• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal tracking control for automatic transmission shift process

    2015-04-22 02:33:16WANGuoqiang萬(wàn)國(guó)強(qiáng)LIKeqiang李克強(qiáng)PEILing裴玲HUANGYing黃英ZHANGFujun張付軍
    關(guān)鍵詞:黃英主要參數(shù)萬(wàn)國(guó)

    WAN Guo-qiang(萬(wàn)國(guó)強(qiáng)), LI Ke-qiang(李克強(qiáng)), PEI Ling(裴玲),HUANG Ying(黃英),, ZHANG Fu-jun(張付軍)

    (1.State Key Laboratory of Automotive Safety and Energy,Tsinghua University, Beijing 100084, China;2.Laboratory for Integrated Power System Technology, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Optimal tracking control for automatic transmission shift process

    WAN Guo-qiang(萬(wàn)國(guó)強(qiáng))1, LI Ke-qiang(李克強(qiáng))1, PEI Ling(裴玲)2,HUANG Ying(黃英), ZHANG Fu-jun(張付軍)2

    (1.State Key Laboratory of Automotive Safety and Energy,Tsinghua University, Beijing 100084, China;2.Laboratory for Integrated Power System Technology, Beijing Institute of Technology, Beijing 100081, China)

    In order to improve the shift quality, a linear quadratic optimal tracking control algorithm for automatic transmission shift process is proposed. The dynamic equations of the shift process are derived using a Lagrange method. And a powertrain model is built in the Matlab/Simulink and verified by the measurements. Considering the shift jerk and friction loss during the shift process, the tracking trajectories of the turbine speed and output shaft speed are defined. Furthermore, the linear quadratic optimal tracking control performance index is proposed. Based on the Pontryagin’s minimum principle, the optimal control law of the shift process is presented. Finally, the simulation study of the 1-2 upshift process under different load conditions is carried out with the powertrain model. The simulation results demonstrate that the shift jerk and friction loss can be significantly reduced by applying the proposed optimal tracking control method.

    powertrain; automatic transmission; shift process; optimal tracking control

    Drivability and fuel economy arecontinuously emphasized during the development of automatic transmission[1-2]. The clutch-to-clutch shift control technology is the key enabler for a compact, light mass and low cost automatic transmission design, especially when the transmission has an extended number of speeds.

    To improve the shift quality, a number of researches have focused on the clutch-to-clutch shift control technologies. D. Cho developed a clutch-to-clutch shift controller based on the sliding mode control[3]. To compensate for the effects of the life cycle and build-to-build variations, K. Hebbale and C. Kao presented a model reference adaptive controller[4]. T. Minowa et al. proposed anH∞controller to restrain the torque fluctuation when shift characteristics change occurs[5]. To minimize the performance measure, A. Haj-Fraj and F. Pfeiffer presented a model-based optimal control approach using a dynamic programming method[6]. To overcome the unmodeled dynamics or the variations of system characteristics, J. O. Hahn et al. proposed a self-learning algorithm for the inertia phase[7]. S. Watechagit and K. Srinivasan presented a model-based sliding mode observer to provide on-line estimates of the clutch pressures[8]. To enable a precise pressure-based control and avoid the chattering effect, Xingyong Song and Zongxuan Sun designed a sliding-mode controller[9]. Using the concept of input-to-state stability, Bingzhao Gao et al. presented a clutch pressure observer to improve the estimation accuracy during the torque phase[10].

    To minimize the jerk and friction loss of shift process, a linear quadratic optimal tracking control method is proposed in this paper. The paper is organized as follows. A powertrain model is built and verified in Section 1. In Section 2, the optimal tracking control for automatic transmission shift process is proposed. Section 3 shows the simulation results. Conclusions are drawn in section 4.

    1 Powertrain model

    A powertrain system with automatic transmission consists of four components: engine, torque converter, planetary gearbox and output train, as shown in Fig.1. To analyze the shift process, the powertrain system can be simplified as a lumped mass multi-degree of freedom system. Each component of the powertrain can be considered as a rigid multibody subsystem. The rigid bodies are connected with each other by ideal rigid joints, clutches and force elements.

    CL—the lockup clutch; C1-C5—the clutch/brake; P1, P2, P3—the planetary gear set

    1.1 Engine

    For investigation of the shift process, the high-frequency vibrations of the engine can be neglected. Therefore, the engine can be modeled as a rotating rigid body. The indicated torque of engine can be described by the following equation

    Tin=mfHuηi

    (1)

    whereTinis the indicated torque of engine;mfis the fuel delivery per cycle;Huis the low heating value of diesel;ηiis the indicated thermal efficiency.

    The effective torque of engine can be described as

    Te=Tin-Tf

    (2)

    whereTeis the effective torque of engine;Tfis the friction torque of engine.

    The equation of motion of the engine crankshaft can be written as

    (3)

    where Ieisthemomentofinertiaofcrankshaft;ωeis the engine angular velocity;Tpis the pump torque.

    1.2 Torque converter

    The pump torque and turbine torque can be obtained by

    (4)

    Tt=kTp

    (5)

    whereλis the pump torque coefficient;ρis the fluid density;gis the acceleration of gravity;Dis the equivalent diameter of torque converter;neis the engine speed;Ttis the turbine torque;kis the torque ratio of torque converter.

