fig.8 Cyclic voltammogram curves of(a)pristine graphene and(b)SWCNT-G at a scan rate of 20 mV/s in 1 mol/L H2SO4solution. (c,d)Their galvanostatic charge/discharge curves respectively.Supercapacitor performance of hybrid film showing high specific capacitance owing to a large surface area and marginally higher electrical conductivity.

    4 Conclusions

    We have developed a simple method to integrate SWCNTs onto CVD grown graphene film via immobilization technique.The amine groups on graphene promote the chemisorption of the acid-treated SWCNTs.A p-type characteristic of the G/Siis shifted to n-type electrical properties after immobilized with SAMs of APTES and hybridized with SWCNTs, which improves the specific capacitance.This approach could be of great use in the fabrication of supercapaicitors,flexible hybrid electrodes and other future applications.

    Acknowledgements

    This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2009-0094023).

    [1] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306: 666-669.

    [2] Liang J,Xu Y,Huang Y,et al.Infrared-triggered actuators from graphene-based nanocomposites[J].J Phys Chem C, 2009,113:9921-9927.

    [3] Wang X,Zhi L J,Mullen K.Transparent,conductive graphene electrodes for dye-sensitized solar cells[J].Nano Lett,2008,8: 323-327.

    [4] Yoo E,Kim J,Hosono E,et al.Large reversible Li storage of graphenenanosheet families for use in rechargeable lithium ion batteries[J].Nano Lett,2008,8:2277-2282.

    [5] Schwierz F.Graphene transistors[J].Nat Nanotechnol,2010, 5:487-496.

    [6] Stoller M D,Park S,Zhu Y W,et al.Graphene-based ultracapacitors[J].Nano Lett,2008,8:3498-3502.

    [7] Simon P,Gogotsi Y.Materials for electrochemical capacitors[J]. Nat Mater,2008,7:845-854.

    [8] Dong X C,Shi Y M,Huang W,et al.Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets[J].Adv Mater,2010, 22:1649-1653.

    [9] Huang Y X,Sudibya H G,Fu D L,et al.Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network[J].Biosensor Bioelectron, 2009,24:2716-2720.

    [10] Huang Y X,Dong X C,Shi Y M,et al.Nanoelectronic biosensors based on CVD grown graphene[J].Nanoscale,2010, 2:1485-1488.

    [11] Dong X C,Fu D L,Xu Y P,etal.Label-free electronic detection of DNA using simple double walled carbon nanotube resistors[J].J Phys Chem C,2008,112:9891-9895.

    [12] Jia Y,Cao A,Bai X,et al.Achieving high efficiency siliconcarbon nanotube heterojunction solar cells by acid doping[J]. Nano Lett,2011,11:1901-1905.

    [13] Arco L G D,Zhang Y,Schlenker C W,et al.Continuous, highly flexible,and transparent graphene films by chemical vapor deposition for organic photovoltaics[J].ACS Nano,2010, 4:2865-2873.

    [14] Bae S,Kim H,Lee Y,et al.Roll-to-rollproduction of30-inch graphenefilms for transparent electrodes[J].Nat Nanotechnol, 2010,5:574-578.

    [15] Hu L B,Gruner G,Li D,et al.Patternabletransparent carbon nanotube films for electrochromicdevices[J].J Appl Phys,2007,101:016102.

    [16] Tantang H,Ong J Y,Loh C L,et al.Using oxidation to increase the electrical conductivity of carbon nanotube electrodes [J].Carbon,2009,47:1867-1870.

    [17] Dong X C,Li B,Wei A,et al.One-step growth of graphenecarbon nanotube hybrid materials by chemical vapor deposition [J].Carbon,2011,49:2944-2949.

    [18] Li CY,Li Z,Zhu H W,et al.Graphenenano-‘‘patch’’on a carbon nanotube network for highly transparent/conductive thin film applications[J].J Phys Chem C,2010,114:14008-14012.

    [19] King P J,Khan U,Lotya M,et al.Improvement oftransparent conducting nanotube films by addition of smallquantities of graphene[J].ACS Nano,2010,4:4238-4246.

    [20] Hong T K,Lee D W,Choi HJ,et al.Transparent,flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphenenanosheets[J].ACS Nano,2010,4:3861-3868.

