王 倩, 鄒 健, 張秀芬, 穆會君, 殷 瑩, 謝 平
(南京醫(yī)科大學(xué)附屬無錫人民醫(yī)院中心實(shí)驗(yàn)室,江蘇 無錫 214023)
?
GCS通過MEK/ERK通路調(diào)控白血病多藥耐藥細(xì)胞凋亡相關(guān)基因bcl-2的表達(dá)*
王 倩, 鄒 健, 張秀芬, 穆會君, 殷 瑩, 謝 平△
(南京醫(yī)科大學(xué)附屬無錫人民醫(yī)院中心實(shí)驗(yàn)室,江蘇 無錫 214023)
目的: 探討葡萄糖神經(jīng)酰胺合成酶(GCS)是否通過MEK/ERK信號通路調(diào)控凋亡相關(guān)基因bcl-2的表達(dá),從而誘導(dǎo)人白血病K562/A02細(xì)胞多藥耐藥。方法: 用小干擾RNA(siRNA)靶向干擾K562/A02細(xì)胞中GCS的表達(dá),real-time PCR、Western blotting檢測Bcl-2 、磷酸化及總ERK水平;用MEK特異性化學(xué)抑制劑U0126抑制MEK/ERK信號通路的活化,real-time PCR與Western blotting技術(shù)分別檢測Bcl-2 mRNA與蛋白水平;CCK-8試劑盒檢測細(xì)胞存活情況。結(jié)果: 與陰性對照組比較,GCSsiRNA明顯抑制K562/A02細(xì)胞GCS和Bcl-2的表達(dá),并抑制MEK/ERK信號通路的活化;U0126使Bcl-2 mRNA及蛋白水平呈濃度依賴性下降,并使K562/A02細(xì)胞ADM敏感性增加。結(jié)論: GCS通過MEK/ERK信號通路調(diào)控K562/A02細(xì)胞株中凋亡相關(guān)基因bcl-2的表達(dá),從而誘導(dǎo)白血病細(xì)胞多藥耐藥。
葡萄糖神經(jīng)酰胺合成酶; MEK/ERK信號通路; 基因,bcl-2; 抗藥性, 多藥
抗腫瘤效應(yīng)有賴于細(xì)胞內(nèi)完整的凋亡信號通路,若凋亡通路受阻,腫瘤對藥物的促凋亡作用不敏感,腫瘤即表現(xiàn)為多藥耐藥(multidrug resistance, MDR)[1]。研究表明葡萄糖神經(jīng)酰胺合成酶(glucosylceramide synthase, GCS)在白血病、皮膚癌、乳腺癌、惡性黑色素瘤和神經(jīng)母細(xì)胞瘤等耐藥細(xì)胞中表達(dá)增高[2],從而抑制細(xì)胞凋亡,調(diào)控腫瘤多藥耐藥[3]。胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase, ERK)是絲裂原活化蛋白激酶(mitogen-activated protein kinases, MAPKs)家族的重要成員。MEK/ERK信號轉(zhuǎn)導(dǎo)通路是調(diào)節(jié)細(xì)胞生長、發(fā)育及凋亡信號網(wǎng)絡(luò)的核心部分[4-5]。本課題組前期研究證明:特異性下調(diào)GCS可抑制凋亡相關(guān)基因bcl-2的表達(dá)[6],但其作用機(jī)制仍不十分清楚。在此基礎(chǔ)上,本實(shí)驗(yàn)進(jìn)一步探討GCS是否通過MEK/ERK信號通路調(diào)控K562/A02細(xì)胞bcl-2的表達(dá),從而抑制凋亡、誘導(dǎo)腫瘤細(xì)胞耐藥。
1 主要試劑和儀器
人紅白血病多藥耐藥細(xì)胞株K562/A02購自中國醫(yī)學(xué)科學(xué)院天津血液研究所;RPMI-1640培養(yǎng)液、Trizol、Opti-MEM、LipofectamineTM2000試劑購自Invitrogen;胎牛血清購自杭州四季青生物工程有限公司;RNA逆轉(zhuǎn)錄試劑盒購自Promega;實(shí)時(shí)熒光定量PCR儀購自Roche;阿霉素(adriamycin,ADM)購自上海華聯(lián)制藥有限公司;CCK-8試劑盒購自Donjindo;兔抗人p-ERK、ERK單抗及MEK特異性抑制劑U0126購自Cell Signaling;兔抗人Bcl-2單抗、鼠抗人GAPDH單抗購自Santa Cruz。