    1.3 Planetary gearbox

    The planetary gearbox consists of three planetary gear sets, two clutches and three brakes as shown in Fig.1. By the engagement of the clutches/brakes in various combinations, the planetary sets act singly or together to provide five forward ranges, neutral, and reverse. In the paper, the gear upshift from the first to the second gear will be considered. C1 and C5 engage to attain the first gear. During the 1-2 shift process, solenoid A energizes and exhausts clutch C5. Solenoid B energizes and engages clutch C4. C1 and C4 engage to attain the second gear. Solenoid A and solenoid B are pressures proportional to current solenoids. Varying currents to these solenoids changes the applied pressures to specific clutches. The currents of the solenoids are controlled by the powertrain control module.

    Clutch C1 keeps engagement during the 1-2 shift process. To analyze the 1-2 shift process, the planetary gearbox can be further simplified as shown in Fig.2.

    Fig.2 Simplified planetary gearbox diagram

    1.3.1 Kinematics analysis

    According to the motion property equation of planetary gear train, the following equations are obtained

    (ki+1)ωPCi=ωSi+kiωRi(i=1,2,3)

    (6)

    (7)

    where kisthegearratiobetweentheringgearandsungear; iistheserialnumberoftheplanetaryset;ωPCis the planet carrier angular velocity;ωSis the sun gear angular velocity;ωRis the ring gear angular velocity;ωPis planet pinion angular velocity.

    Choosing the turbine angular velocityωtand the output shaft angular velocityωoas variables, according to Eqs.(6)(7),we obtain

    (8)

    1.3.2 Dynamic analysis based on the Lagrange method

    In the paper, the Lagrange method was applied for the dynamic analysis of the 1-2 upshift process. The input shaft angleφtand output shaft angleφoare chosen as the generalized coordinates, that isq1=φt,q2=φo.

    The virtual work of the system in terms of the virtual displacements is

    ∑δW=Tiδφt+TC4δφR2-TC5δφR3-Toδφo

    (9)

    where δWis the virtual work of the system;Tiis the input torque of gearbox;TC4is the friction torque of clutch C4;TC5is the friction torque of clutch C5;Tois the output torque of gearbox;φR2is the angle of R2;φR3is the angle of R3.

    The generalized forcesQ1,Q2are defined as

    (10)

    (11)

    Lagrangian functionLis defined as

    L=K-V

    (12)

    whereKis the total kinetic energy of the system;Vis the total potential energy of the system.

    Each planetary set has four pinions. In this case, there is no potential energy change due to the rotation of the pinions around the sun. Thus,V=0.

    The kinetic energy of the system is

    (13)

    where IS2S3isthemomentofinertiaofS2,S3andtheconnectedshafts; IR2isthemomentofinertiaofR2andtheconnectedshaft; IPC2R3isthemomentofinertiaofPC2,R3andtheconnectedshafts;IPC3isthemomentofinertiaofPC3andtheconnectedshafts; IP2andIP3aretheequivalentmomentofinertiaofP2andP3.

    Lagrange’sequationforthesystemis

    (14)

    (15)

    Theequationofmotionoftheturbineshaftcanbedescribedas

    (16)

    whereIttheequivalentmomentofinertiaofturbineshaft.

    NotethatclutchC4andclutchC5arebrakes,theirpassivefrictionplatesarefixed.ωR2andωR3are the relative speed of clutch C4 and C5, respectively. In this paper, the clutch C4 is taken as an example to demonstrate the torque characteristics of the wet clutch.

    WhenωR2≠0, the clutch C4 slips. The friction torque is calculated as

    TC4=-sgn(ωR2)μkApzrep

    (17)

    whereμkis the dynamic friction coefficient;Apis the area of piston surface;zis the number of friction surfaces;reis the equivalent friction radius;pis the clutch pressure.

    Thedynamic friction coefficientμkis specified as a tabulated discrete function of the relative angular speedωR2.

    μk=0.063 1+0.050 4exp (-0.033ωR2)

    (18)

    WhenωR2=0, the clutch C4 sticks. The static friction torque can be calculated as

    TC4=μsApzrep

    (19)

    whereμsis the static friction coefficient.

    1.4 Output train

    The equation of motion of the wheels can be indicated as

    (20)

    where Iwisthemomentofinertiaofthewheels;ωwis the wheel angular velocity;iois the transmission ratio of the rear differential;Tois the output torque of gearbox;Twis the output torque of wheels.

    TL=(Froll+Fwind+Fincl)r

    (21)

    whereFrollis the rolling force;Fwindis the wind force;Finclis the inclination force;ris wheel radius.

    The equation of motion of the output train with the vehicle mass can be written as

    (22)

    where misvehiclemass.

    Thewheelangularvelocityandoutputshaftangularvelocityhasthefollowingrelation

    ωo=ioωw

    (23)

    1.5 Model verification

    To develop and investigate the optimal tracking control for the shift process of automatic transmission, the powertrain system is built in the Matlab/Simulink. A two-stage, torque phase and inertia phase, control strategy is used during the 1-2 shift process. In the torque phase the open-loop control of the clutch pressure was applied[9], while in the inertia phase the feedback control based on the predetermined target turbine speed was adopted. The comparison between simulations performed with the presented model and the measurements carried out on the test bench during the 1-2 shift process under different load conditions shows a very good agreement, as shown in Fig.3 and Fig.4. Therefore the powertrain model can be used to develop a model-based optimal tracking control for the shift process. Moreover, the simulation results of the two-stage control will be regarded as the reference in the following section.