    [21] Fan Z J,Yan J,Zhi L J,et al.A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitor[J].Adv Mater,2010,22:3723-3728.

    [22] Tung V,Chen L M,Allen M J,et al.Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors[J].Nano Lett,2009, 9:1949-1955.

    [23] Adhikari P D,Kim S,Lee S,et al.Immobilization of iron nanoclustures on functionalized silicon substrate and their catalytic behavior to synthesize multi-walled carbon nano tubes[J]. Nanosci and Nanotech,2013,13:4587.

    [24] Adhikari P D,Song W,Cha M J,et al.Synthesis of high quality single-walled carbon nanotubes via catalytic layer reinforced by self-assembled monolayer[J].Thin Solid Films, 2013,545:50-55.

    [25] Chen S,Chen P,Wang Y.Carbon nanotubes grown in situ on graphenenanosheets as superior anodes for Li-ion batteries[J]. Nanoscale,2011,3(10):4323-4329.

    [26] Paul R K,Ghazinejad M,Penchev M,etal.Synthesis of a pillared graphene nanostructure:acounterpart of three-dimensional carbon architectures[J].Small,2010,6(20):2309-2313.

    [27] Lv R T,Cui T X,Jun M S,et al.Open ended,N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support[J].Adv Funct Mater,2011,21(5): 999-1006.

    [28] Yu K H,Lu G H,Bo Z,et al.Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications[J].J Phys Chem Lett,2011,2(13):1556-1562.

    [29] Rinaldi A,Tessonnier J P,Schuster M E,et al.Dissolved carbon controls the initial stages of nanocarbon growth[J].Angew Chem Int Ed,2011,50(14):3313-3317.

    [30] Zhu X,Ning G,Fan Z,et al.One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles[J].Carbon,2012,50(8):2764-2771.

    [31] Adhikari P D,Jeon S,Chha M,et al.Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material [J].Sci and Technol of Adv Mater,2014,15:015007.

    [32] Adhikari P D,Tai Y,Ujihara M,et al.Surface functionalization of carbon micro coils and their selective immobilization on surface-modified silicon substrates[J].J Nanosci and Nanotech,2010,10:833-839.

    [33] Adhikari P D,Imae T,Motojima S.Selective immobilization of carbon micro coils on patterned substrates and their electrochemical behavior on ITO substrate[J].Chem Eng J,2011,174: 693.

    [34] AdhikariP D,Chho J,Park C Y.Easy synthesis of nitrogen doped single-walled carbon nanotubes via using supporting layer as a precursor[J].Material Focus,2014,3:281-285.

    [35] Mou Z,Chen X,Du Y,etal.Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite of oxide and urea[J].Appl Surf Sci,2011,258: 1704-1710.

    [36] Song R K,Park J H,Sivakkumar S R,et al.Supercapacitive properties of polyaniline/Nafion/hydrous RuO2composite electrodes[J].Journal of Power Sources,2007,166:297-301.

    Single-wall carbon nanotube hybridized graphene films: self assembly and electrical properties

    Prashanta Dhoj Adhikari1, Yong-hun Ko1, Daesung Jung2, Chung-Yun Park1,2
    (1.InstituteofBasicScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea;2.DepartmentofEnergyScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea)

    A SWCNT-G/Si hybrid film was fabricated from graphene(G)film by chemical vapor deposition and single-walled carbon nanotubes(SWCNTs)by an immobilization method,in which a 3-aminopropyltriethoxysilane monolayer was formed on a UV irradiated graphene film by self-assembly,and acid-oxidized SWCNTs were chemisorbed on it.The G/Si,3-aminopropyltriethoxysilane immobilized G/Si and SWCNT-G/Si hybrid films were characterized by SEM,Raman spectroscopy,XPS,and conductivity and electrochemical tests.Results indicate that the immobilization changes the p-type G/Si into n-type by electron donation from a lone electron pair on the amine and the chemisorption reduces the n-type behavior.The SWCNT-G/Si hybrid film has a higher specific capacitance than the G/Si film.This approach could be of great use in the fabrication of supercapacitors,flexible hybrid electrodes and other devices.