2 方法
2.1 細(xì)胞培養(yǎng) 細(xì)胞于RPMI-1640完全培養(yǎng)基(含10 %滅活胎牛血清)中,37 ℃、5% CO2飽和濕度的條件下常規(guī)培養(yǎng)。K562/A02細(xì)胞培養(yǎng)基中加入1 mg/L ADM維持細(xì)胞耐藥性,實(shí)驗(yàn)前脫藥培養(yǎng)2周。細(xì)胞每3 d 傳代1次,取對數(shù)生長期細(xì)胞進(jìn)行實(shí)驗(yàn)。
2.2 siRNA瞬時(shí)轉(zhuǎn)染 根據(jù)GenBank中人GCS核苷酸序列設(shè)計(jì)siRNA,并在Blast中對靶序列進(jìn)行同源性分析排除非特異性作用于其它基因片段的可能,交由上海吉瑪制藥技術(shù)有限公司合成。經(jīng)本室篩選,最終確定GCS siRNA 的正義鏈為5′-GGAUUAUCCCAAAUAUGAATT-3′,反義鏈為5′-UUCAUAUUUGGGAUAAUCCAA-3′;陰性對照正義鏈為5′-UUCUCCGAACGUGUCACGUTT-3′,反義鏈為5′-ACUUGACACGUUCGGAGAATT-3′。參照LipofectamineTM2000試劑說明書及相關(guān)文獻(xiàn)報(bào)道[7]方法將對數(shù)生長期細(xì)胞以5×105每孔接種至6孔板,待細(xì)胞生長至70%時(shí)進(jìn)行轉(zhuǎn)染,轉(zhuǎn)染前更換Opti-MEM無血清培養(yǎng)基。細(xì)胞分為3組:(1)siRNA干擾組(GCSsiRNA),即Opti-MEM中含有脂質(zhì)體包埋的GCSsiRNA(100 nmol/L);(2)陰性對照組(negative control,NC),即Opti-MEM中含有脂質(zhì)體包埋的陰性對照siRNA(100 nmol/L);(3)空白對照組(blank),即Opti-MEM中只加入轉(zhuǎn)染試劑。轉(zhuǎn)染48 h后檢測GCSsiRNA的干擾效率。2.3 Real-time PCR檢測 收集細(xì)胞,用Trizol提取細(xì)胞總RNA。Eppendorf BioPhotometer plus核酸蛋白儀測定RNA濃度。取1 μg RNA進(jìn)行逆轉(zhuǎn)錄。1 μL cDNA模板于25 μL 反應(yīng)體系中進(jìn)行real-time PCR,其中GAPDH為內(nèi)參照,引物和探針序列如下:GCS的上游引物為5′-TGCTCAGTACATTGCCGA AGA-3′,下游引物為5′-TGGACATTGCAAACCTCCAA-3′,Taqman探針為5′-TTATGGCCAAAGCGATAGCTGACCGAG-3′;Bcl-2的上游引物為5′-GGATCATGCTGTACTTAA-3′,下游引物為5′-TGAGGCACGTTATTATTAG-3′,Taqman探針為5′-CAGTCTACTTCCTCTGTGATGTTGT-3′;GAPDH的上游引物為5′-CCCATGTTCGTCATGGGTGT-3′,下游引物為5′-TGGTCATGAGTCCTTCCACGATA-3′,Taqman探針為5′-CTGCACCACCAACTGCTTAGCACCC-3′。擴(kuò)增條件如下為95 ℃ 10 min;94 ℃ 30 s,55 ℃ 30 s,72 ℃ 30 s,共35個(gè)循環(huán)。獨(dú)立重復(fù)實(shí)驗(yàn)3次,采集數(shù)據(jù),2-ΔΔCt相對定量法計(jì)算基因抑制效率。
