• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fixed Point Theorems in Relational Metric Spaces with an Application to Boundary Value Problems

    2021-05-25 07:14:30PRASADGopiandKHANTWALDeepak
    關(guān)鍵詞:先導(dǎo)性組織路線偉大事業(yè)

    PRASAD Gopiand KHANTWAL Deepak

    1 Department of Mathematics,HNB Garhwal University,Srinagar Garhwal,India.

    2 Department of Mathematics,Graphic Era Hill University,Dehradun,India.

    Abstract. In this paper, we establish fixed point theorems for generalized nonlinear contractive mappings using the concept of w-distance in relational metric spaces.Thus we generalize the recent results of Senapati and Dey[J.Fixed Point Theory Appl. 19,2945-2961(2017)]and many other important results relevant to this literature.In order to revel the usefulness of such investigations, an application to first order periodic boundary value problem are given. Moreover, we furnish a non-trivial example to demonstrate the validity of our generalization over previous existing results.

    Key Words: Binary relation;R-lower semi-continuity;relational metric spaces.

    1 Introduction

    The classical Banach contraction principle (Bcp)has many inferences and huge applicability in mathematical theory and because of this,Bcp has been improved and generalized in various metric settings.One such interesting and important setting is to establish fixed point results in metric spaces equipped with an arbitrary binary relation. Utilizing the notions of various kind of binary relations such as partial order,strict order,near order,tolerance etc. on metric spaces,many researcher are doing their research during several years(see[1-16])and attempting to obtain new extensions of the celebrated Bcp.Among these extensions,we must quote the one due to Alam and Imdad [8], where some relation theoretic analogues of standard metric notions(such as continuity and completeness)were used.Further,Ahmadullah et al. [14]extended the above setting for nonlinear contractions and obtained an extension of the Boyd-Wong[17] fixed point theorem to such spaces.

    On the other hand, recently Senapati and Dey [11] improved and refined the main result of Alam and Imdad [8], Ahmadullah et al. [14] and many others, by utilizing the notion ofw-distance in relational metric spaces,that is,metric spaces endowed with an arbitrary binary relation. Moreover, for further motivation of research in this direction, we refer some important recent generalizations ofw-distance with applications to boundary value problem as well(see,e.g.,[19-21]). It is our aim in this paper to give an extension of these results to nonlinear?-contraction and explore the possibility of their application in finding a solution of first order periodic boundary value problem too.

    2 Preliminaries

    Throughout this chapter,R stands for a non-empty binary relation,N0stands for the the set of whole numbers,i.e.,N0=N∪{0}andRfor the set of all real numbers.

    Definition 2.1.([8]).LetRbe a binary relation on a non-empty set X and x,y∈X. We say that x and y areR-comparative if either(x,y)∈Ror(y,x)∈R. We denote it by[x,y]∈R.

    Definition 2.2.([8]).Let X be a non-empty set andRa binary relation on X. A sequence{xn}?X is called anR-preserving if(xn,xn+1)∈Rfor all n∈N0.

    Definition 2.3.([8]).Let X be a non-empty set and T a self-mapping on X. A binary relationRon X is called T-closed if for any x,y∈X,(x,y)∈Rimplies(Tx,Ty)∈R.

    Definition 2.4.([14]).Let(X,d)be a metric space andRa binary relation on X. We say that(X,d)isR-complete if everyR-preserving Cauchy sequence in X converges.

    The following notion is a generalization ofd-self-closedness of a partial order relation()(defined by Turinici[5-6]).

    Definition 2.5.([8]).Let(X,d)be a metric space. A binary relationRon X is called d-self-closed if for anyR-preserving sequence{xn}such that,there exists a subsequence{xnk}of{xn}with[xnk,x]∈Rfor all k∈N0.

    Definition 2.6.([14]).Let(X,d)be a metric space,Ra binary relation on X and x∈X. A self-mapping T on X is calledR-continuous at x if for anyR-preserving sequence{xn}suchthat,we have. Moreover,T is calledR-continuous if it isR-continuousat each point of X.

    The notion of R-lower semi-continuity (briefly, R-LSC) of a function is defined by Senapati and Dey[11]as follows:

    Definition 2.7.Let(X,d)be a metric space and R be a binary relation defined on X. A function f:X→R∪{?∞,+∞}is said to beR-LSC at x if for everyR-preserving sequence xn converging to x,we haveliminfn→+∞f(xn)≥f(x).