    Chung-Yun Park.E-mail:cypark@skku.edu

    TB332

    A

    Chung-Yun Park.E-mail:cypark@skku.edu

    Prashanta Dhoj Adhikari.E-mail:dhoj2@yahoo.com

    1007-8827(2015)04-0342-07

    Received date:2015-03-10;Revised date:2015-08-05

    Author introduction:Prashanta Dhoj Adhikari.E-mail:dhoj2@yahoo.com

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    10.1016/S1872-5805(15)60193-7

    猜你喜歡
    單壁酸處理電學(xué)
    電學(xué)
    赤霉酸處理對核桃種子萌發(fā)和幼苗生長的影響
    河北果樹(2022年1期)2022-02-16 00:41:06
    單壁碳納米管內(nèi)1,4-萘琨電池電極材料性能的研究
    云南化工(2021年7期)2021-12-21 07:27:38
    對一個電學(xué)故障題的思考
    酸處理對馬鈴薯塊莖形成相關(guān)基因表達(dá)的影響
    不同細(xì)度玻纖針刺復(fù)合氈的耐酸性研究
    Lesson Seventy-four An atypical presentation of a typical arrhythmia
    多巴胺和腎上腺素在單壁碳納米管修飾電極上的電化學(xué)行為
    巧用電學(xué)知識 妙解環(huán)保問題
    酚醛樹脂/混酸處理碳納米管復(fù)合材料的制備與性能
    中國塑料(2014年9期)2014-10-17 02:48:34
    深爱激情五月婷婷| 国产熟女xx| 永久网站在线| 亚洲av.av天堂| 一夜夜www| 少妇人妻精品综合一区二区 | 亚洲 欧美 日韩 在线 免费| 黄片小视频在线播放| 嫩草影院入口| 婷婷丁香在线五月| 在线十欧美十亚洲十日本专区| 12—13女人毛片做爰片一| 高清日韩中文字幕在线| 俺也久久电影网| 人妻久久中文字幕网| 国产亚洲精品综合一区在线观看| 99久久久亚洲精品蜜臀av| 亚州av有码| 久久午夜福利片| 精品日产1卡2卡| 久久久久久久久中文| 一进一出抽搐gif免费好疼| 99热只有精品国产| 好男人在线观看高清免费视频| 免费黄网站久久成人精品 | 亚洲aⅴ乱码一区二区在线播放| 非洲黑人性xxxx精品又粗又长| 真实男女啪啪啪动态图| 国产亚洲精品久久久久久毛片| 亚洲国产精品sss在线观看| 欧美性猛交╳xxx乱大交人| 能在线免费观看的黄片| 9191精品国产免费久久| 国产真实伦视频高清在线观看 | 中文字幕精品亚洲无线码一区| 国产又黄又爽又无遮挡在线| 在线观看66精品国产| 午夜a级毛片| 一区二区三区四区激情视频 | 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品合色在线| 亚洲综合色惰| 免费观看的影片在线观看| 中文在线观看免费www的网站| 少妇熟女aⅴ在线视频| 深夜a级毛片| 我要搜黄色片| 首页视频小说图片口味搜索| 国产乱人伦免费视频| 在线观看一区二区三区| 18美女黄网站色大片免费观看| 老司机午夜福利在线观看视频| 国产在线男女| 国产av在哪里看| 亚洲性夜色夜夜综合| 中文字幕精品亚洲无线码一区| 高潮久久久久久久久久久不卡| 欧美日韩综合久久久久久 | 亚洲精品在线美女| 成年女人永久免费观看视频| 首页视频小说图片口味搜索| 国产精品99久久久久久久久| 草草在线视频免费看| 岛国在线免费视频观看| 中文在线观看免费www的网站| 网址你懂的国产日韩在线| 色噜噜av男人的天堂激情| 亚洲国产精品成人综合色| 欧美极品一区二区三区四区| 