2.4 Western blotting檢測 收集各組細(xì)胞,用含1%蛋白酶抑制劑PMSF的RIPA裂解液裂解細(xì)胞提取蛋白,BCA法檢測蛋白濃度。取等量蛋白進(jìn)行SDS-PAGE分離后轉(zhuǎn)至PVDF膜。以5% 脫脂奶粉-TBST封閉液封閉1 h,I抗4 ℃孵育過夜,其中GAPDH為內(nèi)參照蛋白,TBST洗3遍,HRP標(biāo)記的II抗室溫孵育1 h,TBST洗4遍,ECL檢測蛋白印跡。
2.5 CCK-8法檢測 按5×103每孔的密度將細(xì)胞接種于96孔板,加入不同濃度ADM孵育72 h。每孔加入10 μL CCK-8試劑,37 ℃繼續(xù)孵育2 h,多功能酶標(biāo)儀檢測各孔450 nm波長下的吸光度(A)值。
3 統(tǒng)計(jì)學(xué)處理
數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean ± SD)表示。應(yīng)用SPSS 11.0軟件進(jìn)行統(tǒng)計(jì)分析,多組間比較采用單因素方差分析(one-way ANOVA),兩組間比較采用t檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 GCS抑制后對細(xì)胞耐藥性的影響
siRNA轉(zhuǎn)染細(xì)胞48 h后,real-time PCR檢測細(xì)胞GCS的表達(dá)。結(jié)果顯示GCS siRNA組GCS mRNA的抑制率為56.27%±10.82%,與NC組(9.51%±7.03%)比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.01),見圖1A。
Figure 1.The effects of GCS knockdown on drug resistance of K562/A02 cells. A: GCS mRNA expression; B: IC50 values of ADM in K562/A02. Mean±SD.n=3.**P<0.01 vs NC group.
GCS表達(dá)抑制后,于培養(yǎng)基中加入不同濃度的ADM繼續(xù)培養(yǎng)72 h,CCK-8檢測細(xì)胞存活率,計(jì)算抗腫瘤藥物的IC50。檢測結(jié)果顯示,GCSsiRNA組細(xì)胞的IC50與NC組比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.01),見圖1B。
2GCSsiRNA抑制MEK/ERK信號通路的活化并降低Bcl-2的表達(dá)
為明確細(xì)胞凋亡在GCS介導(dǎo)腫瘤多藥耐藥中的作用關(guān)系,本實(shí)驗(yàn)應(yīng)用siRNA沉默GCS基因后,觀察凋亡相關(guān)基因bcl-2的表達(dá)以及MEK/ERK信號通路的活化情況,結(jié)果如圖2所示:GCS siRNA轉(zhuǎn)染細(xì)胞48 h后,K562/A02細(xì)胞Bcl-2 mRNA與蛋白水平明顯降低(P<0.01);且可顯著抑制K562/A02細(xì)胞中磷酸化的表達(dá)(P<0.01),但對總的ERK作用不明顯。
Figure 2.The effects of GCS knockdown on Bcl-2,p-ERK and ERK expression. A: Bcl-2 mRNA expression; B: protein expressions of Bcl-2, p-ERK and ERK. Mean±SD. n=4.**P<0.01 vs NC group.