    By presenting examples the respective authors explained that the R-LSC is weaker than R-continuity as well as lower semi-continuity(see for details[11]) and modify the definition of w-distance ( Definition 2.8) and the corresponding Lemma 1 presented in[18] in the context of metric spaces endowed with an arbitrary binary relation R as follows:

    Definition 2.8.Let(X,d)be a metric space andRbe a binary relation on X. A function p:X×X→[0,+∞)is said to be a w-distance on X if

    (w1)p(x,z)≤p(x,y)+p(y,z)for any x,y,z∈X;

    (w2)for any x∈X,p(x,.):X→[0,∞)isR-lower semi-continuous;

    (w3)for any ?>0,there exists δ>0,such that p(z,x)≤δ and p(z,y)≤δ imply d(x,y)≤?.

    Let Φ be the family of all mappings?: [0,+∞)→[0,+∞) satisfying the following properties

    1.?is increasing;

    Recall that,the necessary condition of any real convergent series ∑nanis that

    The following two lemmas are required in our subsequent discussion.

    Lemma 2.1.([14]). Let ?∈Φ.Then for all t>0,we have ?(t)

    Lemma 2.2.([11]). Let(X,d)be a metric space endowed with binary relationRand p:X×X→[0,+∞)be a w-distance. Suppose(xn)and(yn)are twoR-preserving sequences in X and x,y,z∈X. Let(un)and(vn)be sequences of positive real numbers converging to0. Then, we have the followings:

    (L1)If p(xn,y)≤un and p(xn,z)≤vn for all n∈N, then y=z.Moreover, if p(x,y)=0and p(x,z)=0,then y=z.

    (L2)If p(xn,yn)≤un and p(xn,z)≤vn for all n≤N,then yn→z.

    (L3)If p(xn,xm)≤un for all m>n,then(xn)is anR-preserving Cauchy sequence in X.

    (L4)If p(xn,y)≤un for all n∈N,then(xn)is anR-preserving Cauchy sequence in X.

    Given a binary relation R and a self-mappingTon a nonempty setX, we use the following notations:

    (i)F(T):=the set of all fixed points ofT,

    (ii)X(T,R):={x∈X:(x,Tx)∈R}.

    3 Main Results

    In this section,we first consider the existence of fixed points for mappings in relational metric spaces.

    Theorem 3.1.Let(X,d)be a metric space with a w-distance′p′and a binary relation′R′on X.Let T be a self-mapping on X satisfying the following assumptions:

    (a) there exists Y?X with T(X)?Y such that(Y,d)isR-complete,

    (b)Ris T-closed,

    (c) either T isR-continuous orR|Y is d-self-closed,

    (d) X(T,R)is non-empty,

    for all x,y∈X with(x,y)∈R. Then T has a fixed point.

    Proof.In the light of assumption(d), letx0be an arbitrary element ofX(T,R).Define a sequence{xn}of Picard iterates with initial pointx0,i.e,

    Since(x0,Tx0)∈R and R isT-closed,we have

    so that

    Thus the sequence{xn}is R-preserving.Applying the contractive condition(e),we have

    By mathematical induction and the property(Φ1),we obtainp(xn,xn+1)≤?n(p(x0,x1)),for alln∈N0.Now,for allm,n∈N0withm≥n,we have

    Therefore,by(L3),of Lemma 2.2 we have {xn} is an R-preserving Cauchy sequence inY. As(Y,d)is an R-complete,we must havexn→xasn→+∞for somex∈Y.

    Next we claim thatxis a fixed point ofT. At first,we consider thatTis R-continuous.Since{xn}is an R-preserving sequence with,R-continuity ofTimplies that

    會議指出,干部教育培訓(xùn)是干部隊(duì)伍建設(shè)的先導(dǎo)性、基礎(chǔ)性、戰(zhàn)略性工程,在進(jìn)行偉大斗爭、建設(shè)偉大工程、推進(jìn)偉大事業(yè)、實(shí)現(xiàn)偉大夢想中具有不可替代的重要地位和作用。制定實(shí)施好干部教育培訓(xùn)規(guī)劃是全黨的一件大事,對貫徹落實(shí)新時(shí)代黨的建設(shè)總要求和新時(shí)代黨的組織路線、培養(yǎng)造就忠誠干凈擔(dān)當(dāng)?shù)母咚刭|(zhì)專業(yè)化干部隊(duì)伍、確保黨的事業(yè)后繼有人具有重大而深遠(yuǎn)的意義。

    Using the uniqueness of the limit,we obtainTx=x,i.e,xis a fixed point ofT.