激情在线观看视频在线高清| 久久婷婷人人爽人人干人人爱| 亚洲av第一区精品v没综合| 欧美3d第一页| 欧美激情久久久久久爽电影| 久久精品国产清高在天天线| 成年人黄色毛片网站| 亚洲av成人精品一区久久| 国内精品美女久久久久久| 长腿黑丝高跟| 成人av在线播放网站| 天堂av国产一区二区熟女人妻| 成人av一区二区三区在线看| 久久久精品欧美日韩精品| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 亚洲国产精品sss在线观看| av视频在线观看入口| 精品久久久久久成人av| 欧美日韩黄片免| 久久精品影院6| 亚洲国产色片| 一本综合久久免费| 婷婷六月久久综合丁香| 麻豆国产av国片精品| 国产欧美日韩精品一区二区| 免费看a级黄色片| 观看美女的网站| 精品99又大又爽又粗少妇毛片 | eeuss影院久久| 老鸭窝网址在线观看| 亚洲美女搞黄在线观看 | 国产午夜精品论理片| 亚洲国产精品sss在线观看| 久久久久久久精品吃奶| 男女那种视频在线观看| 此物有八面人人有两片| 99国产精品一区二区蜜桃av| 国内精品久久久久精免费| 精品一区二区三区人妻视频| 欧美一区二区亚洲| 欧美成人免费av一区二区三区| 熟妇人妻久久中文字幕3abv| 色综合亚洲欧美另类图片| 青草久久国产| 在线播放无遮挡| 97人妻精品一区二区三区麻豆| 欧美一区二区亚洲| 高清在线国产一区| 亚洲一区二区三区色噜噜| 国产成人福利小说| 欧美日韩亚洲国产一区二区在线观看| 99视频精品全部免费 在线| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器| 国产精品亚洲美女久久久| 午夜福利欧美成人| 一本一本综合久久| 搞女人的毛片| 国产精品一区二区三区四区久久| 国产欧美日韩一区二区精品| 色综合婷婷激情| 丁香欧美五月| 久久久色成人| 人妻制服诱惑在线中文字幕| АⅤ资源中文在线天堂| 很黄的视频免费| 国产探花极品一区二区| 久久中文看片网| 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 免费高清视频大片| 成年女人毛片免费观看观看9| 午夜久久久久精精品| 久久国产精品影院| 亚洲精品色激情综合| 日日干狠狠操夜夜爽| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 观看美女的网站| 高清在线国产一区| 91午夜精品亚洲一区二区三区 | 欧美黄色淫秽网站| 动漫黄色视频在线观看| 性色av乱码一区二区三区2| 直男gayav资源| 精品一区二区三区人妻视频| 女人十人毛片免费观看3o分钟| 蜜桃久久精品国产亚洲av| 亚洲电影在线观看av| 欧美一区二区国产精品久久精品| 性欧美人与动物交配| 黄色日韩在线| 久久精品综合一区二区三区| 国内久久婷婷六月综合欲色啪| 亚洲人成网站在线播放欧美日韩| 九九热线精品视视频播放| 精品午夜福利视频在线观看一区| 日韩中文字幕欧美一区二区| 超碰av人人做人人爽久久| 直男gayav资源| 国产高清视频在线播放一区| 69av精品久久久久久| 国内精品久久久久精免费| 国产三级在线视频| 在线观看午夜福利视频| 国产伦在线观看视频一区| 丰满的人妻完整版| 成人鲁丝片一二三区免费| 精品不卡国产一区二区三区| 欧美一区二区亚洲| 脱女人内裤的视频| av国产免费在线观看| 国产成人影院久久av| 波多野结衣巨乳人妻| 午夜a级毛片| 99精品久久久久人妻精品| 两性午夜刺激爽爽歪歪视频在线观看| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 国产高潮美女av| 一区二区三区四区激情视频 | 亚洲av电影在线进入| 亚洲人成网站在线播| 色哟哟哟哟哟哟| 亚洲av一区综合| 又黄又爽又刺激的免费视频.