• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New auto color correction algorithm for microscopic imaging system①

    2015-04-17 06:27:02JiangGangyi蔣剛毅
    High Technology Letters 2015年3期
    關(guān)鍵詞:剛毅

    Jiang Gangyi (蔣剛毅)

    (*School of Information Science and Engineering, Ningbo University, Ningbo 315211, P.R.China)(**National Key Lab of Software New Technology, Nanjing University, Nanjing 210023, P.R.China)

    ?

    New auto color correction algorithm for microscopic imaging system①

    Jiang Gangyi (蔣剛毅)②

    (*School of Information Science and Engineering, Ningbo University, Ningbo 315211, P.R.China)(**National Key Lab of Software New Technology, Nanjing University, Nanjing 210023, P.R.China)

    Color difference may exist between two views of stereoscopic images acquired with stereomicroscope, which makes trouble for the following image processing or observation. A color correction method based on the nearest cumulative histogram matching is proposed. Histogram-based contrast (HC) method is proposed to define saliency value of each pixel, then auto Grabcut segmentation method is used to segment the salient region so as to obtain a region of interest (ROI). After that, normalized histograms and cumulative histograms for ROI and region of background (ROB) are calculated. The mapping functions of the corresponding regions are derived from reference image to distorted image through the nearest cumulative histogram matching method, so that color correction can be finally achieved. Experimental results show that benefitting from the separate treatment to ROI and ROB, the proposed color correction method could avoid error propagation between the two different regions, which achieves good color correction result in comparison with other correction methods.

    stereo microscope, color correction, region of interest(ROI), Grabcut segmentation

    0 Introduction

    Stereomicroscope has been widely used in micro- measurement[1], micromanipulation[2], micro-assembly[3], and so on. However, the process of image acquisition in stereomicroscope is extraordinarily sensitive to the changes of environment light. Different light conditions and difference between the two CMOS sensors may lead to color difference between the stereo image pair, which will directly affect the accuracy of subsequent image processing and final applications. Therefore, color correction is necessary for microscopic images after imaging. It can convert image color to that of the reference, which is very important for stereomicroscope.

    Color correction method can be divided into two types: parametric method[4-10]and non-parametric[11-15]method. The parametric method obtains color correction matrix through estimating the relationship between the reference image and the source image. Reinhard, et al. proposed a linear transformation color correction method based on the simplest statistics of global color distributions of two images in the uncorrelated lαβ color space[4]. Xiao, et al. proposed an ellipsoid mapping scheme which extends Reinhard’s work to correlated RGB color space[5]. For the non-parametric methods, Jia and Tang proposed a two-stage approach to handle robustness and monotonicity separately[11]. In the first stage, a 2D-tensor voting was used to suppress the noise and fill in the data gaps (i.e. places where no correspondences are available for some color levels). It produced an initial estimate of the mapping function. In the second stage, a heuristic local adjustment scheme was proposed to adjust the initial estimate and make the mapping monotonically increasing. Similar to Jia’s work, Kim and Pollefeys proposed a likelihood maximization scheme for robust estimation of the Brightness Transfer Function (BTF) from the 2D joint intensity histogram of two overlapped images[12]. The approach operated in each of the three color channels separately. Dynamic programming was used to find a robust estimate under the monotonic constraint. Estimated BTF was further used to estimate and remove the exposured difference and the vignetted effect in the images.

    The microscopic images require higher accuracy during the image process. However, color unconsistency between two views of stereoscopic image will result in error propagation between ROI and ROB. In this paper, an ROI based color correction method is proposed. The saliency map is obtained through color histogram by which the segmentation can be implemented automatically. Combined with the mask of ROI, the cumulative histograms of ROI and ROB are obtained. Finally, color correction is achieved by the nearest cumulative histogram matching method.

    1 Proposed color correction approach

    The final purpose of color correction is stereo matching and the followed depth information estimation, which is important to three-dimensional reconstruction[2]and measurement[16]. Even though ROI is the focus of attention, traditional image color correction method usually does not take into account ROI and ROB which can be distinguished. Since color unconsistency is related not only to different cameras, but also to local illumination, treating the whole image in the same way is not reasonable. If color correction process for ROI and ROB is separated, error propagation between the two areas can be avoided to some extent.

    In this paper, mask of saliency map is used to segment ROI and ROB, and further obtain their normalized histogram and cumulative histogram, after that, the cumulative histogram matching method is utilized to achieve color correction. The framework of the proposed color correction method is shown in Fig.1.