    MRI試驗(yàn)主要參數(shù):重復(fù)時(shí)間TR=1000 ms;矩陣256×256;信號(hào)接收帶寬SW=40 kHz;采樣次數(shù)NS=4;根據(jù)CPMG序列測(cè)得的T2值,選擇回波時(shí)間TE=1 ms進(jìn)行成像,采集數(shù)據(jù),同時(shí),通過(guò)調(diào)整MSE序列中的選層梯度、相位編碼梯度和頻率編碼梯度,獲取樣品側(cè)視成像數(shù)據(jù)[11]。

    Fig.3 Comparison of simulations and measurements, TL=750 N·m

    Fig.4 Comparison of simulations and measurements, TL=1 500 N·m

    2 Optimal tracking control for shift process

    In order to minimize the shift jerk and friction loss, an optimal tracking control algorithm is developed for the inertia phase during the shift process. The control strategy during the torque phase still uses the open-loop control of clutch pressure.

    2.1 State space representation

    It should be noted that the clutch C4 slips during the inertia phase, while the clutch C5 is supposed to be disengaged andTC5is set to zero[11]. Therefore, the dynamic equations of planetary gearbox can be written as

    (24)

    According to Eqs. (16) (20) (22)-(24), the equations of motion of the gearbox during the inertia phase can be concluded as

    (25)

    The dynamics of the 1-2 shift process can be described byωtandωo. Then the state vector is defined as

    (26)

    Introducing the control vector consisting of the turbine torque TtandthefrictiontorqueofclutchC4 TC4

    (27)

    Theequationsofmotionofthepowertrainmodelcanbeformulatedas

    (28)

    (29)

    Therefore,thefollowingstatespaceequationcanbeobtained

    (30)

    In order to eliminate theinfluence of disturbanceΓ, assuming that

    (31)

    (32)

    uo=-B-1Γ

    (33)

    then the system can be written as

    (34)

    2.2 Problem formulation

    The shift jerk is a general index for evaluating the shift comfort. The shift jerk is defined as the derivative of the longitudinal acceleration with respect to time.

    (35)

    where jistheshiftjerk; aisthelongitudinalacceleration.

    Eq.(35)showsthattheshiftjerkcanbeminimizedaslongasthevalueofωois fixed or variable in a fixed rate. In this paper, the tracking trajectory of the output shaft angular velocityz1is set as

    (36)

    whereωo0is the initial value of the output speed in the inertia phase;aois the desired vehicle acceleration.

    The friction loss is defined as the work done by the relative slip of the driving and driven friction plates during clutch engaging process.

    (37)

    where WC4isthefrictionlossofclutchC4.

    Thetrackingtrajectoryoftheoutputshaftangularvelocityhasbeendetermined.Therefore,thecontrolproblemtominimizethefrictionlosscanbetransformedintoaturbinespeedtrackingcontrolproblem.Alargenumberofresearchesshowthatafeedbackcontroloftheturbinespeedcansignificantlyimprovetheshiftquality.Generally,thedesiredturbinespeedissettovaryinafixedrate[10].Thereby,thetrackingtrajectoryoftheturbinespeedangularvelocityz2issetas

    z2(t)=ωt0-αt0t

    (38)

    whereωt0is the initial value of the turbine speed in the inertia phase;αt0is the desired turbine angular acceleration.

    The expected output z(t) is defined as

    (39)

    In the paper, the control objection of the optimal tracking control is to ensure that y(t) can accurately track z(t) with the minimal control energy consumption. The performance index of the optimal tracking control during the shift process is formulated as

    (40)

    where Q and R are the weight matrices.

    The shift quality control problem has been transformed to a linear quadratic optimal tracking control problem, that is

    (41)

    2.3 Optimal tracking control law

    The linear quadratic optimal tracking control problem is solved by the Pontryagin’s minimum principle[12]. The optimal control law is obtained

    (42)

    P(t) satisfies the matrix differential Riccati equation

    (43)

    In the paper, an integrated powertrain control is proposed to achieve the optimal control law. The engine is controlled by the turbine torque closed loop control based on the PID algorithm. Meanwhile, the transmission is controlled by the clutch pressure open loop control according to Eqs.(17)(19).

    3 Results

    In the following, some results achieved by applying the proposed optimal tracking control law to the verified powertrain simulation model are presented. The reference control is the same one used to verify the simulation model.

    Fig.5 shows the shift jerk and friction loss in the case that the load torque is 750 N·m. With the reference control, the maximum positive jerk is 28 m/s3and the maximum negative jerk is -14 m/s3. Additionally, the friction loss is 4 300 J. As expected, by applying the optimal tracking control, the maximum positive jerk and negative jerk are reduced to 23 m/s3and -8 m/s3, respectively. Furthermore, the friction loss is reduced to 3 300 J.