    Alternately, let us assume that R|Yisd-self-closed. So there exists a subsequence{xnk}of{xn}with[xnk,x]∈R for allk∈N0. By using the fact that[xnk,x]∈R,contractive assumption(e)and R-lower-semi-continuity ofp,we have

    Since R isT-closed and(xnk,x)∈R,so

    Finally,owing to condition(L1)of Lemma 2.2,we must haveTx=x,i.e.,xis a fixed point ofT.

    3.1 Uniqueness result

    We state the uniqueness related result as follows:

    Theorem 3.2.In addition to the hypotheses of Theorem 3.1,suppose that any of the assumptions(u1)or(u2)holds:

    (u1)For every x,y∈T(X)there exists z∈T(X)such that(z,x), (z,y)∈R.

    (u2)R|T(X)is complete.

    Then T has a unique fixed point.

    Proof.In addition to the hypotheses of Theorem 3.1, suppose that condition (u1) hold.Then,for any two fixed pointsx,yofT,there exists an elementz∈T(X),such that

    Since R isT-closed,we have

    Applying contractive condition(e),we have

    Let us considerun=?n(p(z,x)) andvn=?n(p(z,y)). Clearly, {un} and {vn} are two sequences of real numbers converging to 0.Hence,by(L1)of Lemma 2.2,we havex=y,i.e.,Thas a unique fixed point.

    Secondly, suppose that in addition to the hypotheses of Theorem 3.1 condition (u2)hold.Supposex,yare any two fixed points ofT. Then we must have(x,y)∈R or(y,x)∈R. For(x,y)∈R,we have

    which is a contradiction. Hence, we must havex=y. Similarly, if (y,x)∈R, we havex=y.

    Example 3.1.LetX=[0,+∞) equipped with usual metricd. Then (X,d) is a complete metric space. Define a binary relation (x,y)∈R impliesxyonXand the mappingT:X→Xby

    Then R isT-closed. Define?:[0,∞)→[0,∞) byfor allt∈[0,∞), and awdistancep:X×X→Xbyp(x,y)=y.Now for allx,y∈Xwith(x,y)∈R,we have

    so thatTand?satisfy assumption (e) of Theorem 3.1. Observe that all the other conditions of Theorem 3.1 are also satisfied. Therefore,Thas a unique fixed point (namelyx=0).

    Remark 3.1.It is interesting to note that the mappingTin above example does not satisfy the contractive condition of Theorem 2.1 in Senapati and Dey [11]. For example, if we considerx=0 andy=?where?is arbitrary small but positive. Clearly,(0,?)∈R and if we take a constantλsuch thatp(T(x),T(y))≤λp(x,y), i.e.thenwhich amounts to say thatλ≥1 so thatλ[0,1). Thus Example 3.1 vindicate the utility of Theorem 3.1 over the results of Sanapati and Dey[11]and many others.

    Remark 3.2.If we take?(t)=λt, in our main result Theorem 3.1, then we obtain the Theorem 2.1 of Senapati and Dey[11]and if we setp(x,y)=d(x,y),and?(t)=λt,in our main result,we obtain the Theorem 3.1 of Alam and Imdad[8]. Hence our main result is an improved and generalized version of relation-theoretic metrical fixed-point theorems of Alam and Imdad[8],Senapati and Dey[11]and many others.

    4 An application

    As an application, we present a unique solution for the first order periodic boundary value problem equipped with an arbitrary binary relation,wherein our main results are applicable. We consider the following first order periodic boundary value problem:

    whereT>0 andf:I×R→Ris a continuous function.

    LetC(I) denote the space of all continuous functions defined onI. We recall the following definitions.

    Definition 4.1.([9]).A function α∈C1(I)is called a lower solution of(4.1),if

    Definition 4.2.([9]).A function α∈C1(I)is called a upper solution of(4.1),if

    Theorem 4.1.In addition to the problem(4.1), suppose that there exist λ>0such that for all x,y∈R with x≤y.

    Then the existence of a lower solution or an upper solution of problem(4.1)ensures the existence and uniqueness of a solution of problem(4.1).

    Proof.Problem(4.1)can be rewritten as

    This problem is equivalent to the integral equation

    where Define a mappingT:C(I)→C(I)by

    and a binary relation

    (i)Note thatC(I)equipped with the sup-metric,i.e.,d(x,y)=sup|x(t)?y(t)|fort∈Iandx,y∈C(I) is complete metric space and hence(C(I),d)is R-complete.