3 U0126下調(diào)K562/A02細(xì)胞中Bcl-2的表達(dá)
為研究MEK/ERK信號通路在GCS調(diào)控Bcl-2表達(dá)中的作用,本實(shí)驗(yàn)通過MEK特異性抑制劑U0126抑制MEK/ERK通路的激活,觀察耐藥細(xì)胞Bcl-2的變化情況。5、10、20和40 μmol/L U0126作用K562/A02細(xì)胞48 h檢測結(jié)果顯示,當(dāng)作用濃度為5 μmol/L時(shí),p-ERK的表達(dá)無明顯變化;隨著藥物濃度的增加,p-ERK呈劑量依賴性降低;但總ERK水平不變。隨著U0126作用濃度逐漸加大,Bcl-2 mRNA與蛋白水平亦逐漸下降。同時(shí),CCK-8法檢測U0126對腫瘤耐藥的影響,結(jié)果表明U0126組細(xì)胞ADM 的IC50與對照組比較明顯降低(P<0.01),表明U0126可增加K562/A02細(xì)胞對抗腫瘤藥物的敏感性,見圖3。
MDR使腫瘤細(xì)胞逃避抗腫瘤藥物的殺傷作用,使細(xì)胞凋亡受抑并對藥物選擇性耐受[8-9]。在探索MDR分子機(jī)制以期促進(jìn)細(xì)胞凋亡、逆轉(zhuǎn)腫瘤耐藥的研究中,我們發(fā)現(xiàn)腫瘤耐藥與GCS密切相關(guān),幾乎所有耐藥細(xì)胞株均過表達(dá)GCS[8-10],以白血病、皮膚癌、乳腺癌、惡性黑色素瘤和神經(jīng)母細(xì)胞瘤等耐藥細(xì)胞中GCS升高尤為顯著[1]。外源基因?qū)霕?gòu)建GCS高表達(dá)細(xì)胞株,使MCF-7乳腺癌細(xì)胞對阿霉素和神經(jīng)酰胺(ceramide,Cer)耐藥指數(shù)可分別增加11和5倍;再行GCS反義轉(zhuǎn)染,該耐藥可被逆轉(zhuǎn)[11]。本研究中轉(zhuǎn)染GCSsiRNA的K562/A02細(xì)胞ADM的IC50與陰性對照組和空白組比較均顯著降低,即該細(xì)胞對ADM的毒性作用更為敏感,亦證明GCS是誘導(dǎo)K562/A02細(xì)胞耐藥的重要分子。
Figure 3.The effects of U0126 treatment on Bcl-2 expression and drug resistance of K562/A02 cells. A: Bcl-2 mRNA expression; B: protein expression of Bcl-2, p-ERK and ERK; C: IC50 values of ADM in K562/A02 after U0126 treatment. Mean±SD. n=3. *P<0.05,**P<0.01 vs 0 μmol/L group.
細(xì)胞凋亡是抗腫瘤藥物殺傷腫瘤細(xì)胞的終末共同通路,受凋亡相關(guān)基因的調(diào)控。Bcl-2作為重要的凋亡調(diào)控家族,通過促、抑2類凋亡基因共同調(diào)節(jié)細(xì)胞凋亡[12]:抑凋亡分子Bcl-2阻礙環(huán)境應(yīng)激引發(fā)的細(xì)胞凋亡;促凋亡分子Bax則與抑凋亡蛋白結(jié)合,解除其凋亡抑制,從而啟動細(xì)胞凋亡[13]。簡而言之,Bcl-2/Bax比值是決定細(xì)胞生存與否的重要因素[14]。若凋亡通路受阻,腫瘤對抗癌藥物的促凋亡作用不敏感,腫瘤就表現(xiàn)為MDR。為研究GCS與凋亡通路的關(guān)系,本課題組前期通過GCS活性抑制劑苯基棕櫚酰胺嗎啡丙醇(phenyl palmitoylamino morpholino propanol,PPMP)抑制GCS活性,觀察細(xì)胞Bcl-2與Bax的變化情況,結(jié)果發(fā)現(xiàn)PPMP可明顯降低K562/A02細(xì)胞中Bcl-2的表達(dá),對Bax的表達(dá)作用甚微[6]。鑒于PPMP并非GCS特異性抑制劑,除GCS外,PPMP還能抑制鞘糖脂代謝中其它酶的活性[15]并影響細(xì)胞鈣穩(wěn)態(tài)及膜的流動性[16]。故本實(shí)驗(yàn)采用siRNA靶向干擾GCS,結(jié)果發(fā)現(xiàn)Bcl-2水平亦明顯降低,再次證實(shí)GCS可能通過上調(diào)Bcl-2抑制細(xì)胞凋亡從而介導(dǎo)K562/A02細(xì)胞耐藥。