    Fig.5 Results of TL=750 N·m

    Fig.6 shows the results for the case that the load torque is 1 500 N·m. By the application of the reference control, the maximum positive jerk is 25 m/s3and the maximum negative jerk is -12 m/s3. Additionally, the friction loss is 6400J. While, applying the optimal tracking control algorithm, the maximum positive jerk and negative jerk are only 15 m/s3and -9 m/s3, which apparently improve the shifting comfort. Furthermore, the friction loss is reduced to 5 300 J, which improves the life expectancy of the friction discs.

    The results demonstrate that the shift jerk and friction loss can be significantly reduced by applying the proposed optimal tracking control algorithm. Moreover, the proposed control approach is found to be robust under different load cases.

    Fig.6 Results of TL=1 500 N·m

    4 Conclusions

    An optimal tracking control algorithm of the shift process for the vehicle with automatic transmissions was proposed in this paper. Based on the dynamic analysis of the shift process using the Lagrange method, a mechanical model of the powertrain system is developed and verified. Considering the shift jerk and friction loss during the shift process, the turbine speed and output shaft speed tracking trajectories are defined. Then the shift quality control problem has been transformed to a linear quadratic optimal tracking control problem. The problem has been solved by the Pontryagin’s minimum principle.

    The optimal control law of the shift process derived in this paper consists of both a feedforward and a feedback portion. The feedforward control is to match the load torque. Meanwhile, the feedback control is to ensure that the system can accurately track the target trajectories.

    The simulation study of the 1-2 upshift process under different load conditionsis carried out based on the verified powertrain model. The simulation results show that the shift jerk and friction loss can be significantly reduced by application of the proposed optimal tracking control.

    [1] Sun Z, Hebbale K. Challenges and opportunities in automotive transmission control[C]// Proceedings of the 2005 American Control Conference, Portland, Oregon, USA, 2005: 3284-3289.

    [2] Greiner J, Grumbach M. Automatic transmission systems beyond 2020: challenges and competition[C]// SAE 2013 World Congress & Exhibition, Detroit, Michigan, USA, 2013: 2013-01-1273.

    [3] Cho D. Nonlinear control method for automotive powertrain system[D]. Massachusetts: Massachusetts Institute of Technology, 1987.

    [4] Hebbale K, Kao C. Adaptive control of shifts in automatic transmissions[C]// Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, California, USA, 1995: 171-182.

    [5] Minowa T, Ochi T, Kuroiwa H, et al. Smooth gear shift control technology for clutch-to-clutch shifting[C]// International Congress and Exposition, Detroit, Michigan, USA, 1999: 1999-01-1051.

    [6] Haj-Fraj A, Pfeiffer F. Optimal control of gear shift operations in automatic transmissions[J]. Journal of the Franklin Institute, 2001, 338(2-3): 371-390.

    [7] Hahn J O, Hur J W, Choi G W, et al. Self- learning approach to automatic transmission shift control in a commercial construction vehicle during the inertia phase[J]. Proceeding of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(11): 909-919.

    [8] Watechagit S, Srinivasan K. Implementation of on-line clutch pressure estimation for stepped automatic transmission[C]// Proceedings of the 2005 American Control Conference, Portland, Oregon, USA, 2005: 1607-1612.

    [9] Song X, Sun Z. Pressure-based clutch control for automotive transmission using a sliding-mode controller[J]. Transactions of the IEEE/ASME on Mechatronics, 2012, 17(3): 534-546.

    [10] Gao B, Chen H, Tian L, et al. A nonlinear clutch pressure observer for automatic transmission: considering drive-shaft compliance[J]. Transactions of the ASME, Journal of Dynamics Systems, Measurement, and Control, 2012, 134(1): 11-18.

    [11] Tokura T, Asami T, Hasegawa Y, et al. Development of smooth up-shift control technology for automatic transmissions with integrated control of engine and automatic transmission[C]// SAE World Congress & Exhibition, Detroit, Michigan, USA, 2007: 2007-01-1310.

    [12] Naidu D S. Optimal control systems[M]. Boca Raton, FL: CRC Press, 2002: 125-141.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0405

    U 27 Document code: A Article ID: 1004- 0579(2015)04- 0458- 08

    Received 2014-10- 31

    Supported by the National Natural Science Foundation of China(51475043)