    (ii)Choose an R-preserving sequence{xn}such that.Then for allt∈I,we get

    and convergence tox(t) implies thatxn(t)≤z(t) for allt∈I,n∈N0, which amounts to saying that[xn,z]∈R for alln∈N0. Hence,R isd-self-closed.(iii)For any(x,y)∈R,i.e.x(t)≤y(t)then by(4.2),we have

    andG(t,s)>0 for(t,s)∈I×I,we have

    which implies that(Tx,Ty)∈R,i.e.,R isT-closed.

    (iv)Letα∈C1(I)be a lower solution of(4.1),then we must have

    Multiplying both sides byeλt,we have

    which implies that

    Asα(0)≤α(T),we have

    therefore

    By using(4.3)and(4.4),we have

    so that

    for allt∈I,i.e.,(α(t),Tα(t))∈R for allt∈Iwhich implies thatX(T,R)≠φ.

    (v)For all(x,y)∈R,

    so that

    Now,if we setp(x,y)=d(x,y),then we have

    where?∈Φ.Hence all the conditions of Theorem 3.1 are satisfied,consequentlyThas a fixed point. Finally following the proof of our earlier Theorem 3.2,Thas a unique fixed point,which is in fact a unique solution of the problem(4.1).

    Acknowledgement

    The authors thank the referees for their careful reading of the manuscript and useful comments.