    Fig.1 Framework of the proposed color correction method

    1.1 Object detection and segmentation

    A salient object is obtained through color histogram contrast. Histogram-based contrast (HC) method is introduced to define saliency value of image pixels via color statistics of the input image. The saliency of color Cican be defined as the color contrast comparing with all the other colors.

    (1)

    D(Ci,Cj)=

    (2)

    where D(Ci, Cj) is the color distance metric between color Ciand Cjof image I in Lab color space. H(Cj) is occurrence probability of color Cj.

    Then the saliency map of the input image is used to obtain the mask of ROI. fixed threshold T is chosen to achieve the segmentation, but such global threshold-based segmentation method is not adaptable, thus can not meet the demands of the microscopic image processing. Ref.[17] proposed a ROI segmentation method called Grabcut method. However, it was a semi-automatic segmentation method since the initial segmentation region should be selected manually. In this paper, in the process of segmentation, salient region segmented with a fixed threshold is used as the initial segmented foreground region and then Grabcut method is utilized to achieve the final segmentation so as to obtain an accurate segmentation result.

    1.2 Cumulative histogram matching

    Histogram of an image can reflect the overall information of the image objectively. Color correction can be achieved if color information can be transferred more precisely from the reference image to the distorted image. In the proposed method, an image is converted from RGB color space to a less correlated YCbCr color space, and then normalized histograms and cumulative histograms of ROI and ROB are calculated respectively. Finally the cumulative histograms are used to obtain a mapping function between the reference image and the distorted image so as to achieve color correction between the corresponding regions. Since color correction process is the same for ROI and ROB with respect to the three channels of color space, here this paper just gives the implementation of color correction of ROI of the distorted image in luminance channel.

    (3)

    (4)

    where m≤Ymax, Ymaxand Yminare the maximum and minimum amplitudes of the luminance channel Y of the ROI respectively.

    (5)

    with the constraint condition that

    (6)

    Fig.2 Histogram matching of Y channel

    Then ROI of the corrected image can be obtained from the mapping function. The luminance signal of the corrected image can be calculated by

    (7)

    where YD(x, y) is the luminance of pixel (x, y) in the distorted image, and MD(x, y) with respect to pixel (x, y) of the distorted image should be 1 which means that the pixel belongs to ROI.

    The correction of other two chrominance channels of ROI is the same with that of luminance channel Y, and the process of correcting ROB of image is also similar to that for ROI.

    2 Experimental results

    In order to test the effectiveness of the proposed method, two groups of microscopic images are chosen as shown in Fig.3(a)~Fig.3(d). All the experiments are tested on a PC with Windows 7 system, and the processor is Inter(R) Core(TM) i3 CPU@3.0GHz with 2.0G RAM. The Visual Studio 2010 software is used in the experiments, and all the source code is implemented with C/C++ language. The experimental results of the proposed method are compared with other three methods which are involved in Refs[4], [5] and [12], respectively. Table 1 gives the corresponding indexes of the three methods which will be used in the followed given experimental results.

    Table 1 Color correction methods for comparison

    In this paper, average color deviation is used to evaluate the performance of different color correction methods. It is defined in CIE1976Lab color space. The average color deviation between reference image and corrected image can be defined by

    (8)

    Table 2 Color deviation comparison of different color correction methods

    Fig.3 ROI segmentation of distorted images and reference images

    Figs3(e)~3(h) show the saliency maps of color images in Figs3(a)~3(d), the ROI masks in Figs3(i)~3(l) are corresponding to the saliency maps after segmentation through auto-Grabcut method with four iterations. It is seen that edges of object in color image can be precisely located with the used segmentation method, and there is no under-segmentation and over-segmentation. By contrast, Figs3(m)~(p) also give the segmentation results obtained with global threshold-based segmentation method, which are clearly rough than the results of auto-Grabcut method used in the proposed method. Fig.4 shows two groups of corrected images obtained with the four different color correction methods. Figs4(a)~(d) are corrected from Fig.3(a) with the proposed method and the other three methods, and Figs4(e)~(h) are corrected from Fig.3(c). For the three methods used to be compared, color of each pixel in the distorted image must be calculated, thus new colors may be introduced and great color distortions may still exist in the corrected images. By contrast, the proposed method can precisely transfer color information of the reference image to the distorted color image at different regions, therefore, the color consistency between reference image and the corrected image can be ensured. The methods, which are involved in Refs[4,5], only use the mean and variance information to achieve color correction. The method in Ref.[12] only uses the luminance signal to get the Brightness Transfer Function (BTF) to achieve color correction. The three methods easily result in the lost of details in color correction process so that the corrected image may be over-smoothed.