    E-mail: hy111@bit.edu.cn

    猜你喜歡
    黃英主要參數(shù)萬(wàn)國(guó)
    生活垃圾分類對(duì)垃圾主要參數(shù)的影響分析
    有機(jī)硅流化床氣體分布板主要參數(shù)設(shè)計(jì)
    黃英推出傾心之作《奶奶的蒲扇》
    青年歌聲(2019年12期)2019-12-17 06:49:54
    春節(jié)700萬(wàn)國(guó)人出境游
    馬萬(wàn)國(guó)作品
    紀(jì)念卡拉斯,是紀(jì)念一種精神——聽黃英致敬卡拉斯音樂會(huì)
    歌劇(2017年4期)2017-05-17 04:06:56
    碎邊剪剪切特性分析與主要參數(shù)確定
    “萬(wàn)國(guó)茶幫”拜媽祖
    海峽姐妹(2016年7期)2016-02-27 15:21:38
    影響輪軌粘滑振動(dòng)的主要參數(shù)分析
    黃英 不改野路子
    音樂周刊(2011年1期)2011-08-16 03:32:14
    久久99热这里只有精品18| 欧美一级毛片孕妇| av福利片在线| 麻豆成人午夜福利视频| 久久久久九九精品影院| 亚洲五月天丁香| 国产三级黄色录像| 国产三级黄色录像| 午夜亚洲福利在线播放| 欧美在线一区亚洲| 欧美成狂野欧美在线观看| 国产av一区在线观看免费| 成人高潮视频无遮挡免费网站| 12—13女人毛片做爰片一| 久久中文看片网| 亚洲国产欧美一区二区综合| 国产片内射在线| 老司机在亚洲福利影院| av天堂在线播放| 欧美一区二区国产精品久久精品 | bbb黄色大片| 国产亚洲av嫩草精品影院| 男女视频在线观看网站免费 | 人人妻人人澡欧美一区二区| 我要搜黄色片| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 亚洲精品在线观看二区| 久久久久久久午夜电影| 欧美色视频一区免费| 国产高清videossex| 欧美激情久久久久久爽电影| 美女午夜性视频免费| 欧美日韩亚洲综合一区二区三区_| 无人区码免费观看不卡| 国产精品电影一区二区三区| 18禁观看日本| 舔av片在线| 久久这里只有精品19| 亚洲精品av麻豆狂野| 色哟哟哟哟哟哟| 亚洲av美国av| 久9热在线精品视频| 50天的宝宝边吃奶边哭怎么回事| 欧美一区二区精品小视频在线| 一进一出好大好爽视频| 亚洲国产欧美一区二区综合| 99热这里只有是精品50| 欧美三级亚洲精品| 18禁国产床啪视频网站| 中国美女看黄片| 天堂影院成人在线观看| 黄色成人免费大全| 久久婷婷人人爽人人干人人爱| 日韩av在线大香蕉| 精品午夜福利视频在线观看一区| 成年版毛片免费区| 久久亚洲精品不卡| 母亲3免费完整高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 色av中文字幕| 国产成人精品久久二区二区免费| 一二三四在线观看免费中文在| 亚洲熟女毛片儿| 色哟哟哟哟哟哟| 亚洲成人精品中文字幕电影| 国产精品久久久人人做人人爽| 天堂√8在线中文| 男女之事视频高清在线观看| 禁无遮挡网站| 国内精品久久久久久久电影| 欧美中文综合在线视频| 久久久精品大字幕| 又黄又粗又硬又大视频| 亚洲人成网站在线播放欧美日韩| 亚洲真实伦在线观看| 久久香蕉国产精品| 美女 人体艺术 gogo| 亚洲中文日韩欧美视频| 神马国产精品三级电影在线观看 | 亚洲精品色激情综合| 午夜福利免费观看在线| 桃色一区二区三区在线观看| 国产黄片美女视频| 国产一区二区在线观看日韩 | 法律面前人人平等表现在哪些方面| 一级毛片女人18水好多| 老汉色∧v一级毛片| 国产精品九九99| 国产麻豆成人av免费视频| 国产成人精品久久二区二区免费| 欧美在线黄色| а√天堂www在线а√下载| www国产在线视频色| 曰老女人黄片| 日韩欧美一区二区三区在线观看| 亚洲人成电影免费在线| 午夜日韩欧美国产| 人人妻人人澡欧美一区二区| 色精品久久人妻99蜜桃| 最新美女视频免费是黄的| 一区二区三区激情视频| 午夜免费观看网址| 后天国语完整版免费观看| 99精品在免费线老司机午夜| 精品久久久久久,| 99国产精品一区二区蜜桃av| 夜夜躁狠狠躁天天躁| 免费在线观看影片大全网站| 制服丝袜大香蕉在线| 成人三级做爰电影| 国产精品98久久久久久宅男小说| 老汉色av国产亚洲站长工具| 又爽又黄无遮挡网站| 婷婷亚洲欧美| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器 | 欧美成人一区二区免费高清观看 | 国产片内射在线| 欧美日韩瑟瑟在线播放| 好男人电影高清在线观看| 五月玫瑰六月丁香| 日日干狠狠操夜夜爽| av福利片在线| 香蕉久久夜色| 91麻豆精品激情在线观看国产| 亚洲欧美日韩高清专用| 精品久久久久久久人妻蜜臀av| 2021天堂中文幕一二区在线观| 狠狠狠狠99中文字幕| 高清在线国产一区| 精品不卡国产一区二区三区| 精华霜和精华液先用哪个| 国产黄色小视频在线观看| 亚洲人与动物交配视频| 中文字幕最新亚洲高清| 又紧又爽又黄一区二区| 在线永久观看黄色视频| 免费看十八禁软件| www.