    猜你喜歡
    先導(dǎo)性組織路線偉大事業(yè)
    關(guān)于新時(shí)代黨的組織路線的研究述評
    黨政論壇(2023年1期)2023-04-15 06:14:56
    黨的“組織路線”概念是如何提出的?(上)
    準(zhǔn)確理解組織路線的科學(xué)內(nèi)涵
    譜寫新時(shí)代中國特色社會主義偉大事業(yè)新篇章
    一流本科教育建設(shè)下的公共基礎(chǔ)課程與后續(xù)專業(yè)課程融合度的探索與研究
    扎實(shí)踐行新時(shí)代黨的組織路線——我省書寫新時(shí)代組織工作壯美畫卷
    “四個(gè)偉大”是一個(gè)頂層設(shè)計(jì)
    “四個(gè)偉大”:治國理政的大邏輯
    前線(2017年10期)2017-11-09 09:12:39
    氣象科普在公共氣象服務(wù)中的重要作用論述
    科技視界(2017年12期)2017-09-11 19:21:29
    淺談中學(xué)歷史課時(shí)效性教學(xué)法
    科技資訊(2015年7期)2015-07-02 20:55:04
    国产亚洲一区二区精品| 中文字幕人妻熟人妻熟丝袜美| 成人无遮挡网站| 麻豆av噜噜一区二区三区| 日本三级黄在线观看| 尤物成人国产欧美一区二区三区| 国产一级毛片在线| 成人美女网站在线观看视频| 欧美三级亚洲精品| 国产精品一及| 禁无遮挡网站| 日韩电影二区| 人妻夜夜爽99麻豆av| 国产 亚洲一区二区三区 | 免费不卡的大黄色大毛片视频在线观看 | 国产精品综合久久久久久久免费| 男人舔女人下体高潮全视频| 美女xxoo啪啪120秒动态图| 久久国内精品自在自线图片| 尤物成人国产欧美一区二区三区| h日本视频在线播放| 亚洲成人精品中文字幕电影| 搡老乐熟女国产| 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 1000部很黄的大片| 亚州av有码| 成人无遮挡网站| 欧美成人午夜免费资源| 成人亚洲欧美一区二区av| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 能在线免费观看的黄片| 人人妻人人看人人澡| 中文天堂在线官网| 91久久精品国产一区二区三区| 午夜老司机福利剧场| 免费看日本二区| 国产在线男女| 中文欧美无线码| 精品久久久久久久久av| 国产中年淑女户外野战色| 欧美潮喷喷水| 久久99精品国语久久久| 青春草亚洲视频在线观看| 日韩 亚洲 欧美在线| 中文字幕久久专区| 男女啪啪激烈高潮av片| 激情 狠狠 欧美| 国产美女午夜福利| 18+在线观看网站| 亚洲av中文av极速乱| 男女国产视频网站| a级毛色黄片| 亚洲三级黄色毛片| 22中文网久久字幕| 深爱激情五月婷婷| 成人鲁丝片一二三区免费| 狂野欧美激情性xxxx在线观看| 日韩av在线大香蕉| 国产v大片淫在线免费观看| 欧美+日韩+精品| 中文欧美无线码| 久久久精品94久久精品| 日韩 亚洲 欧美在线| 成人美女网站在线观看视频| 亚洲欧美一区二区三区黑人 | 真实男女啪啪啪动态图| 午夜福利网站1000一区二区三区| 777米奇影视久久| 欧美激情在线99| 成人二区视频| 国产精品一区二区在线观看99 | 中文乱码字字幕精品一区二区三区 | 免费观看av网站的网址| 天堂√8在线中文| 久久久久九九精品影院| 中文字幕久久专区| 午夜日本视频在线| 最近视频中文字幕2019在线8| 午夜精品在线福利| 国产久久久一区二区三区| 日韩国内少妇激情av| 久久99精品国语久久久| 一区二区三区四区激情视频| 日韩欧美国产在线观看| 精品人妻偷拍中文字幕| 国国产精品蜜臀av免费| 美女高潮的动态| 国产精品不卡视频一区二区| 日日啪夜夜撸| 日本免费a在线| 如何舔出高潮| av福利片在线观看| 久久久久久久午夜电影| 99热这里只有是精品在线观看| 一级毛片aaaaaa免费看小| 国产精品综合久久久久久久免费| 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 亚洲成色77777| 我的女老师完整版在线观看| 久久久久网色| 久久久久久久久久成人| 菩萨蛮人人尽说江南好唐韦庄| 91在线精品国自产拍蜜月| 久久久久久久国产电影| 人体艺术视频欧美日本| 国产精品一区二区三区四区久久| 精品欧美国产一区二区三| 精品国内亚洲2022精品成人| 91久久精品电影网| 国产精品精品国产色婷婷| 国产69精品久久久久777片| 高清视频免费观看一区二区 | 成人亚洲精品av一区二区| 国产毛片a区久久久久| 