    It is well known that histogram can objectively reflect the color information of an image. For two images with the same content, the histogram of them will be similar if the colors or luminance of them are similar with each other. Fig.5 shows the normalized and cumulative histograms of the corrected image compared with that of the reference image and the distorted image, where the corrected image, the distorted image and the reference image are shown in Fig.4(d), Fig.3(a) and Fig.3(b) respectively. From Fig.5, it is seen that the proposed method can achieve good color correction result. The normalized histogram and cumulative histogram of the corrected image is much closer to that of the reference image compared with that of the distorted image.

    Fig.4 Color correction results with respect to different methods

    Fig.5 Normalized histogram and cumulative histogram of the corrected image compared with that of the reference image and the distorted image separately

    Fig.6 and Fig.7 give cumulative histograms of the corrected image (shown in Fig.4), the distorted image and the reference image with respect to the above four mentioned methods. Fig.6 is the results of Fig.3(a) and Fig.3(b), while Fig.7 is for Fig.3(c) and Fig.3(d). It is seen that the cumulative histograms of the corrected images obtained with the proposed method are much closer to that of the reference image, which means that the corrected image obtained with the proposed method keeps good consistent with the reference image in colors.

    The methods based on global color transfer idea do not consider the difference between ROI and ROB, this may result in transfer error and some details in image may be lost during the transfer process. In the proposed method, cumulative histogram matching is used to get the color transfer functions. Since color cumulative histogram can reflect the statistical properties of the image color, the color information in reference image can be precisely transferred to the distorted color image. As a result, the proposed method has a higher stability. In the process of the proposed method, only the existed color in the reference image is transfered to the distorted image, so the color transfer process does not produce any new colors. From the experimental results, it can be easily found that there are many unexpected colors in the corrected color images obtained with the other three color correction methods. By contrast, the color statistical properties of the corrected image obtained with the proposed method is close to that of the reference image. In a word, the proposed method can achieve good color correction results.

    (a) Algorithm #1[4]

    (b) Algorithm #2[5]

    (c) Algorithm #3[12]

    (d) The proposed method

    (a) Algorithm #1[4]

    (b) Algorithm #2[5]

    (c) Algorithm #3[12]

    (d) The proposed method

    3 Conclusions

    Color difference resulted from image acquisition in stereomicroscope is a big problem needed to be solved since it will affect the efficiency of the followed image processing. In this paper, a ROI based color correction method using cumulative histograms is proposed. The color information of ROI and ROB is transferred separately in the color correction process. Such separately transfer treatment can effectively avoid error color transfer among different regions and thus the color correction accuracy can be improved by the proposed method.

    [ 1] Ersoya O, Sena E, Aydar E, et al. Surface area and volume measurements of volcanic ash particles using micro-computed tomography (micro-CT): A comparison with scanning electron microscope (SEM) stereoscopic imaging and geometric considerations. Journal of Volcanology and Geothermal Research, 2010, 196(3-4):281-286

    [ 2] Elbuken C, Khamesee M B, Yavuz M. Design and Implementation of a Micromanipulation System Using a Magnetically Levitated MEMS Robot. IEEE/ASME Transactions on Mechatronics, 2009, 14(4): 434-445

    [ 3] Veikko S, J??skel?inen M, Zhou Q. Hybrid Microassembly Combining Robotics and Water Droplet Self-Alignment. IEEE Trans. on Robotics, 2010, 26(6):965-977

    [ 4] Reinhard E, Adhikhmin M, Gooch B, et al. Color transfer between images. IEEE Computer Graphics and Applications, 2001, 21(5):34-41

    [ 5] Xiao X, Ma L. Color transfer in correlated color space. In: Proceedings of 2006 ACM International Conference on Virtual Reality Continuum and Its Applications, Hong Kong, China, 2006. 305-309

    [ 6] Brown M, Lowe D G. Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 2007, 74(1):59-73

    [ 7] Goldman D B, Chen J. Vignette and exposure calibration and compensation. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China, 2005. 899-906

    [ 8] Litvinov A, Schechner Y. Addressing radiometric non-idealities: A unified framework. In:2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005. 2:52-59

    [ 9] An K, Sun J, Zhou L. A linear color correction method for compressed images and videos. IEICE Transactions on Information and Systems, 2006, 89-D(10):2686-2689

    [10] Xiang Y, Zou B, Li H. Selective color transfer with multi-source images. Pattern Recognition Letters, 2009, 30(7):682-689