熟女人妻精品国产| 激情在线观看视频在线高清| 亚洲国产看品久久| 欧美在线一区亚洲| 国产视频内射| 波多野结衣巨乳人妻| 妹子高潮喷水视频| 天堂动漫精品| 国产亚洲av嫩草精品影院| 91老司机精品| 日韩中文字幕欧美一区二区| 美女免费视频网站| 亚洲人成77777在线视频| 国产精品久久视频播放| 免费看日本二区| 伊人久久大香线蕉亚洲五| 亚洲熟妇中文字幕五十中出| 在线观看午夜福利视频| 老司机午夜十八禁免费视频| 看黄色毛片网站| 一二三四在线观看免费中文在| 亚洲欧美日韩无卡精品| 久久精品综合一区二区三区| 亚洲国产欧美一区二区综合| 国产成人一区二区三区免费视频网站| 91老司机精品| 亚洲电影在线观看av| 亚洲熟妇中文字幕五十中出| 欧美zozozo另类| 91麻豆av在线| 成人高潮视频无遮挡免费网站| 亚洲成人精品中文字幕电影| 91成年电影在线观看| 99riav亚洲国产免费| 伦理电影免费视频| 黑人巨大精品欧美一区二区mp4| 丰满人妻一区二区三区视频av | 国产精华一区二区三区| www.精华液| 国语自产精品视频在线第100页| 久久精品人妻少妇| 91麻豆av在线| 午夜日韩欧美国产| 大型黄色视频在线免费观看| 国内毛片毛片毛片毛片毛片| 久久伊人香网站| 麻豆久久精品国产亚洲av| 丝袜美腿诱惑在线| 正在播放国产对白刺激| 亚洲av成人不卡在线观看播放网| 91麻豆av在线| 一个人免费在线观看的高清视频| 黄片大片在线免费观看| 亚洲第一电影网av| 亚洲欧美精品综合一区二区三区| 村上凉子中文字幕在线| av视频在线观看入口| 蜜桃久久精品国产亚洲av| 在线a可以看的网站| 亚洲精品久久成人aⅴ小说| 国产成年人精品一区二区| 免费搜索国产男女视频| 亚洲人成伊人成综合网2020| 午夜精品一区二区三区免费看| 精品不卡国产一区二区三区| 草草在线视频免费看| 国产成人精品无人区| 亚洲免费av在线视频| 亚洲午夜理论影院| 999久久久国产精品视频| 天堂√8在线中文| 午夜福利视频1000在线观看| 黄色丝袜av网址大全| 国产精品99久久99久久久不卡| 久久精品aⅴ一区二区三区四区| 日日干狠狠操夜夜爽| 50天的宝宝边吃奶边哭怎么回事| 两个人免费观看高清视频| 亚洲成人久久爱视频| 手机成人av网站| 日韩三级视频一区二区三区| 亚洲第一电影网av| 午夜免费成人在线视频| www.www免费av| 国产熟女xx| 日韩欧美三级三区| 成人国语在线视频| 老汉色∧v一级毛片| 亚洲av熟女| 一级毛片精品| 国产蜜桃级精品一区二区三区| 很黄的视频免费| 午夜两性在线视频| 国产亚洲精品久久久久5区| 日本一本二区三区精品| 色在线成人网| 免费在线观看黄色视频的| 白带黄色成豆腐渣| videosex国产| 午夜精品一区二区三区免费看| 精华霜和精华液先用哪个| 别揉我奶头~嗯~啊~动态视频| www日本在线高清视频| 十八禁网站免费在线| 精品欧美一区二区三区在线| 精品少妇一区二区三区视频日本电影| 久久久久久国产a免费观看| 中文字幕精品亚洲无线码一区| 老熟妇乱子伦视频在线观看| 久久中文字幕人妻熟女| 久久热在线av| 久久婷婷人人爽人人干人人爱| 很黄的视频免费| 欧美三级亚洲精品| 我要搜黄色片| 亚洲午夜理论影院| 少妇被粗大的猛进出69影院| 老司机午夜福利在线观看视频| 妹子高潮喷水视频| 男女视频在线观看网站免费 | 少妇被粗大的猛进出69影院| 又大又爽又粗| 精品国内亚洲2022精品成人| 久久久久久人人人人人| 久久精品aⅴ一区二区三区四区| 国产精品av久久久久免费| 女警被强在线播放| 欧美一级a爱片免费观看看 | 久久九九热精品免费| 91老司机精品| 久久久久久人人人人人| 琪琪午夜伦伦电影理论片6080| 国产成人一区二区三区免费视频网站| 中文字幕久久专区| 国产精品综合久久久久久久免费| 久久久久久大精品| 午夜福利成人在线免费观看| 国产成人系列免费观看| 国产成人av教育| 日本熟妇午夜| 国产91精品成人一区二区三区| 久久香蕉激情| 成人欧美大片| 99久久久亚洲精品蜜臀av| 麻豆国产97在线/欧美 | 脱女人内裤的视频| 亚洲 欧美 日韩 在线 免费| 久久久精品大字幕| 国产精品影院久久| 99国产综合亚洲精品| 97超级碰碰碰精品色视频在线观看| 搡老熟女国产l中国老女人| 婷婷六月久久综合丁香| 嫁个100分男人电影在线观看| 久久久久久久久免费视频了| 