26uuu在线亚洲综合色| 久久午夜福利片| 国产在线一区二区三区精| 欧美日韩综合久久久久久| 久久久久久久久大av| 亚洲av免费高清在线观看| av专区在线播放| 日日啪夜夜撸| 啦啦啦中文免费视频观看日本| 超碰97精品在线观看| 久久久久国产网址| 国产成人免费观看mmmm| 亚洲成人久久爱视频| 日日摸夜夜添夜夜添av毛片| 婷婷六月久久综合丁香| 国产精品久久久久久精品电影小说 | 观看美女的网站| 欧美 日韩 精品 国产| 亚洲色图av天堂| 国产成人免费观看mmmm| 日韩一区二区三区影片| 久久鲁丝午夜福利片| 国产精品av视频在线免费观看| 日韩强制内射视频| 内地一区二区视频在线| 在线a可以看的网站| 五月玫瑰六月丁香| 97精品久久久久久久久久精品| 久久这里有精品视频免费| 汤姆久久久久久久影院中文字幕 | 国产高清三级在线| 国产精品福利在线免费观看| 大香蕉97超碰在线| 色5月婷婷丁香| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 丝袜喷水一区| 男女啪啪激烈高潮av片| av卡一久久| 在线观看人妻少妇| 蜜臀久久99精品久久宅男| 国产黄片视频在线免费观看| 青春草视频在线免费观看| 国产av在哪里看| 日韩av在线大香蕉| videos熟女内射| 黄色配什么色好看| 超碰97精品在线观看| 三级毛片av免费| 18禁动态无遮挡网站| 日日啪夜夜爽| 免费av观看视频| 人人妻人人澡人人爽人人夜夜 | 国产色婷婷99| 精品人妻一区二区三区麻豆| 欧美一级a爱片免费观看看| 内射极品少妇av片p| 国产有黄有色有爽视频| 亚洲精品亚洲一区二区| 搡女人真爽免费视频火全软件| 精品一区二区免费观看| 亚洲国产欧美在线一区| 成人午夜高清在线视频| 国产中年淑女户外野战色| 国产成人精品一,二区| 97超视频在线观看视频| 听说在线观看完整版免费高清| 又大又黄又爽视频免费| 亚洲国产精品专区欧美| 国产不卡一卡二| 丰满乱子伦码专区| 日日干狠狠操夜夜爽| av女优亚洲男人天堂| 久久久久久久国产电影| 尾随美女入室| 国产午夜福利久久久久久| 国产一区二区在线观看日韩| 天美传媒精品一区二区| 久久久久性生活片| 80岁老熟妇乱子伦牲交| 在线a可以看的网站| 少妇人妻一区二区三区视频| 2021天堂中文幕一二区在线观| 大陆偷拍与自拍| 男的添女的下面高潮视频| 日韩伦理黄色片| 精品一区在线观看国产| 久久久久九九精品影院| 亚洲精品中文字幕在线视频 | 人妻系列 视频| 亚洲三级黄色毛片| av福利片在线观看| 亚洲精品乱码久久久久久按摩| 麻豆久久精品国产亚洲av| 免费看a级黄色片| 97超视频在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 久久久久精品性色| 成年av动漫网址| 日本熟妇午夜| 日韩中字成人| 最近中文字幕高清免费大全6| 毛片女人毛片| 干丝袜人妻中文字幕| 免费黄频网站在线观看国产| 国产又色又爽无遮挡免| 永久免费av网站大全| 国产成人免费观看mmmm| 一个人免费在线观看电影| 国产老妇伦熟女老妇高清| 国产单亲对白刺激| 免费看不卡的av| 午夜福利高清视频| 黑人高潮一二区| 午夜免费激情av| 日本三级黄在线观看| 十八禁网站网址无遮挡 | 日韩一区二区三区影片| 成人一区二区视频在线观看| 国产精品一区二区在线观看99 | 亚洲18禁久久av| 日韩欧美精品免费久久| 伊人久久国产一区二区| 九九在线视频观看精品| 两个人视频免费观看高清| 国产精品久久久久久久久免| 亚洲人成网站在线观看播放| 99视频精品全部免费 在线| 国产毛片a区久久久久| 亚洲精品一二三| 成人欧美大片| 成人高潮视频无遮挡免费网站| 日本熟妇午夜| 只有这里有精品99| 国产精品爽爽va在线观看网站| 精品欧美国产一区二区三| 国产亚洲av片在线观看秒播厂 | 中文欧美无线码| 青青草视频在线视频观看| 色视频www国产| 中文资源天堂在线| 九草在线视频观看| 亚洲成人中文字幕在线播放| 丰满人妻一区二区三区视频av| 日韩av免费高清视频| 啦啦啦中文免费视频观看日本| 老司机影院成人| 日日啪夜夜爽| av天堂中文字幕网| 日韩成人av中文字幕在线观看| 丝瓜视频免费看黄片| 在线观看av片永久免费下载| 毛片一级片免费看久久久久| 丝袜喷水一区| 午夜福利高清视频| 男女边吃奶边做爰视频| 在现免费观看毛片| 99热这里只有精品一区| 麻豆成人av视频| 久久热精品热| 精品久久国产蜜桃| 能在线免费观看的黄片| 日本一本二区三区精品| 边亲边吃奶的免费视频| 久久精品久久精品一区二区三区| 国产亚洲一区二区精品| 久久99蜜桃精品久久| 国产伦精品一区二区三区视频9| 一级a做视频免费观看| 高清欧美精品videossex| 天堂影院成人在线观看| 黄色一级大片看看| www.