    [11] Jia J, Tang C. Tensor voting for image correction by global and local intensity alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(1):36-50

    [12] Kim S J, Pollefeys M. Robust radiometric calibration and vignetting correction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008, 30(4):562-576

    [13] Tanaka G, Suetake N, Uchino E. Color transfer based on normalized cumulative hue histograms. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2010, 14(2):185-191

    [14] Yamamoto K, Oi R. Color correction for multi-view video using energy minimization of view networks. International Journal of Automation and Computing, 2008, 5(3):234-245

    [15] Guan Y, Cai Y, Zhang X, etc al. Adaptive correction technique for 3D reconstruction of fluorescence microscopy images. Microscopy Research and Technique, 2008, 71(2):146-157

    [16] Shi C, Zhang L. A 3D shape measurement system based on random pattern projection. In: Proceedings of the 5th International Conference on Frontier of Computer Science and Technology, Changchun, China, 2010.147-153

    [17] Rother C, Kolmogorov V, Blake A. Grabcut - Inter-active foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 2004, 23(3):309-314

    Jiang Gangyi, born in 1964. He received his M.S. degree from Hangzhou University in 1992, and received his Ph.D. degree from Ajou University, Korea, in 2000. He is now a professor at Faculty of Information Science and Engineering, Ningbo University, China. His research interests mainly include digital video compression and communications, multi-view video coding and image processing.

    10.3772/j.issn.1006-6748.2015.03.006

    ①Supported by the Natural Science Foundation of China (No. 61311140262, 61171163, 61271021).

    ②To whom correspondence should be addressed. E-mail: jianggangyi@126.com Received on May 25, 2014***, Liu Xiangjun*, Yu Mei*, Peng Zongju*, Shao Feng*