亚洲 欧美 日韩 在线 免费| av欧美777| 男插女下体视频免费在线播放| 看免费av毛片| 每晚都被弄得嗷嗷叫到高潮| 90打野战视频偷拍视频| 国产成人欧美在线观看| 亚洲最大成人中文| 色综合亚洲欧美另类图片| 91国产中文字幕| 国产激情偷乱视频一区二区| 亚洲真实伦在线观看| 亚洲七黄色美女视频| 伦理电影免费视频| 老司机靠b影院| 精品久久久久久久毛片微露脸| 亚洲第一电影网av| 一a级毛片在线观看| 欧美3d第一页| 久久人人精品亚洲av| 免费在线观看黄色视频的| 亚洲中文字幕一区二区三区有码在线看 | 国产一区二区在线av高清观看| 国产aⅴ精品一区二区三区波| 午夜福利欧美成人| 国产成人欧美在线观看| 欧美日本亚洲视频在线播放| 成年免费大片在线观看| 亚洲 国产 在线| 香蕉国产在线看| 午夜两性在线视频| 九色成人免费人妻av| 国产成人aa在线观看| 免费在线观看视频国产中文字幕亚洲| 18禁美女被吸乳视频| 亚洲成人久久爱视频| 好看av亚洲va欧美ⅴa在| 日本 av在线| tocl精华| 国产亚洲精品一区二区www| 久久99热这里只有精品18| x7x7x7水蜜桃| 国产久久久一区二区三区| 熟女少妇亚洲综合色aaa.| 天天一区二区日本电影三级| 国产亚洲精品第一综合不卡| 午夜免费激情av| 男男h啪啪无遮挡| 国产三级在线视频| 国模一区二区三区四区视频 | 一进一出抽搐动态| 超碰成人久久| 国产不卡一卡二| 桃红色精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| 非洲黑人性xxxx精品又粗又长| 亚洲av五月六月丁香网| 国产av不卡久久| 久久久久久亚洲精品国产蜜桃av| 精品不卡国产一区二区三区| 女生性感内裤真人,穿戴方法视频| 首页视频小说图片口味搜索| 亚洲专区国产一区二区| 久久久久久国产a免费观看| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品久久久久久毛片| 精品久久久久久久末码| 变态另类成人亚洲欧美熟女| 这个男人来自地球电影免费观看| 一区二区三区激情视频| 91国产中文字幕| 亚洲精品在线美女| 后天国语完整版免费观看| 亚洲精品中文字幕在线视频| 亚洲成人久久爱视频| 亚洲专区中文字幕在线| 午夜激情福利司机影院| 精品人妻1区二区| 亚洲人成伊人成综合网2020| 亚洲欧美日韩无卡精品| 国产v大片淫在线免费观看| 成人三级黄色视频| 少妇的丰满在线观看| 欧美av亚洲av综合av国产av| 特大巨黑吊av在线直播| av欧美777| 日本在线视频免费播放| 国产精品一及| 国产精品一区二区免费欧美| 岛国视频午夜一区免费看| 91老司机精品| 久久久久久久午夜电影| 91在线观看av| 日本a在线网址| 岛国在线观看网站| 免费人成视频x8x8入口观看| av福利片在线观看| 午夜免费激情av| 国产精品久久久久久久电影 | 亚洲九九香蕉| 欧美性长视频在线观看| 亚洲国产精品成人综合色| 欧美不卡视频在线免费观看 | 国内少妇人妻偷人精品xxx网站 | 特级一级黄色大片| 国产成人精品无人区| 午夜激情av网站| 一边摸一边抽搐一进一小说| 动漫黄色视频在线观看| 麻豆国产av国片精品| 欧美一区二区精品小视频在线| 热99re8久久精品国产| 婷婷精品国产亚洲av在线| 亚洲免费av在线视频| 亚洲国产精品999在线| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产清高在天天线| 精品国产乱子伦一区二区三区| 长腿黑丝高跟| 欧美高清成人免费视频www| 欧美日韩亚洲综合一区二区三区_| 不卡av一区二区三区| 亚洲一码二码三码区别大吗| 国产亚洲精品久久久久久毛片| 制服诱惑二区| 久久久久亚洲av毛片大全| 欧美黄色淫秽网站| 亚洲成人精品中文字幕电影| 午夜成年电影在线免费观看| 天堂动漫精品| 国产亚洲精品综合一区在线观看 | 国产亚洲精品久久久久久毛片| 两性夫妻黄色片| 老司机靠b影院| 午夜激情福利司机影院| 国产在线观看jvid| www.熟女人妻精品国产| 亚洲熟妇中文字幕五十中出| 国产亚洲精品av在线| 国产亚洲精品久久久久5区| 婷婷亚洲欧美| 欧美乱妇无乱码| 伊人久久大香线蕉亚洲五| 欧美丝袜亚洲另类 | av视频在线观看入口| 一二三四在线观看免费中文在| 国产亚洲av嫩草精品影院| 国内少妇人妻偷人精品xxx网站 | 青草久久国产| 国产精品久久久久久久电影 | 国模一区二区三区四区视频 | 久久香蕉国产精品| 女人爽到高潮嗷嗷叫在线视频| 男女之事视频高清在线观看| 麻豆成人av在线观看| 成年人黄色毛片网站| 91字幕亚洲| 国产69精品久久久久777片 | 欧美成人一区二区免费高清观看 | 免费高清视频大片| 中文资源天堂在线| 亚洲国产精品成人综合色| 中文亚洲av片在线观看爽| 国产欧美日韩一区二区精品| 人人妻人人澡欧美一区二区| www.