| 日韩免费av在线播放| 69人妻影院| 精品一区二区三区av网在线观看| 村上凉子中文字幕在线| 中亚洲国语对白在线视频| 久久人妻av系列| 国产野战对白在线观看| 国产精华一区二区三区| 91九色精品人成在线观看| 一进一出好大好爽视频| 午夜激情欧美在线| 麻豆成人av在线观看| 国产一区二区三区在线臀色熟女| 中文在线观看免费www的网站| 国产爱豆传媒在线观看| 亚洲精品久久国产高清桃花| 真人做人爱边吃奶动态| 婷婷六月久久综合丁香| 一级av片app| 日本黄大片高清| 日本a在线网址| 高潮久久久久久久久久久不卡| 又粗又爽又猛毛片免费看| 欧美成人a在线观看| 午夜视频国产福利| 97超视频在线观看视频| 亚洲不卡免费看| 97碰自拍视频| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 国产精品精品国产色婷婷| 精品久久久久久久久久久久久| 成人毛片a级毛片在线播放| 成人午夜高清在线视频| 午夜日韩欧美国产| 变态另类丝袜制服| 久久久国产成人精品二区| 精品一区二区三区视频在线观看免费| 美女xxoo啪啪120秒动态图 | 免费看美女性在线毛片视频| 国产精品电影一区二区三区| 99热只有精品国产| 亚洲第一电影网av| 亚洲精品成人久久久久久| 别揉我奶头~嗯~啊~动态视频| 久久精品国产亚洲av涩爱 | 欧美高清成人免费视频www| 精品一区二区免费观看| 极品教师在线视频| 最好的美女福利视频网| 一进一出抽搐动态| 三级国产精品欧美在线观看| 在线观看午夜福利视频| 少妇熟女aⅴ在线视频| 久久久久久国产a免费观看| www.熟女人妻精品国产| 午夜福利欧美成人| 亚洲精品456在线播放app | 亚洲精品粉嫩美女一区| 真实男女啪啪啪动态图| www.色视频.com| 国产亚洲欧美98| 麻豆久久精品国产亚洲av| 亚洲黑人精品在线| 757午夜福利合集在线观看| 国产精品日韩av在线免费观看| 人妻久久中文字幕网| 又粗又爽又猛毛片免费看| 十八禁人妻一区二区| 国产探花极品一区二区| 免费大片18禁| 免费av观看视频| www.999成人在线观看| 欧美极品一区二区三区四区| 91av网一区二区| 狂野欧美白嫩少妇大欣赏| 中文亚洲av片在线观看爽| 日日干狠狠操夜夜爽| av专区在线播放| 亚洲av.av天堂| 亚洲欧美精品综合久久99| 久久欧美精品欧美久久欧美| 国产麻豆成人av免费视频| 在线天堂最新版资源| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱 | 又黄又爽又免费观看的视频| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 在线免费观看的www视频| 亚洲欧美精品综合久久99| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区精品| 欧美日韩黄片免| 中国美女看黄片| 黄色一级大片看看| 69人妻影院| 9191精品国产免费久久| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 婷婷六月久久综合丁香| 国产久久久一区二区三区| 亚洲国产精品sss在线观看| 中文字幕精品亚洲无线码一区| 欧美区成人在线视频| 亚洲av一区综合| 看黄色毛片网站| 国产黄a三级三级三级人| 国产aⅴ精品一区二区三区波| 亚洲乱码一区二区免费版| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 一本久久中文字幕| 欧美三级亚洲精品| 国产亚洲av嫩草精品影院| av天堂中文字幕网| 国产精品久久视频播放| 变态另类成人亚洲欧美熟女| 91在线精品国自产拍蜜月| 韩国av一区二区三区四区| 久久久久久久午夜电影| 午夜视频国产福利| 国产精品爽爽va在线观看网站| 又黄又爽又刺激的免费视频.