色视频.com| av卡一久久| 99久久人妻综合| 久久精品国产亚洲av涩爱| 麻豆久久精品国产亚洲av| 国精品久久久久久国模美| 成年免费大片在线观看| 国产亚洲精品av在线| 国产黄频视频在线观看| 91久久精品国产一区二区成人| 国产乱人偷精品视频| 国产午夜精品久久久久久一区二区三区| 久久综合国产亚洲精品| 一级爰片在线观看| 99久久中文字幕三级久久日本| 一级黄片播放器| 国产成人精品久久久久久| 天天躁日日操中文字幕| 啦啦啦韩国在线观看视频| 亚洲精品乱码久久久久久按摩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 如何舔出高潮| 小蜜桃在线观看免费完整版高清| 黄色日韩在线| 亚洲av免费在线观看| 一区二区三区乱码不卡18| 国产成人a区在线观看| 人妻夜夜爽99麻豆av| 国产视频首页在线观看| 十八禁国产超污无遮挡网站| 1000部很黄的大片| 免费大片18禁| 精品久久久久久成人av| 国产男女超爽视频在线观看| 日韩制服骚丝袜av| 69av精品久久久久久| 人妻少妇偷人精品九色| 夜夜爽夜夜爽视频| 久久热精品热| 乱人视频在线观看| 高清毛片免费看| 身体一侧抽搐| 2021少妇久久久久久久久久久| 中文资源天堂在线| 日韩强制内射视频| 美女被艹到高潮喷水动态| 日韩欧美三级三区| av在线老鸭窝| 亚洲欧美精品专区久久| 一级毛片我不卡| 久久这里有精品视频免费| 蜜臀久久99精品久久宅男| 欧美一区二区亚洲| 少妇熟女欧美另类| 午夜免费男女啪啪视频观看| 国产乱人视频| 激情 狠狠 欧美| 内地一区二区视频在线| ponron亚洲| 性色avwww在线观看| 国内精品一区二区在线观看| 综合色丁香网| 国产在视频线在精品| 亚洲精品自拍成人| 女人十人毛片免费观看3o分钟| 婷婷色综合www| 亚洲不卡免费看| 看十八女毛片水多多多| 国产不卡一卡二| 一本久久精品| 国产午夜精品一二区理论片| 免费播放大片免费观看视频在线观看| 亚洲内射少妇av| 欧美xxxx性猛交bbbb| 色5月婷婷丁香| 久久这里只有精品中国| 日韩强制内射视频| 天堂影院成人在线观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品,欧美精品| 久久99热这里只频精品6学生| 午夜激情福利司机影院| 免费少妇av软件| 七月丁香在线播放| 成人二区视频| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 青青草视频在线视频观看| 亚洲成人一二三区av| 国产淫语在线视频| 男女啪啪激烈高潮av片| 成人午夜高清在线视频| 亚洲av在线观看美女高潮| 亚洲第一区二区三区不卡| 免费大片18禁| 国产伦一二天堂av在线观看| 国产综合精华液| 人妻一区二区av| 一边亲一边摸免费视频| 国产精品久久久久久久久免| 日本-黄色视频高清免费观看| 美女主播在线视频| 国产亚洲精品久久久com| 日本一本二区三区精品| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区 | 夜夜看夜夜爽夜夜摸| 亚洲精品日韩在线中文字幕| 国产黄色小视频在线观看| 免费在线观看成人毛片| videos熟女内射| 亚洲乱码一区二区免费版| 亚洲av免费高清在线观看| 日本熟妇午夜| 亚洲精品日韩av片在线观看| 高清欧美精品videossex| 成人美女网站在线观看视频| 欧美精品一区二区大全| 少妇的逼好多水| 非洲黑人性xxxx精品又粗又长| 中文字幕制服av| 亚洲精品一二三| av免费观看日本| 99久久精品国产国产毛片| 午夜视频国产福利| 日日撸夜夜添| 国产精品国产三级国产专区5o| videos熟女内射| 午夜日本视频在线| 亚洲最大成人手机在线| 亚洲成色77777| 日韩av在线大香蕉| 亚洲经典国产精华液单| 久久午夜福利片| 国产精品1区2区在线观看.