精华液| 中文字幕人妻丝袜一区二区| 欧美乱码精品一区二区三区| 亚洲黑人精品在线| 成人特级黄色片久久久久久久| 免费在线观看黄色视频的| av中文乱码字幕在线| 亚洲成a人片在线一区二区| 巨乳人妻的诱惑在线观看| 天堂影院成人在线观看| 国产午夜精品久久久久久| 久久久久免费精品人妻一区二区| 亚洲国产欧美一区二区综合| 国产一区二区三区视频了| 免费在线观看成人毛片| 男女做爰动态图高潮gif福利片| 高潮久久久久久久久久久不卡| 成在线人永久免费视频| 亚洲专区国产一区二区| 国产成人aa在线观看| 一级a爱片免费观看的视频| 一本精品99久久精品77| a级毛片a级免费在线| 国产乱人伦免费视频| 给我免费播放毛片高清在线观看| av中文乱码字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久黄片| 黑人操中国人逼视频| 大型av网站在线播放| 妹子高潮喷水视频| 欧美黄色淫秽网站| 国产精品免费一区二区三区在线| 成人一区二区视频在线观看| 狠狠狠狠99中文字幕| 亚洲熟女毛片儿| 久久这里只有精品19| 日韩精品免费视频一区二区三区| 日韩大尺度精品在线看网址| 免费看美女性在线毛片视频| 午夜两性在线视频| 日本撒尿小便嘘嘘汇集6| 国产精品av视频在线免费观看| 脱女人内裤的视频| 岛国在线免费视频观看| 人妻夜夜爽99麻豆av| 欧美中文日本在线观看视频| 岛国视频午夜一区免费看| 91在线观看av| 日韩高清综合在线| 久久婷婷成人综合色麻豆| 久久久国产成人精品二区| 久久精品国产清高在天天线| 91在线观看av| 国产成人影院久久av| 国产精品影院久久| 成人18禁在线播放| 久久精品综合一区二区三区| 国产精品一区二区精品视频观看| 18禁黄网站禁片午夜丰满| 亚洲美女黄片视频| 日本一本二区三区精品| 免费观看人在逋| 欧美三级亚洲精品| 少妇的丰满在线观看| 国产成年人精品一区二区| 成人永久免费在线观看视频| 给我免费播放毛片高清在线观看| 欧美av亚洲av综合av国产av| 欧美一级a爱片免费观看看 | 又紧又爽又黄一区二区| 老司机午夜十八禁免费视频| 国产私拍福利视频在线观看| 黑人操中国人逼视频| 丝袜人妻中文字幕| 男女午夜视频在线观看| 九色国产91popny在线| 国内毛片毛片毛片毛片毛片| 动漫黄色视频在线观看| 成年女人毛片免费观看观看9| 99精品欧美一区二区三区四区| 特级一级黄色大片| 真人一进一出gif抽搐免费| av国产免费在线观看| 精品国内亚洲2022精品成人| 99国产精品一区二区蜜桃av| 亚洲全国av大片| 蜜桃久久精品国产亚洲av| 欧美日韩中文字幕国产精品一区二区三区| 亚洲色图av天堂| 狂野欧美白嫩少妇大欣赏| 丰满的人妻完整版| 国产午夜精品论理片| 毛片女人毛片| 国产真人三级小视频在线观看| 国产精品电影一区二区三区| 母亲3免费完整高清在线观看| www.自偷自拍.com| 国产av一区在线观看免费| 中文字幕熟女人妻在线| 中文亚洲av片在线观看爽| 国产成人欧美在线观看| 日韩三级视频一区二区三区| 精品福利观看| 精品一区二区三区四区五区乱码| 免费电影在线观看免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 超碰成人久久| 一级作爱视频免费观看| 国产精品av视频在线免费观看| 日韩欧美在线乱码| 十八禁人妻一区二区| 久久久国产欧美日韩av| 亚洲在线自拍视频| 免费人成视频x8x8入口观看| 神马国产精品三级电影在线观看 | 中文字幕熟女人妻在线| 欧美三级亚洲精品| 精品日产1卡2卡| 欧美性猛交黑人性爽| 亚洲人成网站在线播放欧美日韩| 欧美中文日本在线观看视频| 国产黄a三级三级三级人| 白带黄色成豆腐渣| 日本撒尿小便嘘嘘汇集6| 五月玫瑰六月丁香| 白带黄色成豆腐渣| 国产视频内射| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品亚洲一级av第二区| 国产不卡一卡二| bbb黄色大片| avwww免费| 国产精品 欧美亚洲| 亚洲激情在线av| 一级毛片高清免费大全| 久久精品国产亚洲av高清一级| 亚洲国产高清在线一区二区三| 三级毛片av免费| 亚洲成人中文字幕在线播放| 亚洲第一电影网av| 亚洲熟妇熟女久久| 国产成人精品久久二区二区免费| 亚洲aⅴ乱码一区二区在线播放 | 舔av片在线| 婷婷亚洲欧美| 国产欧美日韩一区二区精品| 精品人妻1区二区| 成人亚洲精品av一区二区| 欧美黑人欧美精品刺激| 国产激情偷乱视频一区二区| av在线天堂中文字幕| 变态另类成人亚洲欧美熟女| 欧美成狂野欧美在线观看| 成人国产一区最新在线观看|