MEK/ERK信號轉(zhuǎn)導(dǎo)通路在腫瘤發(fā)生發(fā)展中發(fā)揮重要作用。該通路的異常活化可導(dǎo)致細(xì)胞喪失凋亡和分化的能力、促進(jìn)腫瘤的形成與惡性增殖。研究發(fā)現(xiàn)K562/A02較之其敏感野生細(xì)胞株K562的p-ERK水平增高[17];本研究通過siRNA干擾GCS后,p-ERK亦降低。將不同濃度U0126作用于細(xì)胞,結(jié)果發(fā)現(xiàn)Bcl-2 mRNA與蛋白水平均呈濃度依賴性降低。這與Yu等[17]報(bào)道的K562細(xì)胞Bcl-2的表達(dá)有賴于MEK/ERK通路的激活相一致。且U0126可明顯增加K562/A02對ADM的敏感性。由此,進(jìn)一步證明MEK/ERK通路參與GCS對凋亡相關(guān)基因bcl-2的調(diào)控,從而誘導(dǎo)白血病K562/A02細(xì)胞耐藥。
MDR是多基因、多靶點(diǎn)、多環(huán)節(jié)綜合作用的結(jié)果,本研究證明GCS可通過MEK/ERK信號通路調(diào)控Bcl-2的表達(dá)為研究白血病多藥耐藥以及以GCS為靶點(diǎn)治療白血病提供了一定的實(shí)驗(yàn)依據(jù)和理論基礎(chǔ)。但GCS抑凋亡效應(yīng)是否還通過其它信號通路以及GCS誘導(dǎo)白血病多藥耐藥是否涉及其它分子機(jī)制還有待進(jìn)一步研究。
[1] Ponnusamy S, Meyers-Needham M, Senkal CE, et al. Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance[J]. Future Oncol, 2010, 6(10):1603-1624.
[2] Ryland LK, Fox TE, Liu X, et al. Dysregulation of sphingolipid metabolism in cancer[J]. Cancer Biol Ther, 2011, 11(2):138-149.
[3] Liu YY, Hill RA,Li YT. Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance[J]. Adv Cancer Res, 2013, 117:59-89.
[4] Junttila MR, Li SP,Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival[J]. FASEB J, 2008, 22(4):954-965.
[5] Andresen BT, Rizzo MA, Shome K, et al. The role of phosphatidic acid in the regulation of the Ras/MEK/Erk signaling cascade[J]. FEBS Lett, 2002, 531(1):65-68.
[6] Liu Y, Xie KM, Yang GQ, et al. GCS induces multidrug resistance by regulating apoptosis-related genes in K562/AO2 cell line[J]. Cancer Chemother Pharmacol, 2010, 66(3):433-439.
[7] 郭 欣, 胡愛玲, 方霖楷, 等. RICTOR對類風(fēng)濕關(guān)節(jié)炎成纖維樣滑膜細(xì)胞活力的影響[J]. 中國病理生理雜志, 2013,29(03):526-530.
[8] Liu YY, Gupta V, Patwardhan GA, et al. Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling [J]. Mol Cancer, 2010, 9:145.
[9] 王慧涵, 胡 榮, 李迎春, 等.SFRP5基因甲基通過激活Wnt/β-catenin通路調(diào)節(jié)白血病細(xì)胞MDR1/P-gp的表達(dá)[J]. 中國病理生理雜志, 2013, 29(2):278-283.