| 久久精品国产自在天天线| 国产成人欧美在线观看| 精品人妻视频免费看| 99热这里只有是精品在线观看 | 日韩 亚洲 欧美在线| 999久久久精品免费观看国产| 日日干狠狠操夜夜爽| 亚洲,欧美,日韩| 国产三级黄色录像| av专区在线播放| 久久精品影院6| 亚洲在线自拍视频| 久久精品影院6| 欧美一级a爱片免费观看看| 热99在线观看视频| 日本三级黄在线观看| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 99久久久亚洲精品蜜臀av| 高清毛片免费观看视频网站| 亚洲 欧美 日韩 在线 免费| 久久久色成人| 国产一级毛片七仙女欲春2| www.www免费av| av福利片在线观看| 日韩高清综合在线| 欧美日韩黄片免| 亚洲欧美清纯卡通| 国产极品精品免费视频能看的| 日本 欧美在线| 亚洲av五月六月丁香网| 亚洲精品影视一区二区三区av| 亚洲无线观看免费| 一夜夜www| 久久精品国产亚洲av涩爱 | 国产精品亚洲一级av第二区| 午夜福利在线观看吧| .国产精品久久| 精品久久久久久久末码| 欧美日韩综合久久久久久 | 亚洲人成电影免费在线| ponron亚洲| 熟女人妻精品中文字幕| 欧美又色又爽又黄视频| 夜夜夜夜夜久久久久| 国产精品影院久久| 国产精品嫩草影院av在线观看 | 免费在线观看影片大全网站| 精品熟女少妇八av免费久了| 此物有八面人人有两片| 首页视频小说图片口味搜索| 国产不卡一卡二| 麻豆av噜噜一区二区三区| 亚洲美女黄片视频| 成熟少妇高潮喷水视频| 他把我摸到了高潮在线观看| 精品一区二区三区av网在线观看| 国产成年人精品一区二区| 日本一本二区三区精品| 精品久久国产蜜桃| 日日摸夜夜添夜夜添av毛片 | 老司机午夜十八禁免费视频| 自拍偷自拍亚洲精品老妇| 狂野欧美白嫩少妇大欣赏| 亚洲av成人不卡在线观看播放网| 午夜激情福利司机影院| 国产三级在线视频| 91麻豆av在线| 日韩欧美精品v在线| 欧美3d第一页| 久久精品夜夜夜夜夜久久蜜豆| 99久国产av精品| 国产一区二区在线观看日韩| 直男gayav资源| 色吧在线观看| 成人一区二区视频在线观看| 中文字幕熟女人妻在线| 欧美精品啪啪一区二区三区| 久久午夜福利片| 亚洲国产高清在线一区二区三| 久久午夜福利片| 亚洲中文字幕日韩| 国产真实乱freesex| 日韩人妻高清精品专区| 欧美3d第一页| 国产高清激情床上av| 级片在线观看| 天堂√8在线中文| 国产av麻豆久久久久久久| 成人特级av手机在线观看| 韩国av一区二区三区四区| 亚洲av第一区精品v没综合| 老熟妇乱子伦视频在线观看| 桃红色精品国产亚洲av| 国产高清视频在线播放一区| 桃色一区二区三区在线观看| 午夜a级毛片| 午夜久久久久精精品| 亚洲国产欧洲综合997久久,| 免费av观看视频| 性色av乱码一区二区三区2| 成年版毛片免费区| 欧美成狂野欧美在线观看| 亚洲电影在线观看av| av女优亚洲男人天堂| 欧美+亚洲+日韩+国产| 麻豆av噜噜一区二区三区| 午夜福利欧美成人| av在线老鸭窝| 90打野战视频偷拍视频| 日本熟妇午夜| 成人无遮挡网站| 永久网站在线| 在线看三级毛片| 精品久久久久久久久亚洲 | 欧美最新免费一区二区三区 | 国产精品一区二区三区四区免费观看 | 最好的美女福利视频网| 免费黄网站久久成人精品 | 真人做人爱边吃奶动态| 欧美日韩乱码在线| 一个人看的www免费观看视频| 男女视频在线观看网站免费| 国产一级毛片七仙女欲春2| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 欧美另类亚洲清纯唯美| 亚洲,欧美精品.| 国产av麻豆久久久久久久| 免费看美女性在线毛片视频| 搡老妇女老女人老熟妇| 国产乱人伦免费视频| 午夜福利视频1000在线观看| 亚洲精品亚洲一区二区| 欧美成人免费av一区二区三区| 男人舔女人下体高潮全视频| 国产在线精品亚洲第一网站| 国产一区二区三区在线臀色熟女| 亚洲va日本ⅴa欧美va伊人久久| 女人十人毛片免费观看3o分钟| 精品福利观看| 最近在线观看免费完整版| 人人妻人人澡欧美一区二区| 国产成人啪精品午夜网站| 国产蜜桃级精品一区二区三区| 又爽又黄a免费视频| 国产欧美日韩精品亚洲av| 国产精品不卡视频一区二区 | 日本黄色视频三级网站网址| 很黄的视频免费| 