    猜你喜歡
    剛毅
    山水布依
    心聲歌刊(2022年1期)2022-06-06 10:30:44
    活動課程涵養(yǎng)學(xué)生剛毅之品格
    《剛毅堅卓》雕塑作品創(chuàng)作小記
    華人時刊(2020年17期)2020-12-14 08:13:02
    盤古傳下的家園
    歌海(2017年2期)2017-05-30 22:22:10
    四川剛毅科技集團(tuán)有限公司
    封面圖片
    視野(2009年4期)2009-06-10 12:07:24
    欧美日韩精品成人综合77777| 久久久久久久亚洲中文字幕| 人妻久久中文字幕网| 欧美日韩亚洲国产一区二区在线观看| 久久久久精品国产欧美久久久| 日本三级黄在线观看| 伊人久久精品亚洲午夜| 少妇被粗大猛烈的视频| 久久婷婷人人爽人人干人人爱| 一个人免费在线观看电影| 在线免费观看不下载黄p国产 | 欧美绝顶高潮抽搐喷水| 精品人妻视频免费看| 久久久久久大精品| 在线免费观看不下载黄p国产 | 男女之事视频高清在线观看| 男人狂女人下面高潮的视频| 少妇熟女aⅴ在线视频| 人人妻人人澡欧美一区二区| 变态另类丝袜制服| bbb黄色大片| 成人一区二区视频在线观看| 成年女人看的毛片在线观看| www.色视频.com| 国产高清有码在线观看视频| 蜜桃久久精品国产亚洲av| 国产成人a区在线观看| 精品不卡国产一区二区三区| 亚洲精品色激情综合| 精品久久久久久久末码| 久久精品国产亚洲av天美| 亚洲国产精品合色在线| 又粗又爽又猛毛片免费看| 久久国产乱子免费精品| 日韩欧美免费精品| 毛片一级片免费看久久久久 | 亚洲 国产 在线| 欧美精品国产亚洲| 国产精品一区www在线观看 | 亚洲av日韩精品久久久久久密| 亚洲欧美日韩高清专用| 欧美一级a爱片免费观看看| 动漫黄色视频在线观看| 精品久久国产蜜桃| 久久久久性生活片| 欧美人与善性xxx| 国产av在哪里看| 久久久久久久午夜电影| 亚洲成a人片在线一区二区| 亚洲中文日韩欧美视频| 成人三级黄色视频| 天天躁日日操中文字幕| 国产高清三级在线| 国产爱豆传媒在线观看| 俄罗斯特黄特色一大片| 中文字幕免费在线视频6| 亚洲最大成人中文| 久久久成人免费电影| 91久久精品国产一区二区成人| 91麻豆av在线| netflix在线观看网站| 99国产极品粉嫩在线观看| 91久久精品国产一区二区三区| 狂野欧美白嫩少妇大欣赏| a级一级毛片免费在线观看| 日韩一本色道免费dvd| 有码 亚洲区| 成人av在线播放网站| 久久久久国内视频| 99久久成人亚洲精品观看| 婷婷精品国产亚洲av| 搡女人真爽免费视频火全软件 | av女优亚洲男人天堂| 联通29元200g的流量卡| 自拍偷自拍亚洲精品老妇| 美女xxoo啪啪120秒动态图| 97超级碰碰碰精品色视频在线观看| 亚洲国产日韩欧美精品在线观看| 日本色播在线视频| 久久天躁狠狠躁夜夜2o2o| 黄色丝袜av网址大全| 国产高清不卡午夜福利| 亚洲内射少妇av| 成人av在线播放网站| 国产精品电影一区二区三区| 自拍偷自拍亚洲精品老妇| 观看美女的网站| 一级av片app| 不卡视频在线观看欧美| 精品国产三级普通话版| 国内精品宾馆在线| 波多野结衣巨乳人妻| 亚洲精品在线观看二区| 日韩欧美免费精品| 午夜久久久久精精品| 亚洲国产高清在线一区二区三| 久久久久久久久久黄片| 三级毛片av免费| 久久久久免费精品人妻一区二区| 久久亚洲精品不卡| 禁无遮挡网站| 在线播放无遮挡| 亚洲自拍偷在线| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 少妇高潮的动态图| 免费看a级黄色片| 成年女人永久免费观看视频| 夜夜爽天天搞| 欧美色欧美亚洲另类二区| 午夜视频国产福利| 成人精品一区二区免费| 人妻夜夜爽99麻豆av| 97超视频在线观看视频| 99久久精品国产国产毛片| 亚洲美女搞黄在线观看 | 成人综合一区亚洲| 欧美日韩综合久久久久久 | 日韩高清综合在线| 国产大屁股一区二区在线视频| 在线国产一区二区在线| 大型黄色视频在线免费观看| 变态另类丝袜制服| 午夜爱爱视频在线播放| 国产av麻豆久久久久久久| 又紧又爽又黄一区二区| 日韩中字成人| 亚洲综合色惰| 国产黄色小视频在线观看| 亚洲欧美日韩卡通动漫| 美女 人体艺术 gogo| 中文字幕人妻熟人妻熟丝袜美| av在线亚洲专区| 国内少妇人妻偷人精品xxx网站| 久久久久久伊人网av| 日韩欧美免费精品| 狂野欧美白嫩少妇大欣赏| 麻豆一二三区av精品| 午夜影院日韩av| 夜夜爽天天搞| 成人一区二区视频在线观看| 波多野结衣高清无吗| 