| 亚洲精品影视一区二区三区av| 联通29元200g的流量卡| 日韩三级伦理在线观看| 日韩欧美一区视频在线观看 | 国产精品伦人一区二区| 哪个播放器可以免费观看大片| 国产老妇伦熟女老妇高清| 熟妇人妻久久中文字幕3abv| 国产在视频线在精品| 麻豆久久精品国产亚洲av| 日本av手机在线免费观看| 直男gayav资源| av播播在线观看一区| 亚洲aⅴ乱码一区二区在线播放| 青春草国产在线视频| 人人妻人人澡人人爽人人夜夜 | 亚洲欧洲日产国产| 久久久久久久国产电影| 亚洲电影在线观看av| 麻豆国产97在线/欧美| 人妻系列 视频| 一级毛片黄色毛片免费观看视频| 亚洲熟妇中文字幕五十中出| 国产淫语在线视频| 免费av毛片视频| 99久国产av精品| 夜夜看夜夜爽夜夜摸| 激情五月婷婷亚洲| 直男gayav资源| 你懂的网址亚洲精品在线观看| 国产精品综合久久久久久久免费| 少妇的逼好多水| 日日啪夜夜爽| 亚洲乱码一区二区免费版| 欧美成人a在线观看| 中文字幕久久专区| 日韩制服骚丝袜av| 亚洲人成网站在线播| 久久久久精品久久久久真实原创| a级毛色黄片| 亚洲精品成人久久久久久| a级毛色黄片| 国产精品综合久久久久久久免费| 视频中文字幕在线观看| 久久久久久久国产电影| 国产永久视频网站| 久久97久久精品| 成人一区二区视频在线观看| 美女主播在线视频| 精品一区二区三区视频在线| 亚洲,欧美,日韩| 一边亲一边摸免费视频| 最近最新中文字幕大全电影3| 波多野结衣巨乳人妻| 欧美高清成人免费视频www| 我的女老师完整版在线观看| 久久韩国三级中文字幕| 婷婷色av中文字幕| 麻豆久久精品国产亚洲av| 天天躁日日操中文字幕| 人妻一区二区av| 18禁在线播放成人免费| 91精品一卡2卡3卡4卡| 免费大片18禁| 色网站视频免费| 最近2019中文字幕mv第一页| eeuss影院久久| 国产在视频线在精品| 国产成人福利小说| 黄色配什么色好看| 99久国产av精品国产电影| 91午夜精品亚洲一区二区三区| 2021少妇久久久久久久久久久| 亚洲欧美一区二区三区黑人 | 亚洲av二区三区四区| 国产精品嫩草影院av在线观看| 亚洲经典国产精华液单| 国产精品久久久久久精品电影小说 | 又黄又爽又刺激的免费视频.| 亚洲av.av天堂| 亚洲三级黄色毛片| 91在线精品国自产拍蜜月| 全区人妻精品视频| 久久精品夜色国产| 精品久久久久久久久亚洲| 国产色爽女视频免费观看| 乱人视频在线观看| 国产高清不卡午夜福利| 老司机影院成人| 大话2 男鬼变身卡| 女人被狂操c到高潮| 亚洲av男天堂| 亚洲av中文字字幕乱码综合| 毛片一级片免费看久久久久| 日韩欧美 国产精品| 嘟嘟电影网在线观看| 99久久中文字幕三级久久日本| 国产综合懂色| 中国国产av一级| 夫妻性生交免费视频一级片| 秋霞在线观看毛片| 国产精品av视频在线免费观看| 又爽又黄a免费视频| xxx大片免费视频| 伊人久久精品亚洲午夜| 免费观看的影片在线观看| 2022亚洲国产成人精品| 伊人久久国产一区二区| 国产亚洲最大av| 人人妻人人澡人人爽人人夜夜 | 日本熟妇午夜| 久久国内精品自在自线图片| 欧美日韩在线观看h| 免费黄频网站在线观看国产| 日韩强制内射视频| 99视频精品全部免费 在线| 秋霞在线观看毛片| 免费av毛片视频| 中文资源天堂在线| 最后的刺客免费高清国语| 亚洲精品日韩在线中文字幕| 亚洲国产精品国产精品| 亚洲av电影在线观看一区二区三区 | 伦理电影大哥的女人| 成年人午夜在线观看视频 | 午夜福利视频1000在线观看| 国产精品国产三级专区第一集| 亚洲av电影不卡..在线观看| 亚州av有码| 久久久久久久久久成人| 国内精品宾馆在线| 欧美bdsm另类| av专区在线播放| 大片免费播放器 马上看| 男女边摸边吃奶| 亚洲精品一区蜜桃| 舔av片在线| 免费观看av网站的网址| 又爽又黄无遮挡网站| 丰满人妻一区二区三区视频av| 小蜜桃在线观看免费完整版高清| 国精品久久久久久国模美| 国产高潮美女av| 女的被弄到高潮叫床怎么办| 国产成人福利小说| 老司机影院毛片| 三级国产精品片| 日韩欧美三级三区| 黄色配什么色好看| 国产精品一区www在线观看| 热99在线观看视频| 国产又色又爽无遮挡免| 午夜福利视频1000在线观看| 久久99精品国语久久久| 最近最新中文字幕大全电影3| 日韩强制内射视频| 你懂的网址亚洲精品在线观看| 欧美xxxx性猛交bbbb| 久久99热这里只有精品18| 中文资源天堂在线| 日本欧美国产在线视频| 久久精品国产自在天天线| 看黄色毛片网站| 国语对白做爰xxxⅹ性视频网站| 在线观看av片永久免费下载| 极品少妇高潮喷水抽搐| 免费大片18禁| 中文天堂在线官网| 国产在视频线在精品| 精品一区在线观看国产| 国产av码专区亚洲av| 如何舔出高潮| 综合色av麻豆| 亚洲欧美精品自产自拍| 国产v大片淫在线免费观看| 夫妻午夜视频| h日本视频在线播放| 日本黄色片子视频| 有码 亚洲区| 欧美激情久久久久久爽电影| 亚洲国产色片| 美女国产视频在线观看| 国产一区二区三区综合在线观看 | 亚洲一级一片aⅴ在线观看| 午夜视频国产福利| eeuss影院久久| 久99久视频精品免费| 国产精品麻豆人妻色哟哟久久 | 女的被弄到高潮叫床怎么办| av免费在线看不卡| 小蜜桃在线观看免费完整版高清|