少妇丰满av| 99热这里只有是精品50| 久久久精品欧美日韩精品| 激情在线观看视频在线高清| 精品欧美国产一区二区三| 亚洲精品在线观看二区| 免费黄网站久久成人精品 | 在线观看舔阴道视频| 免费人成视频x8x8入口观看| 成人特级黄色片久久久久久久| 亚洲av免费高清在线观看| av中文乱码字幕在线| 欧美高清性xxxxhd video| 欧美精品国产亚洲| 在线播放无遮挡| 欧美成人a在线观看| 99久久久亚洲精品蜜臀av| 欧美中文日本在线观看视频| 91麻豆精品激情在线观看国产| 啦啦啦观看免费观看视频高清| 色综合站精品国产| 看十八女毛片水多多多| 久99久视频精品免费| 一级a爱片免费观看的视频| 国产av一区在线观看免费| 亚洲国产欧美人成| 黄色一级大片看看| 午夜精品久久久久久毛片777| 婷婷精品国产亚洲av在线| 99热这里只有精品一区| АⅤ资源中文在线天堂| 人妻制服诱惑在线中文字幕| 精品欧美国产一区二区三| 无遮挡黄片免费观看| 丰满人妻熟妇乱又伦精品不卡| www.999成人在线观看| 91狼人影院| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av在线| 别揉我奶头 嗯啊视频| 国产黄a三级三级三级人| 少妇熟女aⅴ在线视频| 成年人黄色毛片网站| 久久国产乱子伦精品免费另类| 日本在线视频免费播放| 欧美性猛交黑人性爽| 老熟妇乱子伦视频在线观看| 简卡轻食公司| 亚洲片人在线观看| 丁香六月欧美| 亚洲黑人精品在线| 91字幕亚洲| 亚洲美女搞黄在线观看 | 高清日韩中文字幕在线| 国产精品不卡视频一区二区 | 成人av一区二区三区在线看| 色综合欧美亚洲国产小说| 免费高清视频大片| 日韩精品中文字幕看吧| 欧美日韩福利视频一区二区| 亚洲片人在线观看| 午夜免费男女啪啪视频观看 | 观看美女的网站| 动漫黄色视频在线观看| 国产单亲对白刺激| 天堂√8在线中文| 欧美日韩瑟瑟在线播放| 能在线免费观看的黄片| 国产高清激情床上av| 赤兔流量卡办理| 午夜福利在线观看吧| 午夜福利在线在线| 最近最新中文字幕大全电影3| 国产精品三级大全| .国产精品久久| 老司机午夜十八禁免费视频| 国产私拍福利视频在线观看| 亚洲无线观看免费| 一本一本综合久久| 少妇丰满av| 赤兔流量卡办理| 最后的刺客免费高清国语| 欧美日本亚洲视频在线播放| 日本一本二区三区精品| 最近中文字幕高清免费大全6 | 99国产极品粉嫩在线观看| av黄色大香蕉| 国内毛片毛片毛片毛片毛片| 身体一侧抽搐| 免费黄网站久久成人精品 | 黄色一级大片看看| 狂野欧美白嫩少妇大欣赏| 他把我摸到了高潮在线观看| 一本综合久久免费| 久久久色成人| 久久精品夜夜夜夜夜久久蜜豆| 99精品在免费线老司机午夜| 欧美在线一区亚洲| 91午夜精品亚洲一区二区三区 | 欧美日韩综合久久久久久 | 亚洲第一电影网av| 深爱激情五月婷婷| 我的老师免费观看完整版| 欧美另类亚洲清纯唯美| 亚洲无线在线观看| 国产在线男女| 性插视频无遮挡在线免费观看| 一进一出抽搐gif免费好疼| 久久精品国产99精品国产亚洲性色| 亚洲国产精品999在线| 亚洲第一电影网av| 亚洲av一区综合| 91久久精品电影网| 亚洲精品乱码久久久v下载方式| 波多野结衣高清作品| 婷婷亚洲欧美| 老司机午夜十八禁免费视频| 亚洲精品色激情综合| 国产精品亚洲美女久久久| 在现免费观看毛片| 国产精品av视频在线免费观看| 脱女人内裤的视频| 亚洲精华国产精华精| 国产午夜精品久久久久久一区二区三区 | 少妇的逼好多水| 免费av不卡在线播放| 亚洲成a人片在线一区二区| 99热只有精品国产| 伦理电影大哥的女人| 亚洲欧美激情综合另类| 亚洲熟妇中文字幕五十中出| 亚洲av五月六月丁香网| 久久99热6这里只有精品| 少妇的逼好多水| 国产精品亚洲一级av第二区| 99久久精品国产亚洲精品| 免费高清视频大片| 在线a可以看的网站| 女人被狂操c到高潮| 国产亚洲欧美在线一区二区| 亚洲 欧美 日韩 在线 免费| 免费黄网站久久成人精品 |