国产黄色小视频在线观看| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| 我要搜黄色片| 成人美女网站在线观看视频| 午夜影院日韩av| 99久久无色码亚洲精品果冻| 十八禁国产超污无遮挡网站| 最好的美女福利视频网| 一边摸一边抽搐一进一小说| 欧美潮喷喷水| 一区福利在线观看| 18禁黄网站禁片午夜丰满| 成人永久免费在线观看视频| 色综合亚洲欧美另类图片| 久久久色成人| 日韩精品中文字幕看吧| 亚洲自偷自拍三级| 如何舔出高潮| 欧美一区二区精品小视频在线| 俄罗斯特黄特色一大片| 亚洲在线观看片| 日韩精品青青久久久久久| 欧美成人性av电影在线观看| 免费观看精品视频网站| avwww免费| 国产亚洲精品久久久com| 波多野结衣巨乳人妻| 3wmmmm亚洲av在线观看| bbb黄色大片| 久久久久国产精品人妻aⅴ院| 久久久久久伊人网av| 亚洲人与动物交配视频| av天堂中文字幕网| 噜噜噜噜噜久久久久久91| 欧美极品一区二区三区四区| 色哟哟哟哟哟哟| 日韩欧美免费精品| 99热精品在线国产| 村上凉子中文字幕在线| 免费观看的影片在线观看| 欧美高清成人免费视频www| 日韩中字成人| 一级黄片播放器| 网址你懂的国产日韩在线| 国产av不卡久久| 蜜桃亚洲精品一区二区三区| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 欧美人与善性xxx| 免费不卡的大黄色大毛片视频在线观看 | 有码 亚洲区| 蜜桃亚洲精品一区二区三区| 国产老妇女一区| a级毛片a级免费在线| 亚洲av电影不卡..在线观看| 欧美日韩黄片免| 少妇裸体淫交视频免费看高清| 国产av一区在线观看免费| 国产爱豆传媒在线观看| 高清毛片免费观看视频网站| 国产伦在线观看视频一区| 他把我摸到了高潮在线观看| 国产欧美日韩精品亚洲av| 国产精品久久久久久久久免| 大型黄色视频在线免费观看| 桃红色精品国产亚洲av| 欧美日本视频| 88av欧美| 成人鲁丝片一二三区免费| 在线观看免费视频日本深夜| 国产精品爽爽va在线观看网站| 日本三级黄在线观看| 成人国产一区最新在线观看| 美女cb高潮喷水在线观看| 尾随美女入室| 天堂√8在线中文| 国产精品久久久久久久久免| 99国产极品粉嫩在线观看| 国模一区二区三区四区视频| 日本熟妇午夜| 中文字幕熟女人妻在线| 中文字幕久久专区| 国产蜜桃级精品一区二区三区| 一级黄片播放器| 九九在线视频观看精品| 两个人视频免费观看高清| 国产精品电影一区二区三区| 国产精品久久久久久精品电影| 18禁黄网站禁片午夜丰满| 波野结衣二区三区在线| 亚洲狠狠婷婷综合久久图片| 大又大粗又爽又黄少妇毛片口| 少妇被粗大猛烈的视频| 麻豆av噜噜一区二区三区| 欧美日韩黄片免| 欧美zozozo另类| 成人欧美大片| 美女高潮喷水抽搐中文字幕| 高清在线国产一区| 一a级毛片在线观看| 乱系列少妇在线播放| 在线观看66精品国产| 亚洲性夜色夜夜综合| 中文在线观看免费www的网站| 无遮挡黄片免费观看| 男人和女人高潮做爰伦理| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 尤物成人国产欧美一区二区三区| 色在线成人网| 国产麻豆成人av免费视频| 又紧又爽又黄一区二区| 99国产精品一区二区蜜桃av| 国产伦一二天堂av在线观看| 久久久久久国产a免费观看| 尤物成人国产欧美一区二区三区| 男人舔女人下体高潮全视频| 国产成人aa在线观看| 国语自产精品视频在线第100页| 欧美一区二区国产精品久久精品| 国产又黄又爽又无遮挡在线| 亚洲国产精品sss在线观看| 亚洲欧美日韩高清专用| 亚洲,欧美,日韩| 一a级毛片在线观看| 日韩高清综合在线| 精品久久久久久久人妻蜜臀av| 久久精品久久久久久噜噜老黄 | 久久久久精品国产欧美久久久| 身体一侧抽搐| 少妇裸体淫交视频免费看高清| 天堂影院成人在线观看| 小说图片视频综合网站| 97超视频在线观看视频| 最近在线观看免费完整版| 国产高清三级在线| 波多野结衣高清无吗| 亚洲国产精品成人综合色| 久久国产精品人妻蜜桃| 国产精品一区二区性色av| 亚洲熟妇熟女久久| 在线免费观看不下载黄p国产 | 免费高清视频大片| 能在线免费观看的黄片| 成人一区二区视频在线观看| 人人妻,人人澡人人爽秒播| 国产精品精品国产色婷婷| 久久草成人影院| 悠悠久久av| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 成人av在线播放网站| 欧美绝顶高潮抽搐喷水| 黄色女人牲交| 99精品久久久久人妻精品| 国产精品人妻久久久久久| 久久人人精品亚洲av| 久久久久久久精品吃奶| 男女那种视频在线观看| 日本与韩国留学比较| 精品人妻熟女av久视频| 