[10]Kartal Yandim M, Apohan E,Baran Y. Therapeutic potential of targeting ceramide/glucosylceramide pathway in cancer[J]. Cancer Chemother Pharmacol, 2013, 71(1):13-20.
[11]Messner MC,Cabot MC. Glucosylceramide in humans[J]. Adv Exp Med Biol, 2010, 688:156-164.
[12]李 軍, 王國榮, 張秀芹, 等. 二苯乙烯苷對同型半胱氨酸誘導(dǎo)血管內(nèi)皮細(xì)胞凋亡及bcl-2、bax、caspase-3表達(dá)的影響[J]. 中國病理生理雜志, 2013, 29(4):743-747.
[13]Harris MH,Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability[J]. Cell Death Differentiation, 2000, 7(12):1182-1191.
[14]Lalazar G, Preston S, Zigmond E, et al. Glycolipids as immune modulatory tools[J]. Mini Rev Med Chem, 2006, 6(11):1249-1253.
[15]Liour SS,Yu RK. Differential effects of three inhibitors of glycosphingolipid biosynthesis on neuronal differentiation of embryonal carcinoma stem cells[J]. Neurochem Res, 2002, 27(11):1507-1512.
[16]Kok JW, Babia T, Filipeanu CM, et al. PDMP blocks brefeldin A-induced retrograde membrane transport from golgi to ER: evidence for involvement of calcium homeostasis and dissociation from sphingolipid metabolism[J]. J Cell Biol, 1998, 142(1):25-38.
[17]Yu C, Krystal G, Varticovksi L, et al. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells[J]. Cancer Res, 2002, 62(1):188-199.
Glucosylceramide synthase upregulates apoptosis-related genebcl-2 expressionviaMEK/ERK signaling pathway in leukemia multidrug-resis-tant cell line
WANG Qian, ZOU Jian, ZHANG Xiu-fen, MU Hui-jun, YIN Ying, XIE Ping
(CentralLaboratory,TheAffiliatedWuxiPeople’sHospital,NanjingMedicalUniversity,Wuxi214023,China.E-mail:xieping1115@163.com)
AIM: To investigate whether glucosylceramide synthase (GCS) regulates apoptosis-related genebcl-2 expressionviaMEK/ERK signaling pathway, thus enhancing drug resistance of K562/A02 human leukemia multidrug resistant cell line. METHODS: siRNA targeting GCS was transfected into K562/A02 cells. Bcl-2, p-ERK and total ERK expression at mRNA and protein levels afterGCSknockdown were detected by real-time PCR and Western blotting. After exposed to MEK-ERK pathway inhibitor U0126, the expression of Bcl-2 at mRNA and protein levels also was analyzed by real-time PCR and Western blotting, respectively. The viability of the cells was evaluated by CCK-8 assay. RESULTS: The expression of GCS and Bcl-2, as well as MEK/ERK signaling were significantly inhibited in K562/A02 cells byGCSsiRNA transfection compared with negative control group. Inactivation of MEK/ERK signaling due to U0126 treatment decreased Bcl-2 mRNA and protein levels in a concentration-dependent manner, and sensitized K562/A02 cells to adriamycin. CONCLUSION: GCS may affect the expression of apoptosis-related genebcl-2 by MEK/ERK signaling pathway, thus regulating multidrug resistance of human leukemia K562/A02 cells. [KEY WORDS] Glucosylceramide synthase; MEK/ERK signaling pathway; Genes,bcl-2; Drug resistance, multiple
1000- 4718(2015)01- 0114- 05
2014- 08- 14
2014- 09- 25
無錫市科技發(fā)展指令性計(jì)劃(No. CSEY1N1101)
△通訊作者 Tel: 0510-85350363; E-mail: xieping1115@163.com
R363; R733.72
A
10.3969/j.issn.1000- 4718.2015.01.022