国产爱豆传媒在线观看| 人妻少妇偷人精品九色| 悠悠久久av| 美女cb高潮喷水在线观看| 婷婷精品国产亚洲av| 欧美成人性av电影在线观看| 欧美精品啪啪一区二区三区| 一个人免费在线观看电影| 国产亚洲精品综合一区在线观看| 国产一区二区亚洲精品在线观看| 精品一区二区三区av网在线观看| 丰满的人妻完整版| 亚洲图色成人| 国产精品久久久久久精品电影| 亚洲avbb在线观看| 久久精品夜夜夜夜夜久久蜜豆| 一级av片app| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 三级国产精品欧美在线观看| 毛片女人毛片| 精品一区二区三区人妻视频| 99在线视频只有这里精品首页| av福利片在线观看| 成人无遮挡网站| 亚洲av五月六月丁香网| 一个人免费在线观看电影| 在线观看舔阴道视频| 国产精品三级大全| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 乱码一卡2卡4卡精品| 亚洲美女视频黄频| 色尼玛亚洲综合影院| 色噜噜av男人的天堂激情| 美女 人体艺术 gogo| 在线a可以看的网站| 噜噜噜噜噜久久久久久91| 观看免费一级毛片| 亚洲美女黄片视频| 日韩高清综合在线| 中文资源天堂在线| 波多野结衣高清无吗| 国产高清视频在线播放一区| 成人午夜高清在线视频| 尾随美女入室| 变态另类成人亚洲欧美熟女| 亚洲性夜色夜夜综合| 国产真实乱freesex| 久久久精品大字幕| 成人精品一区二区免费| 免费电影在线观看免费观看| 中出人妻视频一区二区| 国产爱豆传媒在线观看| 国内毛片毛片毛片毛片毛片| 一卡2卡三卡四卡精品乱码亚洲| 小说图片视频综合网站| 淫秽高清视频在线观看| 亚洲欧美精品综合久久99| 精品人妻偷拍中文字幕| 国产私拍福利视频在线观看| 久久精品国产亚洲网站| 精品福利观看| 国产一区二区三区在线臀色熟女| 淫妇啪啪啪对白视频| 成人国产一区最新在线观看| 性色avwww在线观看| 不卡视频在线观看欧美| 国产v大片淫在线免费观看| 国产熟女欧美一区二区| 在线观看美女被高潮喷水网站| 淫妇啪啪啪对白视频| 亚洲 国产 在线| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| 久久亚洲真实| 国产免费男女视频| 精品午夜福利在线看| 欧美另类亚洲清纯唯美| 亚洲精品亚洲一区二区| 国产黄色小视频在线观看| 看片在线看免费视频| 男人舔女人下体高潮全视频| 美女 人体艺术 gogo| 成人毛片a级毛片在线播放| 久久6这里有精品| 午夜免费男女啪啪视频观看 | 午夜福利欧美成人| 少妇人妻精品综合一区二区 | 欧美zozozo另类| 中文字幕av在线有码专区| 丰满人妻一区二区三区视频av| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费| 69人妻影院| 午夜视频国产福利| 国产精品免费一区二区三区在线| 性欧美人与动物交配| 国产精品一区二区性色av| 中国美女看黄片| 久久久久免费精品人妻一区二区| 美女高潮喷水抽搐中文字幕| 免费看日本二区| 一进一出抽搐gif免费好疼| 91久久精品国产一区二区成人| 精品久久久久久久人妻蜜臀av| 高清日韩中文字幕在线| 女人被狂操c到高潮| 国产精品一区二区性色av| 99久久无色码亚洲精品果冻| 中文资源天堂在线| 天堂√8在线中文| 日本在线视频免费播放| 午夜影院日韩av| 一本一本综合久久| 又黄又爽又免费观看的视频| 国产一区二区三区在线臀色熟女| 淫妇啪啪啪对白视频| 国产精品福利在线免费观看| 在线观看午夜福利视频| 亚洲最大成人中文| 亚洲av日韩精品久久久久久密| 国产精品永久免费网站| 久久人人精品亚洲av| 精品一区二区三区视频在线| 国产精品1区2区在线观看.| 99九九线精品视频在线观看视频| 国产在线精品亚洲第一网站| 3wmmmm亚洲av在线观看| 亚洲欧美激情综合另类| 永久网站在线| 日韩av在线大香蕉| 国产成人一区二区在线| 欧美日韩中文字幕国产精品一区二区三区| 尤物成人国产欧美一区二区三区| 亚洲成人中文字幕在线播放| 成人欧美大片| 日韩欧美精品v在线| 99精品久久久久人妻精品| av天堂中文字幕网| 91在线精品国自产拍蜜月| 亚洲中文日韩欧美视频| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 精品人妻1区二区| 麻豆国产av国片精品| 日本成人三级电影网站| 成人午夜高清在线视频| netflix在线观看网站| 久久久久久国产a免费观看| 又黄又爽又刺激的免费视频.| avwww免费| 91精品国产九色| 欧美+亚洲+日韩+国产| 亚洲国产色片| 国产精品久久久久久久电影| 一区二区三区四区激情视频 | 嫩草影院新地址| 大又大粗又爽又黄少妇毛片口| 黄色女人牲交| 欧美高清性xxxxhd video| 日韩欧美精品v在线| 在线免费观看不下载黄p国产 | 欧美色视频一区免费| 全区人妻精品视频| 91久久精品国产一区二区成人| 欧美激情国产日韩精品一区| 欧美一区二区国产精品久久精品| 十八禁国产超污无遮挡网站| 高清日韩中文字幕在线| 久久精品国产99精品国产亚洲性色| 亚洲精品亚洲一区二区| 好男人在线观看高清免费视频| 在线天堂最新版资源| 春色校园在线视频观看| av天堂中文字幕网| 女人十人毛片免费观看3o分钟| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 成人精品一区二区免费| 久久久久久久久大av| 欧美极品一区二区三区四区| 久久国产乱子免费精品| 热99re8久久精品国产| 12—13女人毛片做爰片一| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女| 亚洲av第一区精品v没综合| 国产精品亚洲美女久久久| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区免费欧美| 一进一出好大好爽视频| 国内久久婷婷六月综合欲色啪| 3wmmmm亚洲av在线观看| 性欧美人与动物交配| 日本与韩国留学比较| 欧美xxxx性猛交bbbb| 中文字幕av成人在线电影| 亚洲国产色片| 国产高潮美女av| 久久久国产成人免费| h日本视频在线播放| 99国产精品一区二区蜜桃av| 黄色配什么色好看| 搡老妇女老女人老熟妇| 日本熟妇午夜| 最近中文字幕高清免费大全6 | 国产一区二区三区av在线 | 亚洲中文字幕一区二区三区有码在线看| 搡老妇女老女人老熟妇| 婷婷亚洲欧美| 欧美成人a在线观看| 波野结衣二区三区在线| 久久午夜福利片| 黄色日韩在线| 一个人观看的视频www高清免费观看| 成年版毛片免费区| 亚洲精品久久国产高清桃花| 亚洲成人免费电影在线观看| 丝袜美腿在线中文| 伦理电影大哥的女人| 亚洲精品影视一区二区三区av| 成年版毛片免费区| 中亚洲国语对白在线视频| 国产精品亚洲一级av第二区| 男插女下体视频免费在线播放| 精品一区二区三区视频在线观看免费| 日本一二三区视频观看| 国内精品美女久久久久久| 色精品久久人妻99蜜桃| 国产高清不卡午夜福利| 美女cb高潮喷水在线观看| 日本-黄色视频高清免费观看| 日本欧美国产在线视频| 两个人的视频大全免费| 18禁黄网站禁片午夜丰满| 97碰自拍视频| 亚洲成a人片在线一区二区| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 亚洲精品日韩av片在线观看| 亚洲精品456在线播放app | 精品日产1卡2卡| 18禁黄网站禁片免费观看直播| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲精品不卡| 日本在线视频免费播放| 国产精品一及| 精品一区二区三区av网在线观看| 床上黄色一级片| 亚洲av成人精品一区久久| 久久人人爽人人爽人人片va| 窝窝影院91人妻| 中文字幕熟女人妻在线| 久久久久久久久久成人| 99国产精品一区二区蜜桃av| 又紧又爽又黄一区二区| 久久九九热精品免费| 日本免费一区二区三区高清不卡| 国内精品久久久久久久电影| 亚洲欧美日韩无卡精品| 欧美极品一区二区三区四区| 99久久精品热视频| 亚洲在线自拍视频| 久久精品影院6| 在线国产一区二区在线| 国产熟女欧美一区二区| 亚洲五月天丁香| 在线观看免费视频日本深夜| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 久久午夜福利片| 最近最新免费中文字幕在线| 日本黄大片高清| 欧美3d第一页| 成人三级黄色视频| 久久久久久久久久久丰满 | 综合色av麻豆| 国产精品一区二区三区四区免费观看 | 午夜福利18| 能在线免费观看的黄片| 深夜a级毛片| 亚洲天堂国产精品一区在线| 国产成人福利小说| 国产免费男女视频| 一个人观看的视频www高清免费观看| 小说图片视频综合网站| 春色校园在线视频观看| 中文字幕av成人在线电影| 色av中文字幕| 天堂动漫精品| netflix在线观看网站| 国产精品,欧美在线| 最近最新免费中文字幕在线| 国产精品亚洲一级av第二区| 国产淫片久久久久久久久| 成人国产一区最新在线观看| 亚洲欧美精品综合久久99| 我的女老师完整版在线观看| 看黄色毛片网站| 亚洲国产精品成人综合色| 国产午夜福利久久久久久| 亚洲欧美激情综合另类| 草草在线视频免费看| 国产激情偷乱视频一区二区| 岛国在线免费视频观看| av.在线天堂|